
Identification of Mechatronic Systems with
Dynamic Neural Networks using Prior

Knowledge

C. Endisch, M. Brache, P. Endisch, D. Schröder and R. Kennel ∗

Abstract—This paper introduces a new approach
for the identification of mechatronic systems with dy-
namic neural networks. Based on a given continu-
ous signal flow chart a discrete chart is constructed.
This discrete chart is implemented in a general dy-
namic neural network (GDNN). Certain weights of
the neural network model correspond with physical
parameters of the system and can be trained by an
optimization algorithm. Moreover, nonlinear parts
of the signal flow chart can be identified by nonlin-
ear subparts of the neural network. The parameters
are trained with the Levenberg-Marquardt (LM) opti-
mization algorithm. Therefore the Jacobian matrix is
required. The Jacobian is calculated by real time re-
current learning (RTRL). The proposed identification
method is tested with a nonlinear two mass system.

Keywords: System identification, mechatronic system,

dynamic neural network, GDNN, real time recurrent

learning

1 Introduction

Neural Network models are usually applied if no or very
little prior knowledge of the system is available. The
identification approach in [2][3] starts with an oversized
general dynamic neural network (GDNN) and removes
unnecessary parts (in GDNNs the layers can have feed-
back connections with time delays, see Fig. 1). During
the identification process the network architecture is re-
duced to find a model for the plant as simple as possible.
The approach in this paper is completely different. The
assumption is that the structure of the system is known
in form of a continuous signal flow chart. The model is
constructed in two steps. First the continuous signal flow
chart is redrawn in order to insert integrator blocks in all
backward paths. In the second step the integrator blocks
are discretized by the Implicit or the Explicit Euler ap-
proximation.

A similar approach is suggested in [6][7]. The so called
structured recurrent neural network makes use of a state
observer for system identification. Contrary to the struc-

∗Technische Universität München, Institute for Electrical Drive
Systems and Power Electronics, 80333 München, Germany, Email:
christian.endisch@tum.de

tured recurrent neural network in [6][7] the approach
in this paper does neither need a state observer nor
system-dependent derivative calculations are necessary.
The derivative calculations are conducted for the GDNN-
model in general [10][9][11] no matter what model is used
for the identification process.

The next section presents the recurrent neural network
used in this paper. Administration matrices are intro-
duced for implementing a special model structure. Sec-
tion 3 deals with the parameter optimization method
used throughout this paper. Section 4 describes the
mechatronic system to be identified. In section 5 the
structured GDNN is constructed. The identification pro-
cess is presented in section 6. Finally, in section 7 we
summarize the results.

2 General Dynamic Neural Network

De Jesus described the GDNN-model in his doctoral the-
sis [10]. The sophisticated formulations and notations
of the GDNN-modell allow an efficient computation of
the Jacobian matrix using real time recurrent learning
(RTRL) [4][9][11][15]. Therefore we follow these conven-
tions suggested by De Jesus. The simulation equation for
layer m is calculated by

nm(t) =
∑

l∈Lf
m

∑
d∈DLm,l

LW˜
m,l(d) · al(t − d)+

∑
l∈Im

∑
d∈DIm,l

IW˜
m,l(d) · pl(t − d) + bm,

(1)

where nm(t) is the summation output of layer m, pl(t) is
the l-th input to the network, IW˜m,l is the input weight
matrix between input l and layer m, LW˜ m,l is the layer
weight matrix between layer l and layer m, bm is the
bias vector of layer m, DLm,l is the set of all delays in
the tapped delay line between layer l and layer m, DIm,l

is the set of all input delays in the tapped delay line
between input l and layer m, Im is the set of indices of
input vectors that connect to layer m and Lf

m is the set
of indices of layers that directly connect forward to layer
m. The output of layer m is

am(t) = fm(nm(t)), (2)

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-18210-2-7 WCECS 2009

111

T
D
L

T
D
L

T
D
L

T
D
L

T
D
L

T
D
L

T
D
LR1 × 1

S1 × 1

S1 × 1
S1 × R1

S1 × S1

S1 × S2

S1 × S3

S2 × 1

S2 × 1
S2 × S1

S2 × S2

S3 × 1

S3 × 1
S3 × S2

S2 × S3 S3 × S3

f1 f2 f3
p1(t) a1(t) a2(t) a3(t) = ŷ(t)

