
Bernd Scholz-Reiter, Jens Heger, Torsten Hildebrandt

Abstract--There has been a lot of research about scheduling
manufacturing systems with dispatching rules in the past.
However, most studies concentrate on simplified scenarios
considering only one type of resource, usually machines.

In this study dispatching rules are applied to a more realistic
scenario, which is dual constrained by machines and operators
and has a re-entrant process flow. Interdependencies of
dispatching rules are analyzed by long-term simulation.
Strength and weaknesses of various priority rule combinations
are determined under different utilization levels. To gain
further insights into the problem we additionally solve static
instances optimally and with priority rules. For the optimal
solutions we extend a mixed integer linear program (MILP) of
the production system to cover operators and re-entrant
process flows.

Index Terms--Discrete-event simulation, dual-resource
constraints, MILP, priority rule scheduling, shop-floor control

I. INTRODUCTION
Shop-Scheduling has attracted researchers for many

decades and is still of big interest, because of its practical
relevance and the fact that optimal solutions can only be
found for very small instances due to its np-complete
character. Multi- or dual resource problems are significantly
less analyzed, despite being more realistic Scheduling with
priority/dispatching rules is quite appealing for various
reasons (see section II.B) and often used, especially when
considering more realistic and complex manufacturing
systems.

This work analyses the quality of dispatching rules in the
dual-resource constrained case. Different combinations of
rules are tested in order to analyze their interdependencies.
Our analysis combines simulation with the optimal solution
of static instances. To evaluate the results of the simulation
a mixed integer linear program (MILP) has been developed
to calculate optimal solutions.

The paper is organized as followed: In chapter 2 a short
literature review about shop scheduling, dispatching rules
and dual constrained scheduling is given. This is followed
by the problem description in chapter 3. In chapter 4 small
instances in comparison with optimal solutions are analyzed
and in chapter 5 a long term simulation study is described.
The paper closes with a conclusion and description of future
research.

Manuscript received July 26, 2009. This work was supported by the

German Research Foundation (Deutsche Forschungsgemeinschaft DFG).
Bernd Scholz-Reiter, Jens Heger and Torsten Hildebrandt are with the

Bremer Institut für Produktion und Logistik (BIBA) at the University of
Bremen, Hochschulring 20, 28359 Bremen, Germany (corresponding
author: Jens Heger, +49 421 218 9788; heg@biba.uni-bremen.de)

II. LITERATURE REVIEW
In this chapter a literature review is given considering the

job shop problem, dispatching rules and the dual constrained
scheduling.

A. Shop scheduling
Haupt [1] gives a definition of the scheduling or

sequencing problem as “the determination of the order in
which a set of jobs (tasks) {i|i = 1, ..., n) is to be processed
through a set of machines (processors, work stations)
(k|k=1...m).” Usual abstractions of real-world scheduling
problems are the job shop and flow shop problem. With
both problem types the number of operations and their
sequence are known in advance and fixed. In a job shop
scenario each job can have its own route whereas in the
classical flow shop all jobs share a common routing.
Because of its high complexity (np-hard) and its high
practical relevance the problem has attracted researchers and
practitioners for decades now. Due to its high complexity
optimal solutions can only be calculated for small instances.
The 10x10 (10 machines, 10 jobs) Fisher Thompson [2]
model for example remained unsolved for over two decades.

To still find good solutions for such problems many
heuristics, which do not guarantee to find an optimum, are
proposed. Examples are:

• Shifting bottleneck [3]
• Simulated annealing [4]
• Taboo search [5]
• Genetic algorithms (e.g. [6] [7]).

Many of these approaches however focus on quite
restrictive assumptions of their scenarios. Extending these
often quite complex heuristics to more realistic is usually
not straightforward. New, flexible approaches and different
solutions need to be applied. Decentralized planning and
scheduling as well as smart autonomous items in our
opinion are a very promising approach for this (e.g. [8]).
Decentralized decisions can be based on local decision
rules. This is where dispatching rules come into play.

B. Dispatching rules
Dispatching rules are applied to assign a job to a resource
(machine/operator/etc.). This is done each time the resource
gets idle and there are jobs waiting or a new job arrives at an
idle resource. The dispatching rule assigns a priority to each
job. This priority can be based on attributes of the job, the
resource or the system. The job with the highest priority is
chosen to be processed next.

