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Abstract — Three methods for stability analysis  of nonlinear 

control systems are introduced in this contribution: method of 
linearization, Lyapunov direct method and Popov criterion. 
Since stability analysis of nonlinear control systems is difficult 
task in engineering practice, these methods are made easier and 
tabulated. Method of linearization: The table includes the 
nonlinear equations and their linear approximation. Lyapunov 
direct method: The table contains Lyapunov functions for usu-
ally used equations second order. Popov criterion: The table 
will allow us to directly determine the stability of the nonlinear 
circuit with the transfer function G(s) and the nonlinearity that 
satisfies the slope k. 

 
Index Terms — Global asymptotic stability (GAS), 

Phase-plane trajectory, Modified frequency response. 

I.  METHOD OF LINEARIZATION  
Consider the nonlinear autonomous n-order system. This 

system might be described by one nonlinear n-order equation 
or by a set on n first-order nonlinear differential equations [1] 

                            

( )
( )

( )nxxxnfnx

nxxxfx
nxxxfx

,...,2,1

..................

,...,2,122

,...,2,111

=′

=′

=′

                         (1) 

or matrix equation                                                      (2) ( )xfx =′

The solution of the system (1) is given phase-plane tra-
jectory in the n-dimensional state space. The points of the 
space in which is  ( ) ( ) ( ) 0...21 === xxx nfff   are singular 
points of the system because in the equilibrium points are 
speeds . The matrix representation for the 
linear system (1), where  is linear function x  we can 
write . On supposing that det  is solu-
tion . The linear time-invariant system has an equilib-
rium point at the origin. 
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0=x

A nonlinear system can have more an equilibrium points 
because  can have more solutions – more singular 
points. The equilibrium points can be stable or unstable. It 
depends on the phase-plane trajectory. They are stable if the 
trajectory approaches the equilibrium point as t tends to 
infinity and they are unstable if the trajectory recedes. 

( ) 0=xf

Stability theory plays a central role in systems theory and  
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engineering. Stability of  an equilibrium points we can find 
out by linearization of the equations  (1)  in the neighbour-
hood of each equilibrium point and then we have to find out 
stability of a surrogate system. If the linearization is allow-
able then the nonlinear system behaves similarly as the lin-
earized system in the neighbourhood of equilibrium point. 

If we can  express function fi  (i = 1,2, ..., n) in a set (1) in  
Taylor series in the neighbourhood of each singular point 
then we can write for this singular point 
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is Jacobian matrix that is defined as the matrix of partial 
derivatives with numerical values given singular point. The 
equation (3) is a set of linear differential equations that sub-
stitute the original set (1). 

A necessary and sufficient condition of stability of system 
is that the characteristic equation has all the roots in the left 
half-plane. If the characteristic equation has one or more 
roots in the right half-plane, the system is unstable. If the 
single or multiple roots are located on the imaginary axis, we 
can’t find out stability using linearization. But this stability 
that was found out by linearization is applicable only in a 
small enough region in the neighbourhood of equilibrium 
point. 

Now we will accomplish the practical linearization of 
second order system  assumed the equation 

                               ( ) ( ) 0=+′+′′ yfygy                             (6) 

If this is rearranged as two first-order equations, choosing 
the phase variables as the state variables, that is 

yxyx ′== 21 ; , then equation (1) can be written as 
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Singular points of this system we will obtain by solving 
021 =′=′ xx  and they are the points on the real axis 

[ ]0;10x .  When we introduce for conciseness the symbol      
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then the Jacobian matrix of this system is (where we have to 
give for  the coordinate of singular point 
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and then following equations represents the linearization of 
the nonlinear equations about the equilibrium point 
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Table I:  Linearized equations of nonlinear systems  
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equation (11) 
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We can substitute the origin nonlinear equation (6) this 
equation (11) and to find out stability of the nonlinear system 
like stability of the linear system, but only in a small enough 
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and the linearized eq
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The characteristic equation has roots s1 = –9,47; 
s2 = –0,53. The roots are real negative, the equilibrium point 
is stable. The system is stable in the neighbourhood of this 
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In table I are the commonly used  the equation of the sec-

ond order, their singular points and the linearized equation 
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II.  LYAPUNOV DIRECT METHOD 
Lyapunov’s method for stability analysis is in principle 

very general and powerful. The major drawback, which 
seriously limits its in practise, is the difficulty often associ-

Consider again the nonlinear auton
is system might be described by one nonlinear n-order 

equation or by a set on n first-order nonlinear differential 
equations (1) or matrix equation (2). 

