
 
 

 

  
Abstract— This paper proposes the design of Multivariable 

Robust Anti-windup Generalized Predictive Control 
(MRAGPC) scheme for multivariable processes with input 
constraints and disturbances. The proposed scheme embodies 
both the optimal attributes of continuous-time anti-windup 
generalized predictive control and the robust feature of 
operator-based theoretic approach. As a result, a strongly 
robust stable feedback control system with disturbance 
rejection feature and output-reference input tracking is 
achieved. 
 

Index Terms— anti-windup, input constraints and 
disturbance, robust predictive control, MIMO systems. 
 

I. INTRODUCTION 

  Predictive control strategy has been a central research focus 
in recent times[1]-[5].The main objective of a reliable control 
scheme is believed to guarantee stability of the controlled 
system, minimize the influence of disturbances, noises, 
perturbations, track the output to the desired command input 
and generally optimize the control performance. In practice, 
control systems have to deal with disturbances of all kinds, 
such as stepwise load disturbances, high frequency sensor or 
thermal noise. In adaptive control, although the underlined 
control scheme may have a good setpoint tracking response 
and disturbance rejection, these disturbances may give rise to 
wrong parameter estimates and thus results in bad control 
performance or worst still an unstable system.  
 The new proposed structure under the generalized scheme 
of Predictive Control is known as Multivariable Robust 
Anti-windup Generalized Predictive Control (MRAGPC). It 
is so named because it shares the attributes of MCAGPC and 
operator based theoretic design for non-linear systems. 
Though operator-based theoretic approach has been used 
widely for control of non-linear systems the idea as well can 
be extended to linear systems since control engineers find it 
easier working with linearized model than its non-linear 
form. So if a linearized model of a system can be obtained 
about some operating point, then optimal robust control 
design can be achieved by chosen a control strategy that 
satisfies both control optimal performance and robustness. 
Whereas MCAGPC design satisfies the optimal design 
criteria, the operator-based method is good for robust 
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performance design. As for the proposed MRAGPC, it is both 
optimal as well as robust.  
 This work proposes a design procedure for Multivariable 
Continuous-time Generalized Predictive Control for system 
with both input constraints and disturbances. The proposed 
MRAGPC design procedure entails firstly, the construction 
of stable right coprime factors of the controlled systems. 
Secondly, anti-windup controllers are designed for realizing 
a stable closed loop around process input-output loop. Next is 
the construction of Bezout identity operators for obtaining a 
stable feedback closed loop system. This procedure is 
completed by the design of a tracking operator using 
operator-based theoretic approach [6]. Based on this 
procedure, the robust stability of the closed-loop system in 
the presence of input constraint and disturbances is achieved.  
 In this design, effect of interactions between components 
of the MIMO systems is minimized by choosing appropriate 
MCAGPC parameters [1]. The effectiveness of this proposed 
scheme is confirmed by simulation of a real model of two 
inputs two outputs system with and without disturbance. 

 

II.  PROBLEM STATEMENT 

The proposed linear multivariable system model is given 
by [7]. 

 �������� = �������� + 
�������                                   �1� 
 
where Y(s), U(s), V(s) are p x 1 output, p x 1 input and  
p x 1 disturbance vectors respectively. B(s) is a p x q 
polynomial matrix while A(s) and C(s) are p x p diagonal 
polynomial matrices. As before, the polynomial matrices 
A(s) and B(s), A(s) and C(s) are coprime. The elements of 
C(s) are with a degree of one less or equal to that of the 
corresponding elements of A(s) and are chosen by the 
designer. The model in (1) corresponds to a Left Matrix 
Fraction Description (LMFD) described as 
 ����� = ����������                                                          �2� 
 
Equation (2) can be equivalently expressed as 
 ����� = ������������                                                      �3� 
 
where P0(s) is the nominal multivariable plant, D0(s) and 
N0(s) are coprime factors of P0(s) and are defined as 
 ������ = �� ��������������� = �� ����������                                                          �4� 

 
where �����  is a Hurwitz polynomial matrix with degree 
equal to that of ����. The polynomial matrix ����� is the 
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same as B(s) for a non-strict proper system (�� = 0), but for a 
strict proper system (�� > 0),  ����� is given as  
 ����� ≅ !"��� + ����                                                            �5� 
 
and polynomial matrix !"��� in (5) is designed as 
 !"��� = �$ ∗ � + 1�&'                                                            �6� 
 
where �� is the relative order of the original system and $ is 
any small positive constant such that all the roots of the 
polynomial �$� + ��&'  lie on the origin  of the complex 
plain. It can easily be established that as $ → 0 , the 
polynomial matrix ����� ≅ ����.  Equation (5) enables easy 
computation of the proposed design scheme. The optimal 
value of $ that gives good approximation of the model (5) 
can be achieved using [7]. 