Priority-scheduling rules have been developed and
analyzed for many years [1] [9] [10] [11] [12]. They are

Analysis And Comparison Of Dispatching Rule-
Based Scheduling In Dual-Resource
Constrained Shop-Floor Scenarios

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-18210-2-7 WCECS 2009

widely used in industry, especially in complex
manufacturing systems, e.g. semiconductor manufacturing.
Their popularity is derived from the fact that they perform
reasonably well in a wide range of environments, are
relatively easy to understand, because of their intuitive
nature. They also need only minimal computational time,
which allows them to be used even in real-time
environments.

Depending on the manufacturing system and the various
objectives (mean flow time, maximum flow time, variance
of flow time, proportion of tardy jobs, mean tardiness,
maximum tardiness, variance of tardiness, etc.) no single
rule has been found, which outperforms all others. [10] As a
result there are also approaches to find new dispatching
rules or choose appropriate ones according to the system’s
current state. (e.g. [11] [12] [13])

C. Multiple /dual resources constrained scheduling
Most research has been done on the machine-only

constrained problem, where machines are the only limiting
resource. Nevertheless, closer to the ‘real’ world are multi
or dual constrained (DRC) problems, where more than one
resource restricts the output of the system and impacts the
shop performance. Gargeya and Deane [14] defined the
multiple resource constrained job shop as “a job shop in
which two or more resources are constraining output. The
resources may include machines, labor and auxiliary
resources. Dual constrained job shops are constrained by
two resources (machine and labor, machines and auxiliary
resources or labor and auxiliary resources). Dual constrained
job shops are thus a specific type of multiple resource
constrained job shops.”

To solve the multi-resource constrained problem different
approaches were proposed. Mati and Xie [15] developed a
greedy heuristic. This heuristic is guided by a genetic
algorithm in order to identify effective job sequences.
Dauzère-Pérès et al. [16] [17] developed a disjunctive graph
representation of the multi-resource problem and proposed a
connected neighborhood structure, which can be used to
apply a local search algorithm such as taboo search. Patel et
al. [18] proposed a genetic algorithm for dual resource
constrained manufacturing and they compared different
dispatching rules against different performance measures.

In the study of Chen et al. [19], an integer optimization
formulation with a separable structure is developed where
both machines and operators are modeled as resources with
finite capacities. By relaxing resource capacity constraints
and portions of precedence constraints, the problem is
decomposed into smaller sub-problems that are effectively
solved by using a dynamic programming procedure. The
multipliers are updated using the surrogate sub gradient
method. A heuristic is then used to obtain a feasible
schedule based on sub-problem solutions.

III. PROBLEM DESCRIPTION
ElMaraghy et al. [20] defined the machine / worker / job

scheduling problem as: “Given process plans for each part, a
shop capacity constrained by machines and workers, where

the number of workers is less than the number of machines
in the system, and workers are capable of operating more
than one machine, the objective is to find a feasible schedule
for a set of job orders such that a given performance criteria
is optimized.” An interesting object of investigation in DRC
is the interaction effect of the resource constraints and how
they impact the performance measure like the mean flow
time.

The experimental design used in this study corresponds to
the MiniFab scenario [21] [22], which is shown
schematically in Fig. 1. For practical reasons the model has
been simplified, nevertheless the main properties remain.

5

Ma

Mb

Mc

Md

Mestart end
1 2 3

4

6

7

Figure 1 : Process flow of the 5 Machine 6 step production model

The MiniFab scenario is a simplification of a

semiconductor manufacturing system, but still containing
the characteristics of such a system. It consists of 5
machines with 6-step re-entrant processes. Operators are
used to load and unload machines. Machines Ma and Mb as
well as Mc and Md are parallel identical machines sharing a
common buffer. To be able to get optimal solutions we do
not consider sequence-dependent setup times, parallel
batching and machine break downs at the moment.

Operations at the machines are divided into three parts:
loading, processing and unloading. Processing starts directly
after the machines are loaded. Unloading begins after
processing, but if there is no operator available for
unloading, the machine stays idle. In table 1 processing,
loading and unloading times are listed, which are used for
the calculations and simulations in this paper.

Table 1: Processing and (un)loading times used

 machine loading processing unloading
Step1 Ma / Mb 15 55 25
Step2 Mc / Md 20 25 15

Step3 Me 15 45 15
Step4 Ma / Mb 20 35 25
Step5 Mc / Md 15 65 25

Step6 Me 10 10 10

The processing and (un)loading times as well as the

machine and sequence settings are fixed. The machines
select a job out of the waiting queue and call an operator to
load them (point in time a in Fig. 2). If no operator is
available the machines wait until eventually they are loaded
(b-c) and proceed with processing afterwards (c-d).