IW˜1,1

LW˜ 1,1

LW˜ 1,2

LW˜ 1,3

LW˜ 2,1

LW˜ 2,2

LW˜ 2,3

LW˜ 3,2

LW˜ 3,3

b1 b2 b3

z−1

z−2

z−dmax

LW˜ 2,2(1)

LW˜ 2,2(2)

LW˜ 2,2(dmax)

Layer 1 Layer 2 Layer 3

Σ

ΣΣΣ

Figure 1: Example of a three-layer GDNN with feedback connections in all layers.

where fm(·) are either nonlinear tanh- or linear activa-
tion functions. At each point in time the equations (1)
and (2) are iterated forward through the layers. Time is
incremented from t = 1 to t = Q. (See [10] for a full
description of the notation used here). Fig. 1 shows a
tree-layer GDNN with feedback connections in all lay-
ers. In this example all feedback connections have com-
plete tapped delay lines (from a first-order time delay
element z−1 up to the maximum order time delay ele-
ment z−dmax). The output of a tapped delay line (TDL)
is a vector containing delayed values of the TDL input.
As seen in (1), also the network inputs have TDLs. In
fig. 1 below the matrix-boxes and below the arrows the
dimensions are shown. Rm and Sm respectively indicate
the dimension of the input and the number of neurons in
layer m. ŷ is the output of the GDNN.

In order to construct a flexible model-structure, it is nec-
essary that only particular weights in the weight matrices
do exist. This is realized by the introduction of adminis-
tration matrices.

2.1 Administration Matrices

For each weight matrix there exists one weight admin-
istration matrix to mark which weights are used in the
GDNN-model. The layer weight administration matrices
AL˜m,l(d) have the same dimensions as the layer weight
matrices LW˜ m,l(d), the input weight administration ma-
trices AI˜ m,l(d) have the same dimensions as the input
weight matrices IW˜m,l(d) and the bias weight admin-
istration vectors Abm have the same dimensions as the
bias weight vectors bm. The elements of the administra-
tion matrices can have the boolean values 0 or 1, indi-
cating if a weight is valid or not. If e.g. the layer weight
lwm,l

k,i (d) = [LW˜ m,l(d)]k,i from neuron i of layer l to neu-
ron k of layer m with a dth-order time-delay is valid,
then

[
AL˜m,l(d)

]
k,i

= αlm,l
k,i (d) = 1. If the element in the

administration matrice equals to zero, the corresponding

weight has no influence on the GDNN. With these defi-
nitions the kth output of layer m can be computed by

nm
k (t) =

∑
l∈Lf

m

∑
d∈DLm,l

⎛
⎝ Sl∑

i=1

lwm,l
k,i (d) · αlm,l

k,i (d) · al
i(t − d)

⎞
⎠

+
∑
l∈Im

∑
d∈DIm,l

⎛
⎝ Rl∑

i=1

iwm,l
k,i (d) · αim,l

k,i (d) · pl
i(t − d)

⎞
⎠

+ bm
k · αbm

k ,

am
k (t) =fm

k (nm
k (t)),

(3)

where Sl is the number of neurons in layer l and Rl is
the dimension of the lth input. By setting certain entries
of the administration matrices to one a certain GDNN-
structure is generated. As this model uses structural
knowledge from the system, it is called Structured Dy-
namic Neural Network (SDNN).

2.2 Implementation

For the simulations throughout this paper the graphical
programming language Simulink (Matlab) is used. SDNN
and the optimization algorithm are implemented as S-
function in C++.