The vector x is the state vector, an
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The function  V´  is negative semidefinite  (because for  x2 
= 0 the function  V´  is for arbitrary  x1  equals zero) and the 
system is globally stable. 

III.  POPOV CRITERION 
The Popov criterion is considered as one of the most ap-

propriate criteria for nonlinear systems and it can be com-
pared with the Nyquist criterion for linear systems [4]. 
However there are reservations that relate to the very es-
sence, correctness and reliability of the criterion. It is nec-
essary to emphasise that this criterion is reliable, but the 
conditions of its appl. should be clearly specified in advance.  
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Fig. 1 shows the system configuration with one nonlinear 
element and a linear part with the transfer function G(s) that 
can include all linear elements. It shows the nonlinearity that 
is single-valued, time–invariant and constrained to a hatch 
sector bounded by slopes k that is assumed to satisfy: for the 
case when all poles of G(s) are inside the left-half plane 

                                 ( )
∞<≤≤ k

e
ef0 , 

for the case when G(s) has poles on the imaginary axis (the 
so-called critical case) 

                                 

( )
∞<≤< k

e
ef0

. 

Fig.1:  Non-linear control circuit and characteristic of 
                                  nonlinear element 

For the case that G(s) has poles only inside the left-half 
s-plane, the static characteristic can be zero both in the be-
ginning and out of the beginning. For the case when G(s) has 
poles on the imaginary axis, it must not be zero out of the 
beginning. 

A nonlinear circuit with a transfer function of the linear 
part G(s) and with the nonlinear element (with the above 
described nonlinearity) is globally asymptotically stable 
when an arbitrary real number q (> 0 or  = 0 or < 0) exists 
where for every ω ≥ 0  the following inequality is completed  

                     ( ) ( )[ ] 01ωω1Re >++
k

jGqj                          (14) 

The Popov criterion can be – for more convenience – ap-
plied graphically in the G (jω)-plane. Let us apply a modified 
frequency response function G*(jω), defined     
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and we obtain the graphical interpretation of the Popov cri-
terion for global asymptotic  stability (GAS): The sufficient 
condition for GAS of nonlinear circuit is that  the plot of 
G*(jω) should lie entirely to the right of the Popov line which 
crosses the real axis at  -1/k  at a slope 1/q (q is an arbitrary 
real number) . 

In this contribution table III shows the commonly used 
nonlinear circuits (with stability being solved).  The table has 
been constructed  for the circuits with different transfer 
function G(s).There is an algebraic solution to the inequality 
(14) on condition that: 
0 ≤ k < ∞ (only for poles G(s) inside the left-half of s-plane);  
0 < k < ∞ (also for poles G(s) on the imaginary axis);   a, b > 
0;   ω... for every value from  0  to  ∞ ;     q...arbitrary. 

In the table IV, the frequency response function of the 
linear part of the circuit is presented in the form inserted to 

the inequality (14), and the resultant relation is presented 
after modifications. If the inequality is satisfied for  k, q, a, b, 
ω, the circuit in question is globally asymptotically stable 
(GAS) 
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for every value k. If it is not the case, then it is possible to 
determine for which k circuit is GAS or that it is not  for any k 
(this calculation is illustrated in the table). Therefore the table 
will allow us to directly determine the stability of the 
nonlinear circuit with the transfer function G(s) and the 
nonlinearity that satisfies the slope k.  Table V illustrates the  
modified frequency response plots enabling us graphic solu-
tions to stability. 

IV.  CONCLUSION 
Stability analysis of nonlinear control systems is difficult 

task in engineering practice. This paper can help to solve the 
problem. The describe methods creates tables and graphs for 
three methods of stability analysis. 

  First method is method of linearization. The table 
includes the nonlinear equations and directs their linear ap-
proximation.  Second method is Lyapunov direct method. 

The table contains Lyapunov functions for usually used 
control circuits second and third-order. The last method is 
Popov criterion. The table will allow us to directly determine 
the stability of the nonlinear circuit with the transfer function 
G(s) and the nonlinearity that satisfies the slope k. 
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