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-18210-2-7 WCECS 2009

Machine

Operator

W L P W U

a b c d e f

W = waiting; L = loading; P = processing; U = unloading;
a, b, c, d, e, f : points in time

L U

Figure 2: Gantt chart illustration of machine-operator assignment

If an operator is available, unloading is performed

immediately (e-f), otherwise there is an additional waiting
period (d-e). The operators are not needed during processing
and can work on other machines in that time period.

We vary the number of operators from 0 to 3 to create
scenarios constraining the available capacity in different
ways. The four resulting scenarios are:

• NO_OPERATOR: we don’t consider operators at
all in this case, operations only require machines.
(5 machines, 0 operator)

• MACHINE_CONSTRAINED: three operators are
available, making machines the more critical
resource. (5 machines, 3 operator)

• OPERATOR_CONSTRAINED: there is just one
operator; therefore operators are much more critical
than machines. In fact in this scenario the operator
becomes the capacity-constraining factor, reducing
the maximum long-term system capacity to 6.857
instead of 13.714 orders per day. (5 machines, 1
operator)

• DUAL_CONSTRAINED: there are two operators
in the model, resulting in machines being roughly
as critical as operators. (5 machines, 2 operator)

We consider FIFO (First In buffer First Out), FSFO (First
in System first Out), Rnd (Random) and SPT (Shortest
Processing Time first) as sequencing rules for the machines.
Besides FIFO, FSFO, Rnd and SPT we consider two
additional decision rules for operators: MQL (longest
Machine Queue Length first) and SSPT (Shortest Step
Processing Time first). With MQL operators give priority to
machines with a long queue of waiting jobs. SSPT is similar
to SPT, but instead of considering the processing time of the
complete operation, only the length of the required load or
unload processing steps are used. Furthermore we vary the
tie-breaker rule which is used as a secondary criterion if
priorities of the primary rule are equal. The 72 combinations
of sequencing rules investigated are listed in table 2. Using
FIFO, FSFO and Rnd no equal priorities can occur, so there
is no need for a tie-breaker rule in these cases.

To decide which job to process next, we use a two-step
procedure, first using the machine rule to select a job out of
the waiting jobs in front of a machine. This sends a
processing request to the operator pool. The operator rule is
then used to decide between the requests of the different
machines. If no operator is available immediately, the
machine is kept in a waiting state.

In this study we only consider the common performance
measure mean flow time. Our experiments are divided into
two parts. First we have experiments with only a few jobs,

which enable us to compare optimal schedules with the
schedules the priority rules provide (chapter 4). And
secondly we perform a long term simulation study, with a
time span of ten years to analyse the priority rules in detail
(chapter V).

IV. EXPERIMENTS WITH STATIC INSTANCES:
SOLVER VS. PRIORITY RULES

To determine not only the differences between priority
rules and their combinations, it is interesting to analyse their
performance in comparison to optimal solutions to see the
total deviation and evaluate priority rules in general.

A. Experimental design
We simulated instances from the same scenario with only

2-50 jobs in the system. All jobs were released at the same
time and known in advance. This simplification makes it
possible to calculate optimal solutions for the instances with
only a few jobs in the system. For larger instances feasible
schedules (solutions of the MILP) could be found, but they
were not proven optimal. Due to the complexity of the
model, there still was a gap between the found solution
(upper bound) and the theoretical possible solution (lower
bound).

The optimum results are calculated with CPLEX [23]
solving a MILP-formulation, which is an extension of the
advanced job shop formulation used by Pan and Chen [24].
Operators and re-entrant processes were added to their
flexible job shop MILP, so that the MiniFab model as
described above can be solved and optimal schedules are
calculated. (A detailed description would extend the scope
of this paper and will be published additionally)

In our study, we were able to calculate some optimal
solutions, which were in most cases only a bit better than the
best rule combination. In table 2 we listed the solver results
with the remaining gap and the performance of the best and
worst rule combination taken from any of the 72
combinations (see chapter 3). For a detailed analysis of the
static runs, we chose the FSFO ShortestOpStepLength
[FSFO] rule, which seems to be the best performing one. In
Fig. 3 the corresponding graphs are plotted. The FSFO
ShortestOpStepLength [FSFO] rule is indicated by the green
line. The grey bar defines the area between best and worst
solver solutions. Black dots correspond with the solver
results, gaps between found solutions and lower bounds are
printed as lines.