3 Parameter Optimization

First of all a quantitative measure of the network per-
formance has to be defined. In the following we use the
squared error

E(wk) =
1
2
·

Q∑
q=1

(y
q
− ŷ

q
(wk))T · (y

q
− ŷ

q
(wk))

=
1
2
·

Q∑
q=1

eT
q (wk) · eq(wk),

(4)

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-18210-2-7 WCECS 2009

where q denotes one pattern in the training set, y
q

and
ŷ

q
(wk) are the desired target and the actual model out-

put of the q-th pattern respectively. The vector wk is
composed of all weights in the SDNN. The cost function
E(wk) is small if the training process performs well and
large if it performs poorly. The cost function forms an
error surface in a (N + 1)-dimensional space, where N is
equal to the number of weights in the SDNN. In the next
step this space has to be searched in order to reduce the
cost function.

3.1 Levenberg-Marquardt Algorithm

All Newton methods are based on the second-order Taylor
series expansion about the old weight vector wk:

E(wk+1) = E(wk + Δwk) (5)

= E(wk) + gT
k
· Δwk +

1
2
· ΔwT

k · H˜ k · Δwk.

If a minimum on the error surface is found, the gradient
of the expansion (5) with respect to Δwk is zero:

∇E(wk+1) = g
k

+ H˜ k · Δwk = 0. (6)

Solving (6) for Δwk results in the Newton method

Δwk = −H˜ −1
k · gT

k
,

wk+1 = wk − H˜ −1
k · g

k
. (7)

The vector −H˜ −1
k · gT

k
is known as the Newton direction,

which is a descent direction, if the Hessian matrix H˜ k

is positive definite. The LM approach approximates the
Hessian matrix by [5]

H˜ k ≈ J˜T (wk) · J˜(wk) (8)

and it can be shown that

g
k

= J˜T (wk) · e(wk), (9)

where J˜(wk) is the Jacobian matrix

J˜(wk) =

⎡
⎢⎢⎢⎢⎣

∂e1(wk)

∂w1

∂e1(wk)

∂w2
· · · ∂e1(wk)

∂wN
∂e2(wk)

∂w1

∂e2(wk)
∂w2

· · · ∂e2(wk)
∂wN

...
...

. . .
...

∂eQ(wk)

∂w1

∂eQ(wk)

∂w2
· · · ∂eQ(wk)

∂wN

⎤
⎥⎥⎥⎥⎦ (10)

which includes first derivatives only. N is the number of
all weights in the neural network and Q is the number
of evaluated time steps. With (7), (8) and (9) the LM
method can be expressed with the scaling factor μk

wk+1 = wk−
[
J˜T (wk) · J˜(wk) + μk · I˜

]−1 ·J˜T (wk)·e(wk),
(11)

where I˜ is the identity matrix. As the LM algorithm
is the best optimization method for small and moderate

networks (up to a few hundred weights), this algorithm
is used for all simulations in this paper.

LM optimization is usually carried out offline. In this
paper we use a sliding time window that includes the
information of the last Q time steps. With the last Q
errors the Jacobian matrix J˜(wk) from equation (10) is
calculated quasi-online. In every time step the oldest
training pattern drops out of the time window and a new
one (from the current time step) is added — just like a
first in first out (FIFO) buffer. If the time window is large
enough, it can be assumed that the information content
of the training data is constant. With this simple method
we are able to implement the LM algorithm quasi-online.
For the simulations in this paper the window size is set
to Q = 25000 using a sampling time of 1ms.

3.2 Jacobian Calculations

To create the Jacobian matrix, the derivatives of the er-
rors have to be computed, see (10). The GDNN has feed-
back elements and internal delays, so that the Jacobian
cannot be calculated by the standard backpropagation
algorithm. There are two general approaches to calculate
the Jacobian matrix for dynamic systems: By backprop-
agation through time (BPTT) [14] or by real time re-
current learning (RTRL) [15]. For Jacobian calculations
the RTRL algorithm is more efficient than the BPTT al-
gorithm [11]. According to this the RTRL algorithm is
used in this paper. The interested reader is referred to
[8]-[11],[2] for further details.

Figure 2: Laboratory setup of the TMS.