The control input uj(t) is subject to the following 
constraint. 

 +,-.,0 ≤ +0�2� ≤ +,34,0�5 = 1, 2, … , 7�.                           �7� 
 
The constraint (3) is equivalently expressed as  
 

9�2� = :�9;� = < :=+>;�2�?⋮:A B+>A�2�CD , 9; = [+>;�2� ⋯ +>A�2�]H 

 

I0�J� = K9,34,   0 , if N > 9,34,   0N,              if 9,-.,   0 ≤ N ≤ 9,34,   0      �8� 9,-.,   0 , if N < 9,-.,   0
� 

 
where u1 is the ideal controller output vector. The objective is 
to design as before a MCAGPC system using coprime 
factorization and Youla-Kucera parameterization for the 
above process. 

 

III.  PROPOSED CONTROLLERS DESIGN 

The proposed design scheme for the MIMO systems 
follows four steps as highlighted below. 

A. Design of Stable Feedback MCGPC Controllers R(s), V 
(s) and U (s) with Input Constraint part (Fig.1). 

By adapting the MCGPC design method to the anti-windup 
design approach [3], [4], the proposed controllers is given by 
Youla-Kucera parameterisation [5] as follows. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Proposed MIMO Control Structure 

 
 

Q��� = =R��� − T�������?�;U���                                   �9� 

 W��� = X��� + T�������                                                    �10� 
 Y��� = R��� − T�������                                                     �11� 

where Q(s)∈RH∞ is a design parameter matrix for ensuring a 
strongly stable feedback controllers in the above and is given 
by 
 T��� = WZ����;W[���                                                          �12�   
 
N(s), D(s) are the coprime factor representation of ������� . 

X(s), Y(s) ∈RH∞  are operators chosen to satisfy the Bezout 
Identity 
 X������� + R������� = \]                                                 �13�  

  
where N(s) and D(s) are defined as 
 ����� = ^_�������������� = ^_����������                                                     �14� 

 
X(s) and Y(s) are as defined in the previous works [1], [4] as 
 X��� = U`Q` + U`
`���a���                                           �15� 

R��� = \] + U`
`���b���                                                  �16� 
 
Tc(s) is the closed-loop characteristic polynomial matrix for 
the control system in Figure 1 and is given by 
 ^��� = ���� + U`c��� + U`Q`�����                            �17� 
  
where Ke, Ce, Re, G(s) and F(s) are given in [1]. 
  

B.  Robust Stability of D0
-1 (s) with Input Constraint. 

The CAGPC part shown in Fig. 2 is non-linear with respect to 
the effect of input constraint. R-1D0

-1(s) is the closed loop 
transfer function of the CAGPC structure and it is always 
stable and invertible. Therefore, it can be seen that the plant 
retains a robust rcf and it is stable.  Then, we can design a 

non-linear operator d"���  to satisfy the following Bezout 
Identity [4]. 

Q��������� + d"�������� = \]                                       �18� 
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Figure 2. Feedback Stability Design for the MIMO System. 
 
C. Tracking Operator Design 
Here a tracking operator M  for reference signal w such 

that plant output y(t) tracks to the reference signal r(t) as 
depicted in Fig. 3. Based on the proposed lemma and proof in 
[6], operator M(s) is designed to satisfy 
 

 �����=o���p��� + Q����∆���? = \]p���   �19�     

 
 
 
 
 
 
 
 
 
 

Figure 3. Robust Tracking Structure for the MIMO System. 
 
    

D. Decoupling of the control system 
 In the proposed control scheme, the possible interactions 
between different control loops are identified as input-input, 
disturbance-input and input-output. In order to minimize the 
effect of these interactions, the following design steps are 
proposed. 
(i) Choosing larger value for control orders and/or smaller 
value for the maximum prediction horizons and/or using 
reference models for the output in the design step A. 
(ii) Design a decoupling matrix GD(s) such that each loop 
does not affect the others. The elements of GD(s) can be 
selected in a number of ways to achieve optimally decouple 
control system. This is further investigated in the future 
works. 
 