B. Analyses of static instances
There need to be about 4 or 5 jobs in the system and first

differences between good and bad rule combinations can be
found. An example is the DUAL_CONSTRAINED case
with 5 jobs in the system: The rule combination FSFO
(machine) ShortestOpStepLength [FSFO] (operator) has a
mean flow time of 656 minutes and the combination FIFO
(machine) FSFO (operator) has 724 minutes. This is already
a difference of more than 10%. The difference to the solver
solution is only around 2%.

The results of the scenario with NO_OPERATORS and
the MACHINE_RESTRICTED scenario are very similar as

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-18210-2-7 WCECS 2009

Fig. 3 and table 2 show. When there are more jobs in the
system the performance differences between the rule
combinations arises.

In the DUAL_CONSTRAINED case, it can be detected
that the performance differences between rule combinations
are much higher, and they arise in smaller scenarios. This
result was expected, because in the dual constrained case the
interdependences between the machine priority rule and the
operator priority rule are the strongest and amplify each
other.

In the OPERATOR_CONSTRAINED case the shop is
restricted the most, which leads very quickly to high mean
flow times. The differences between the rule combinations
are also very high in this case. The solution the solver
provided for the cases with 3 and 4 jobs indicate that either
the rule performance or the order of selection (machines
first, operators second) do not perform very well in this
scenario. It seems more likely that the order of selection is
responsible for this effect. The operator is clearly the
bottleneck and the scheduling should be arranged in that
way that he is utilized as best as possible, which is clearly
not the case.

For instances with more jobs we were not able to proof
the same effect, because the solver provided no optimal
solutions even after days of calculations. The found
solutions were comparable to the used rules.

Table 2: Results of static scenarios in minutes

[mean flow time
in minutes] 2 3 4 5 6 7 8 9 10 20 50

NO_OPERATOR
optimum 483 520 568 622 678 733 785 870 918
gap (lower/upper bound) 0% 0% 0% 0% 0% 8% 0% 27% 37%
best rule 483 520 568 628 684 739 799 861 908 1424 2989
worst rule 483 520 568 637 716 794 881 956 1040 1940 4616
span best-worst 0% 0% 0% 1% 5% 7% 10% 11% 15% 36% 54%
FSFO SSPT[FSFO] 483 520 568 628 684 739 799 861 908 1424 2989
MACH_CONSTRAINED
optimum 483 520 568 622
gap (lower/upper bound) 0% 0% 0% 0%
best rule 483 520 568 628 684 739 809 869 919 1437 3039
worst rule 483 520 568 637 716 804 905 998 1095 2085 5050
span best-worst 0% 0% 0% 1% 5% 9% 12% 15% 19% 45% 66%
FSFO SSPT[FSFO] 483 520 568 628 684 739 809 869 930 1437 3042
DUAL_CONSTRAINED
optimum 483 524 569 640 746 838 930
gap (lower/upper bound) 0% 1% 0% 3% 9% 19% 16%
best rule 483 525 589 655 708 781 854 912 967 1527 3173
worst rule 483 530 620 724 823 916 999 1135 1229 2325 5500
span best-worst 0% 1% 5% 11% 16% 17% 17% 24% 27% 52% 73%
FSFO SSPT[FSFO] 483 528 598 656 708 789 875 924 979 1547 3173
OP_CONSTRAINED
optimum 483 520 568 929 1088 1272
gap (lower/upper bound) 0% 0% 0% 33% 38% 47%
best rule 535 643 756 917 1013 1118 1225 1351 1456 2524 5695
worst rule 548 685 842 1041 1243 1423 1616 1807 2022 4024 10010
span best-worst 2% 6% 11% 13% 23% 27% 32% 34% 39% 59% 76%
FSFO SSPT[FSFO] 540 643 803 918 1013 1118 1229 1351 1486 2541 5695

number of jobs

 400

 500

 600

 700

 800

 900

 1000

 1100

 2 4 6 8 10

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 2 4 6 8 10

 400

 500

 600

 700

 800

 900

 1000

 1100

 2 4 6 8 10
a) NO_OPERATOR b) MACHINE_CONSTRAINED

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2 4 6 8 10

c) DUAL_CONSTRAINED d) OPERATOR_CONSTRAINED

[# jobs] [# jobs]

[# jobs][# jobs]

[minutes] [minutes]

[minutes] [minutes]

Figure 3: Results for all static cases. Green line: FSFO ShortestOpStepLength [FSFO] rule, grey area: best/worst rule combination

result, black points: Solver results with gap, if any (line)

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-18210-2-7 WCECS 2009

V. LONG-TERM SIMULATION
To validate the results from our static analyses we perform

an extensive simulation study with a time horizon of ten
years.