4 Two-Mass-System

The considered plant (shown in Fig. 2) is a nonlinear
two-mass flexible servo system (TMS), which is a com-
mon example for an electrical drive connected to a work
machine via flexible shaft. Fig. 3 displays the signal flow

M1

−
− −

−−
MW

MC

MD

MB1 MB2

MR1

MR2

Δϕ
ϕ̇1

Δϕ̇

1
s c

d

1
s·J1

1
s·J2 ϕ̇2

Figure 3: Signal flow chart of the TMS with friction.

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-18210-2-7 WCECS 2009

chart of the TMS, where the spring constant c and the
damping d model the shaft between the two machines
[13]. ϕ̇1 and ϕ̇2 denote the rotation speed of the main
engine and the work machine respectively. The torque of
inertia of the machines are depicted by J1 and J2. The
motor torque is M1 and the torque at the work machine
is M2. MB1 and MB2 are the acceleration torques of the
main engine and the work machine respectively. The dif-
ference of the rotation speeds is denoted by Δϕ̇ and Δϕ
is the difference of the angles. The torque of the spring
and the damping are MC and MD. The friction torques
of the engine and the working machine are MR1 and MR2

respectively. The objective in this paper is to identify the
linear TMS-parameters and the characteristics of the two
friction torques.

5 Structured Dynamic Neural Networks

To construct a structured network with the help of
GDNNs it is necessary to redraw the signal flow chart
from fig. 3 because the implementation of algebraic loops
is not feasible [1]. All feedback connections must contain
at least one time delay, otherwise the signals cannot be
propagated through the network correctly. This goal is
accomplished by inserting integrator blocks in the feed-
back loops. Fig. 4 displays the redrawn version of fig.
3. By using the Euler approximation it is possible to dis-

M1

−
− −

−−
MW

MC

MD

MB2

MR1

MR2

Δϕ
ϕ̇1

Δϕ̇ 1
s

1
s

1
s

1
s c

d
1

s·J1

1
s·J1

1
s·J1

1
J2 ϕ̇2

Figure 4: Redrawn signal flow chart of the TMS from fig.
3.

cretize the redrawn signal flow chart. The Implicit Euler
approximation y(t) = y(t− 1) + x(t) · T replaces all inte-
grator blocks in the forward paths and the Explicit Euler
approximation y(t) = y(t − 1) + x(t − 1) · T replaces all
integrator blocks in the feedback paths. This approach
ensures that all feedback connections contain the neces-
sary time delays. The resulting discrete signal flow chart,
which can be implemented as a SDNN, is displayed in fig.
5. z−1 denotes a first order time delay and T is the sam-
pling time. All other denotations are the same as in fig.
3. In total the SDNN consists of 16 layers. The sum-
ming junctions depict the neurons of the network. Every
summing junction is marked with a number, which de-
notes the layer of the neuron and its position within the
layer. For instance, 15.1 marks the first neuron of the
15th layer. The friction of the engine and the work ma-
chine can be modeled by an optional number of neurons
in the 5th layer and in the 11th layer respectively. These
are the only neurons with tanh-transfer functions. All

other neurons have linear transfer functions. The con-
nections in fig. 5 which do neither belong to a linear
parameter (depicted as box) nor to a friction-subpart are
initialized with 1 or -1. The optimization algorithm is
able to tune the parameters corresponding to the spring
constant c, the damping d and the torque of inertia J2

and the friction weights of the work machine. As it is
not possible to identify the two torques of inertia as well
as the two characteristic curves of the TMS simultane-
ously, the engine parameters are determined in a first
no-load-identification which is conducted in idle running,
see section 6.2.

6 Identification

6.1 Excitation Signal

The system is excited by an APRBS-signal (Amplitude
Modulated Pseudo Random Binary Sequence [12]) com-
bined with a bias produced by a relay. The APRBS-signal
has an amplitude range between -7 and 7Nm and an am-
plitude interval between 10 and 250ms. The relay output
switches to -4Nm if the rotation speed of the TMS is
greater than 10 rad

s and it switches to 4Nm if the rotation
speed is smaller than -10 rad

s . The suggested excitation
signal ensures that the TMS, wich is globally integrating,
remains in a well defined range for which the SDNN is
able to learn the friction. Moreover, the output of the re-
lay is multiplied by 0.2 for a rotation speed in the range
of -2 to 2 rad

s . Thus, the SDNN receives more information
about the friction in the region of the very important
zero crossing. The resulting output of the TMS can be
regarded in upper panel of fig. 8. This excitation signal
is used in all the following identification processes.