 
 

IV.  SIMULATION EXAMPLES 
The process examples considered in this section is simulated 
for  both disturbance-free and disturbance systems.  
 

A. Disturbance-free MCAGPC Control 

The parameters of the 2-input 2-output systems is given in 
Table 1 below. 
 
 
 

Table 1.  Simulation parameters for Disturbance-free Control 
    Design. 

System Parameters Control Parameters 

q;; = �r + � + 0.1 qrr = �r + 0.5� + 0.06 s;; = −0.2� + 10 s;r = 0.5� + 2 sr; = 0.1� + 1.2 srr = −0.25� + 6 t;; = trr = � + 0.8 

u = 7 = 2 
 

vw; = 10,  vwr = 10 vx; = 3, vxr = 3 yu; = 0.5, yur = 0.5 �.;; = 0.75, �.rr = 0.75 +;,; = +;,r = 0 +r,; = +r,r = 0.1 z; = 10, zr = 2 {; = {r = 0.1 |;,; = |;,r = 0 |r,; = |r,r = 6 �} = ~A 
 

B. Model with Disturbance 

The process model considered for the system with input 
disturbance is a similar second-order system with disturbance 
input given as ∆(t)  =  20 ��� �r 2. The process and control 

parameters are as shown in Table 2. 
 
Table 2.  Simulation parameters for System with Input    
    Disturbance. 

System Parameters Control Parameters 

q;; = �r + � + 0.1 qrr = �r + 0.5� + 0.06 s;; = −0.2� + 10 s;r = 0.5� + 2 sr; = 0.1� + 1.2 srr = −0.25� + 6 t;; = trr = � + 0.8 

u = 7 = 2 
q = 1 

vw; = 12,  vwr = 12 vx; = 3, vxr = 3 yu; = 1, yur = 1 �.;; = 0.45, �.rr = 0.45 +;,; = +;,r = 0 +r,; = +r,r = 0.1 
w1 =10, w2 = 2 {; = {r = 0.1 |;,; = |;,r = 0 |r,; = |r,r = 6 �} = ~A 

 
 

IV.  RESULTS AND DISCUSSIONS 

Figs 4(a) and (b) show the control input before constraints 
while Figs 5(a) and (b) show the control input after the 
constraints are applied. The outputs from the control inputs 
are displayed in Figs 6(a) and (b). It is apparent from these 
results that our proposed control scheme tracks to the 
reference inputs and keeps the inputs within the limitations of 
the system for the case of disturbance-free mode design. 
 Figs 7 through 9 show the step response of the Control 
inputs before constraints, after constraints and the system 
outputs for case of process example 2 with input constraints 
and disturbance feature. In these results, it is obvious that our 
proposed control design penalizes the control error, 
maintains the input limitations and also tracks the output to 
the command reference input. The sluggish nature of the 
output step response observed might be due to the presence of 
possible loop-to-loop interactions of the control system 
components. It is evidence from these results that these 
coupling effects can be considerably minimized by choosing 
appropriate MCAGPC design parameters.  
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Figure 4. System Control Input Step Responses before Constraints 
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Figure 6. System Output Step Responses 

Figure 5: System Control Input Step Responses  
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Figure 7. Process System Example 2 Control Input Step 
Responses before Constraints 

Figure 9. Process Example 2 Output Step Responses 

Figure 8. Process System Example 2 Control Input Step 
         Responses  
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V. CONCLUSION 

In this work, a design problem for MIMO system in the 
presence of input constraints with disturbances and 
disturbances-free are considered. From the obtained results 
of the simulations, the following conclusions could be drawn 
with regards to the performance of the proposed control 
scheme: 
1) The proposed MRAGPC design scheme shows good 

robust performance and tracks output to the command 
reference input in the presence of input constraints and 
disturbance for the two cases considered.  

2) The optimal feature of the proposed MRAGPC 
contributes to decoupling of inter-loop interactions 
usually present in MIMO control problems. It was also 
noted that, the choice of MRAGPC design parameters 
greatly influences the behavior of the control system. In 
these two cases, a good choice of maximum prediction 
horizons and or control orders is found to reduce the 
coupling effects between the loops, whereas, using a 
reference model adversely affects the performances of 
the system in both cases of disturbance and 
disturbances-free.  
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