A. Long-term simulation
To assess the performance of the various rule combinations

in the long term we simulate the system under three load
conditions for each of the 4 scenarios: 70%, 80% and 90%
bottleneck utilization. Given the scenario and load level we
determine the appropriate arrival rate based on a static
analysis of system capacity. Interarrival times follow an
exponential distribution.

We simulate a time span of 10 years, ignoring data from the
first year in our results. Altogether we determine system
performance for 864 different parameter settings (4 scenarios
with 3 load levels each, 72 rule combinations). For the
different parameter settings we use common random numbers
as a variance reduction technique [25]. The results presented
here are the averages of the mean flow time achieved in 20
replications.

B. Analysis of long term simulations
Fig. 3 shows graphically the scenario and load level setting

and the best rule result achieved in this case. The four lines in
the xy-plane correspond to our scenarios:

• NO_OPERATOR – green line
• MACHINE_CONSTRAINED – blue line
• DUAL_CONSTRAINED – magenta line
• OPERATOR_CONSTRAINED – dark blue line.

Selecting one of the scenarios fixes the achievable
combination of machine and operator utilization along the
respective line. To give an example: if
MACHINE_CONSTRAINED (blue) is chosen and a load
level of 90% bottleneck utilization (in this case: machine
utilization), this results in an operator utilization of 60%. The
grey bar at this point shows the best flow time achieved, i.e.
out of the 72 rule combinations investigated.

The best results can obviously be achieved if no operator
constraints are present at all. This corresponds to the green
line (NO_OPERATOR) in our simulation; we also have the
lowest flow times in this scenario, compared to the other
scenarios at the same load level. The
DUAL_CONSTRAINED case (magenta) on the other hand is
the most difficult, operator and machines are equally critical.
This can also be seen in Fig. 2.

Figure 3: best rule performance for the 4 scenarios and 3 load level settings.

Table 3 lists our simulation results in more detail. Mean
flow time as measured in our simulation experiment is
expressed there as a flow factor, i.e. flow time divided by total
processing time. The best and worst rule performances for a
given scenario and load level are highlighted.

To summarize our results, FSFO is the best machine rule
irrespectively of the scenario and load level. Results
concerning the best operator rule are a bit more complex: for
the MACHINE_CONSTRAINED and
OPERATOR_CONSTRAINED scenarios the operator rule
SSPT[FSFO], i.e. Shortest Step Processing Time first with
FSFO used as a tie breaker, yields the best results if used
together with FSFO as a machine rule.

The FIFO rule performs quite badly in our experiments. In
most cases it does not yield better results than random
selection, i.e. choosing an arbitrary job to process next.

In the DUAL_CONSTRAINED scenario SSPT[FIFO] is
the best, i.e. SSPT with tie breaker FIFO, for the 70% and
80% load levels. This changes if load is further increased to
90%. Most rule combinations are not able to handle this high
load for both machines and operators anymore and the system
is running full, more jobs are entering the system than leaving.
In these cases no values are given in the respective table cells.
Only combinations with MQL as an operator rule are able to
handle this high load. The best results in this case are
produced by the combination of the FSFO machine rule and
MQL[FIFO] as an operator rule. The MQL – rule prefers
machines with long queues, which means that operators go to
high loaded machines first. That is the reason, why higher
utilization level can be handled. Although this rule
combination gives by far the best results for this case, the
increase in average flow time is very high.

Comparing the results for MACHINE_CONSTRAINED
and NO_OPERATOR, the increase in mean flow time is only
small, especially for lower load levels. If only flow time
estimates are of interest, it seems viable to simplify the model
by ignoring the operator requirements.

The experiments with small instances show that in the
OPERATOR_CONSTRAINED cases the optimal solution are
much better than the results produced by heuristics. In the
long term simulation the best rule results are higher for
scenarios with moderate load levels of 70% and 80%
compared to the DUAL_CONSTRAINED. Only the 90% load
level results are smaller than its DUAL_CONSTRAINED
equivalent but still about 56% higher than in the
MACHINE_CONSTRAINED scenario. This seems to an
effect of the heuristic procedure used (machines choose next
job first, then operators choose between the machines that are
ready to process). In future research more simulation runs will
a different heuristic setup will be performed to analyze this
effect in more detail.