6.2 Engine Parameters

For a successful TMS-identification it is necessary to iden-
tify the engine parameters in idle mode first. The ob-
tained values are used as fix parameters in the identifi-
cation of the whole TMS in chapter 6.3. The upper left
drawing of fig. 6 displays the signal flow chart of the
nonlinear engine, where M1 is the torque, ϕ̇1 is the rota-
tion speed, and J1 denotes the torque of inertia. In order
to be able to discretize the signal flow chart, we insert
the integrator block in the backward path. The resulting
signal flow chart is shown in the upper right drawing of
fig. 6.

As explained above, for discretizing the signal flow chart
the Implicit Euler approximation has to replace the inte-
grator in the forward path, whereas the Explicit Euler ap-
proximation replaces the integrator in the backward path.
The sampling time T is incorporated in the gain corre-
sponding to the torque of inertia J1. The lower drawing
of fig. 6 displays the resulting discrete signal flow chart,
which can be implemented as a SDNN in which all the
summing junctions are regarded as neurons. The neurons

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-18210-2-7 WCECS 2009

M1 MC

MD

ϕ̇1

Δϕ̇

c · T

d

T
J1

T
J1

T
J1

T
J2

ϕ̇2

z−1

z−1

z−1

z−1z−1

z−1

z−1

1.1

−−−
−1.2

1.3

1.4

2.1
3.1

4.1

5.1

6.1

7.1

8.1

8.2
9.1

9.2

10.1

11.1

12.1

13.1 14.1

15.1

15.2

16.1

...
...

Figure 5: Structured recurrent network of a nonlinear TMS.

M1

ϕ̇1

T
J1

− −

−

z−1

z−1

1.1

1.2

2.1 3.1

4.1

5.1

6.1

M1 M1

MR1 MR1

1
s

1
s

1
s·J1

1
J1

ϕ̇1 ϕ̇1

signal flow chart redrawn signal flow chart

resulting SDNN

...

Figure 6: Signal flow chart of the engine (upper left side),
redrawn signal flow chart of the engine (upper right side)
and resulting SDNN (lower drawing).

in layer 5 model the friction of the engine.

For the identification process the engine is excited with
the signal explained in section 6.1. The quasi-online cal-
culated cost function E(wk) (4) with Q = 25000 is mini-
mized by the LM optimization algorithm (11). The sam-
pling time is set to T = 1ms and the identification pro-
cess starts after 5 seconds, seen in the upper panel of fig.
7. The SDNN-model of fig. 6 has three neurons in the
fifth layer with six weights to model the friction. These
weights are initialized randomly between -0.5 and 0.5.
Table 1 shows two different initial values for the torque of
inertia J1 and the corresponding results. The calculated
results are mean values between the last 25000 optimiza-
tion steps. Fig. 7 displays the characteristic curve of the
friction at t = 100 seconds identified by the SDNN. We
observe that the network is able to model the jump due

Table 1: Initial values and final values of the torque of
inertia of the engine J1.

J1 E
[kgm2] (mean value)

initial value 0.6
result (mean value) 0.1912 5.629 · 10−2

initial value 0.01
result (mean value) 0.1912 4.387 · 10−2

to the static friction with just three neurons. The fol-
lowing identification of the whole TMS uses this friction
curve from fig. 7 and the result J1 = 0.1912 from table 1
for the torque of inertia.

time [sec]to
rq

ue
of

in
er

ti
a

J
1

0 10 20Start 30 40 50 60 70 80 90 100
0

0.5

1

rotation speed
[

rad
s

]fr
ic

ti
on

to
rq

ue
[N

m
]

1086420−2−4−6−8−10

0.75
0.5

0.25
0

−0.25
−0.5

−0.75

Figure 7: Identification of the engine parameters —
Torque of inertia and friction curve identified by the non-
linear subpart in the 5th layer.