In summary, all four scenarios show that the performance
of dispatching rules differs in some cases tremendously. The
interdependences of the rules especially in the
DUAL_CONSTRAINED scenarios lead to high performance
differences. Other system factors, e.g. the utilization rate also
affect the results.

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-18210-2-7 WCECS 2009

Table 3: Results for all 72 rule combinations investigated. Except for the last row (span) all values are flow factors, i.e. mean flow time divided by the

processing time (445 minutes). The last column contains a mean performance averaged over all scenario/load level combinations (but excluding
DUAL_CONSTRAINED / 90%, see text); so (system overflow) more incoming than outgoing jobs.

70% 80% 90% 70% 80% 90% 70% 80% 90% 70% 80% 90%
FIFO FIFO 1,42 1,74 2,71 1,49 1,94 3,71 2,26 3,40 8,26 2,22 6,28 so 3,22
FIFO FSFO 1,42 1,74 2,71 1,48 1,89 3,46 1,86 2,53 4,92 1,91 3,50 so 2,49
FIFO MQL[FIFO] 1,42 1,74 2,71 1,47 1,87 3,22 2,04 2,75 5,00 1,88 2,94 so 2,46
FIFO MQL[FSFO] 1,42 1,74 2,71 1,47 1,86 3,21 1,88 2,56 4,76 1,85 2,91 so 2,40
FIFO MQL[Rnd] 1,42 1,74 2,71 1,47 1,86 3,20 2,02 2,74 4,99 1,87 2,92 so 2,45
FIFO Rnd 1,42 1,74 2,71 1,50 1,95 3,81 2,29 3,48 8,93 2,27 6,90 so 3,36
FIFO SSPT[FIFO] 1,42 1,74 2,71 1,46 1,83 3,11 1,93 2,58 4,55 1,79 2,84 so 2,36
FIFO SSPT[FSFO] 1,42 1,74 2,71 1,46 1,83 3,08 1,88 2,50 4,44 1,76 2,70 so 2,32
FIFO SSPT[Rnd] 1,42 1,74 2,71 1,46 1,84 3,12 1,93 2,58 4,56 1,80 2,86 so 2,37
FIFO SPT[FIFO] 1,42 1,74 2,71 1,47 1,85 3,22 2,04 2,84 6,02 1,82 3,03 so 2,56
FIFO SPT[FSFO] 1,42 1,74 2,71 1,47 1,85 3,23 2,07 2,93 6,63 1,83 3,12 so 2,64
FIFO SPT[Rnd] 1,42 1,74 2,71 1,47 1,85 3,20 2,03 2,81 5,80 1,82 3,03 so 2,54
FSFO FIFO 1,32 1,52 2,13 1,35 1,59 2,30 1,99 2,69 5,15 1,71 2,63 so 2,22
FSFO FSFO 1,32 1,52 2,13 1,34 1,58 2,26 1,76 2,27 3,98 1,61 2,29 so 2,00
FSFO MQL[FIFO] 1,32 1,52 2,13 1,34 1,58 2,32 1,95 2,53 4,18 1,66 2,35 6,56 2,08
FSFO MQL[FSFO] 1,32 1,52 2,13 1,34 1,58 2,33 1,82 2,37 4,01 1,62 2,28 8,40 2,03
FSFO MQL[Rnd] 1,32 1,52 2,13 1,34 1,58 2,33 1,93 2,51 4,16 1,65 2,36 14,65 2,08
FSFO Rnd 1,32 1,52 2,13 1,35 1,61 2,52 2,03 2,82 6,00 1,76 3,23 so 2,39
FSFO SSPT[FIFO] 1,32 1,52 2,13 1,34 1,56 2,25 1,83 2,31 3,68 1,54 2,00 so 1,95
FSFO SSPT[FSFO] 1,32 1,52 2,13 1,34 1,56 2,25 1,76 2,21 3,51 1,58 2,27 so 1,95
FSFO SSPT[Rnd] 1,32 1,52 2,13 1,34 1,57 2,28 1,83 2,32 3,70 1,58 2,17 9,77 1,98
FSFO SPT[FIFO] 1,32 1,52 2,13 1,35 1,59 2,41 1,92 2,68 7,26 1,56 2,61 so 2,39
FSFO SPT[FSFO] 1,32 1,52 2,13 1,35 1,59 2,41 1,89 2,49 5,01 1,58 2,65 so 2,18
FSFO SPT[Rnd] 1,32 1,52 2,13 1,34 1,58 2,33 1,88 2,46 4,71 1,57 3,03 so 2,17
Rnd FIFO 1,42 1,73 2,69 1,49 1,93 3,80 2,26 3,41 8,63 2,23 6,85 so 3,31
Rnd FSFO 1,42 1,73 2,69 1,47 1,88 3,42 1,86 2,53 4,72 1,94 3,60 so 2,48
Rnd MQL[FIFO] 1,42 1,73 2,69 1,47 1,85 3,19 2,03 2,75 4,99 1,87 2,93 so 2,45
Rnd MQL[FSFO] 1,42 1,73 2,69 1,46 1,85 3,17 1,89 2,57 4,79 1,85 2,91 so 2,39
Rnd MQL[Rnd] 1,42 1,73 2,69 1,46 1,85 3,17 2,02 2,74 4,98 1,86 2,92 so 2,44
Rnd Rnd 1,42 1,73 2,69 1,49 1,94 3,87 2,27 3,45 8,91 2,29 7,99 so 3,46
Rnd SSPT[FIFO] 1,42 1,73 2,69 1,45 1,82 3,09 1,93 2,56 4,53 1,79 2,86 so 2,35
Rnd SSPT[FSFO] 1,42 1,73 2,69 1,45 1,81 3,05 1,87 2,49 4,44 1,77 2,79 so 2,32
Rnd SSPT[Rnd] 1,42 1,73 2,69 1,46 1,82 3,10 1,93 2,57 4,54 1,80 2,90 so 2,36
Rnd SPT[FIFO] 1,42 1,73 2,69 1,46 1,84 3,19 2,03 2,84 6,14 1,84 3,24 so 2,58
Rnd SPT[FSFO] 1,42 1,73 2,69 1,46 1,83 3,17 2,03 2,81 5,70 1,84 3,23 so 2,54
Rnd SPT[Rnd] 1,42 1,73 2,69 1,46 1,83 3,17 2,02 2,79 5,75 1,83 3,22 so 2,54

SPT[FIFO] FIFO 1,37 1,65 2,44 1,41 1,72 2,73 2,02 2,76 5,44 1,84 3,41 so 2,44
SPT[FIFO] FSFO 1,37 1,65 2,44 1,41 1,73 2,72 2,08 3,24 8,09 1,93 3,67 so 2,76
SPT[FIFO] MQL[FIFO] 1,37 1,65 2,44 1,40 1,70 2,59 2,02 2,77 5,23 1,73 2,53 13,14 2,31
SPT[FIFO] MQL[FSFO] 1,37 1,65 2,44 1,40 1,70 2,59 1,90 2,63 5,10 1,73 2,55 13,20 2,28
SPT[FIFO] MQL[Rnd] 1,37 1,65 2,44 1,40 1,70 2,59 2,02 2,77 5,26 1,73 2,53 14,17 2,31
SPT[FIFO] Rnd 1,37 1,65 2,44 1,41 1,73 2,76 2,07 2,90 6,23 1,89 3,80 so 2,57
SPT[FIFO] SSPT[FIFO] 1,37 1,65 2,44 1,40 1,70 2,59 2,12 3,17 7,04 1,74 2,69 so 2,54
SPT[FIFO] SSPT[FSFO] 1,37 1,65 2,44 1,40 1,69 2,58 2,09 3,14 7,03 1,75 2,72 so 2,53
SPT[FIFO] SSPT[Rnd] 1,37 1,65 2,44 1,40 1,70 2,59 2,11 3,15 6,99 1,74 2,68 so 2,53
SPT[FIFO] SPT[FIFO] 1,37 1,65 2,44 1,41 1,72 2,69 2,35 3,77 10,48 2,12 5,00 so 3,18
SPT[FIFO] SPT[FSFO] 1,37 1,65 2,44 1,41 1,73 2,69 2,40 3,94 12,06 2,15 5,23 so 3,37
SPT[FIFO] SPT[Rnd] 1,37 1,65 2,44 1,41 1,72 2,68 2,32 3,63 9,09 2,06 4,55 so 2,99
SPT[FSFO] FIFO 1,37 1,65 2,44 1,41 1,72 2,73 2,02 2,76 5,44 1,84 3,41 so 2,44
SPT[FSFO] FSFO 1,37 1,65 2,44 1,41 1,73 2,72 2,08 3,24 8,09 1,93 3,67 so 2,76
SPT[FSFO] MQL[FIFO] 1,37 1,65 2,44 1,40 1,70 2,59 2,02 2,77 5,23 1,73 2,53 13,14 2,31
SPT[FSFO] MQL[FSFO] 1,37 1,65 2,44 1,40 1,70 2,59 1,90 2,63 5,10 1,73 2,55 13,20 2,28
SPT[FSFO] MQL[Rnd] 1,37 1,65 2,44 1,40 1,70 2,59 2,02 2,77 5,26 1,73 2,53 14,17 2,31
SPT[FSFO] Rnd 1,37 1,65 2,44 1,41 1,73 2,76 2,07 2,90 6,23 1,89 3,80 so 2,57
SPT[FSFO] SSPT[FIFO] 1,37 1,65 2,44 1,40 1,70 2,59 2,12 3,17 7,04 1,74 2,69 so 2,54
SPT[FSFO] SSPT[FSFO] 1,37 1,65 2,44 1,40 1,69 2,58 2,09 3,14 7,03 1,75 2,72 so 2,53
SPT[FSFO] SSPT[Rnd] 1,37 1,65 2,44 1,40 1,70 2,59 2,11 3,15 6,99 1,74 2,68 so 2,53