6.3 TMS Parameters

To identify the parameters of the whole TMS we excite
the plant with the torque signal described in section 6.1
and use the SDNN-model constructed in chapter 5. The

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-18210-2-7 WCECS 2009

Table 2: Initial values and final values for the identifica-
tion of the TMS.

J2 d c Error

[kgm2] [Nms
rad

] [Nm
rad

] (mean value)

initial value 0.7 0.4 100
result (mean value) 0.3838 0.2406 477.2 3.792 · 10−2

initial value 0.1 0.7 800
result (mean value) 0.3881 0.0919 477.6 6.400 · 10−2

torque of inertia of the engine J1 and its friction are ini-
tialized according to the results of section 6.2. These
weights remain unchanged during the whole identifica-
tion process, whereas the weights corresponding to the
torque of inertia of the work machine J2, the spring con-
stant c, the damping d and the work machine friction are
trained. The work machine friction is modeled by three
neurons with tanh functions in the 11th layer, see fig. 5.
The six weights of this nonlinear subpart are initialized
randomly between -0.5 and 0.5. The upper panel of fig.

ro
ta

ti
on

sp
ee

d
[ra

d s

]
ro

ta
ti

on
sp

ee
d

[ra
d s

]

time [sec]

time [sec]

time [sec]

co
st

fu
nc

ti
on

SDNN ˆ̇ϕ2

SDNN ˆ̇ϕ2

system ϕ̇2

system ϕ̇2

10

10

20

20

30

30

40

40

50

50

60

60

70

70

80

80

90

90

90

100

100

91 92 93 94 95

0

0

5

10

10

−5

−10

100

10−1

10−2

10−3

Figure 8: Output signals of the SDNN modell ˆ̇ϕ2 and the
real TMS ϕ̇2 with resulting cost function.

8 displays the outputs of the TMS and the SDNN-model
during the identification process for the first set of initial
values of table 2. The lower panel of this figure shows
only five seconds for a detailed view. The identification
process starts after 5 seconds. The sampling time is set
to T = 1ms. The quasi-online calculated cost function
E(wk) (4) with Q = 25000 is minimized by the LM op-
timization algorithm (11) and is depicted in the middle
panel of fig. 8. Due to the quasi-online approach the
cost function value increases until t = 25 sec., until the
training data window is completely filled up. The results
in table 2 are mean values of the last 25000 optimization
steps. Fig. 9 displays the developing of the damping,
the spring constant and the torque of inertia during the

identification process for the first initialization of table
2. Fig. 10 shows the characteristic curve of the work
machine friction identified by the SDNN after 100 sec-
onds. In addition to that table 2 shows the results of a

da
m

pi
ng

d

time [sec]

time [sec]

time [sec]

sp
ri

ng
co

ns
ta

nt
c

to
rq

ue
of

in
er

ti
a

J
2

0

0

0

10

10

10

20

20

20

Start

Start

Start

30

30

30

40

40

40

50

50

50

60

60

60

70

70

70

80

80

80

90

90

90

100

100

100

0

0

0.5

0.5

1

1

0

500

1000

Figure 9: Linear parameter signals during the identifica-
tion.

second identification run with another initialization. The
resulting torque of inertia and spring constant are almost
equal. Only the damping shows different final values.
The higher mean error (compared to the first identifica-
tion) implies that the second optimization process ended
in a local minimum.

rotation speed
[

rad
s

]fr
ic

ti
on

to
rq

ue
[N

m
]

1086420−2−4−6−8−10

1

0.5

0

−0.5

−1

Figure 10: Friction curve identified by the nonlinear sub-
part in the 11th layer.

7 Conclusion

This paper introduces a new approach for system iden-
tification using prior knowledge. Starting with a given
continuous signal flow chart a discrete SDNN-model is
constructed in two steps. First the continuous signal
flow chart is redrawn in order to insert integrator blocks
in the feedback loops. In the second step the redrawn
chart is discretized by replacing all integrator blocks in
the forward paths by the Implicit Euler approximation
and all integrator blocks in the feedback paths by the

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-18210-2-7 WCECS 2009

Explicit Euler approximation. The resulting chart con-
tains time delays in all feedback connections and can be
implemented as a SDNN without algebraic loops. Certain
weights of the SDNN correspond to physical parameters,
and nonlinear subparts of the SDNN model nonlineari-
ties of the system. The suggested identification approach
is tested with a nonlinear TMS. The results verify that
the suggested approach enables us to identify the torques
of inertia, the spring constant, the damping and the two
friction curves of the TMS. Problems may occur if the
optimization algorithm gets stuck in a local minimum.
In this case the identification process has to be restarted
with a different set of initial values. With the help of the
mean error the success of the identification process can
be validated.

References

[1] M.J. Brache, ”Identification of Dynamic Sys-
tems Using Previous Knowledge,” Diploma Theses,
Lehrstuhl für Elektrische Antriebssysteme, Technis-
che Universität München, 2008.

[2] C. Endisch, C. Hackl and D. Schröder, ”Optimal
Brain Surgeon For General Dynamic Neural Net-
works,” in Lecture Notes in Artificial Intelligence
(LNAI) 4874, Springer-Verlag Berlin, pp. 15-28,
2007.

[3] C. Endisch, C. Hackl and D. Schröder, ”System
Identification with General Dynamic Neural Net-
works and Network Pruning,” International Journal
of Computational Intelligence, vol. 4, no. 3, pp. 187–
195, 2008.

[4] C. Endisch, P. Stolze, C. Hackl and D. Schröder,
”Comments on Backpropagation Algorithms for a
Broad Class of Dynamic Networks,” IEEE Trans. on
Neural Networks, vol. 20, no. 3, pp. 540–541, 2009.

[5] M. Hagan, B. M. Mohammed, ”Training Feedfor-
ward Networks with the Marquardt Algorithm,”
IEEE Trans. on Neural Networks, vol. 5, no. 6, pp.
989–993, 1994.

[6] C. Hintz, B. Angerer and D. Schröder, ”Online Iden-
tification of Mechatronic System with Structured
Recurrent Neural Networks,” Proceedings of the
IEEE-ISIE 2002, L’Aquila, Italy, pp. 288–293, 2002.

[7] C. Hintz, ”Identifikation nichtlinearer mechatro-
nischer Systeme mit strukturierten rekurrenten
Netzen,” Dissertation, Lehrstuhl für Elektrische
Antriebssysteme, Technische Universität München,
2003.

[8] O. De Jesús, M. Hagan, ”Backpropagation Algo-
rithms Through Time for a General Class of Recur-
rent Network,” IEEE Int. Joint Conf. Neural Net-
work, Washington, pp. 2638–2643, 2001.

[9] O. De Jesús, M. Hagan, ”Forward Perturbation Al-
gorithm For a General Class of Recurrent Network,”
IEEE Int. Joint Conf. Neural Network, Washington,
pp. 2626–2631, 2001.

[10] O. De Jesús, ”Training General Dynamic Neural
Networks,” Ph.D. dissertation, Oklahoma State Uni-
versity, Stillwater, OK, 2002.

[11] O. De Jesús, M. Hagan, ”Backpropagation Algo-
rithms for a Broad Class of Dynamic Networks,”
IEEE Trans. on Neural Networks, vol. 18, no. 1, pp.
14–27, 2007.

[12] O. Nelles, Nonlinear System Identification. Berlin
Heidelberg New York: Springer-Verlag, 2001.

[13] D. Schröder, Elektrische Antriebe - Regelung von
Antriebssystemen. 2nd edn., Berlin Heidelberg New
York: Springer-Verlag, 2001.

[14] P.J. Werbos, ”Backpropagation Through Time:
What it is and how to do it,” Proc. IEEE, vol. 78,
no. 10, pp. 1550-1560, 1990.

[15] R.J. Williams, D. Zipser, ”A Learning Algorithm for
Continually Running Fully Recurrent Neural Net-
works,” Neural Computing, vol. 1, pp. 270–280,
1989.

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-18210-2-7 WCECS 2009