SPT[FSFO] SPT[FIFO] 1,37 1,65 2,44 1,41 1,72 2,69 2,35 3,77 10,48 2,12 5,00 so 3,18
SPT[FSFO] SPT[FSFO] 1,37 1,65 2,44 1,41 1,73 2,69 2,40 3,94 12,06 2,15 5,23 so 3,37
SPT[FSFO] SPT[Rnd] 1,37 1,65 2,44 1,41 1,72 2,68 2,32 3,63 9,09 2,06 4,55 so 2,99
SPT[Rnd] FIFO 1,37 1,65 2,44 1,41 1,72 2,73 2,02 2,76 5,44 1,84 3,41 so 2,44
SPT[Rnd] FSFO 1,37 1,65 2,44 1,41 1,73 2,71 2,07 3,18 7,67 1,88 3,33 so 2,68
SPT[Rnd] MQL[FIFO] 1,37 1,65 2,44 1,40 1,70 2,59 2,02 2,77 5,23 1,73 2,53 13,12 2,31
SPT[Rnd] MQL[FSFO] 1,37 1,65 2,44 1,40 1,70 2,59 1,90 2,64 5,11 1,73 2,54 13,71 2,28
SPT[Rnd] MQL[Rnd] 1,37 1,65 2,44 1,40 1,70 2,59 2,02 2,77 5,26 1,73 2,53 14,16 2,31
SPT[Rnd] Rnd 1,37 1,65 2,44 1,41 1,73 2,76 2,07 2,90 6,23 1,89 3,80 so 2,57
SPT[Rnd] SSPT[FIFO] 1,37 1,65 2,44 1,40 1,70 2,59 2,12 3,17 7,04 1,74 2,69 so 2,54
SPT[Rnd] SSPT[FSFO] 1,37 1,65 2,44 1,40 1,69 2,58 2,09 3,14 7,03 1,75 2,73 so 2,53
SPT[Rnd] SSPT[Rnd] 1,37 1,65 2,44 1,40 1,70 2,59 2,11 3,15 6,99 1,74 2,68 so 2,53
SPT[Rnd] SPT[FIFO] 1,37 1,65 2,44 1,41 1,72 2,69 2,35 3,77 10,48 2,12 5,00 so 3,18
SPT[Rnd] SPT[FSFO] 1,37 1,65 2,44 1,41 1,72 2,69 2,33 3,64 8,99 2,10 4,78 so 3,01
SPT[Rnd] SPT[Rnd] 1,37 1,65 2,44 1,41 1,72 2,68 2,32 3,63 9,09 2,06 4,55 so 2,99

flowfactor best rule 1,32 1,52 2,13 1,34 1,56 2,25 1,76 2,21 3,51 1,54 2,00 6,56 1,95
flowfactor worst rule 1,42 1,74 2,71 1,50 1,95 3,87 2,40 3,94 12,06 2,29 7,99 14,65 3,46
flowtime span ((worst-best)/best) 8,2% 14,7% 27,3% 12,2% 24,8% 72,5% 36,0% 78,0% 243,0% 48,6% 299,6% 123,5% 77,4%

 utilisation of bootleneck utilisation of bootleneck
(0 Operator) (1 Operator) (2 Operator) (3 Operator)

 operator rule
[tie breaker]

 machine rule
[tie breaker]

 Mean
(flow

factor)

 NO_OPERATOR MACH_CONSTRAINED DUAL_CONSTRAINED OP_CONSTRAINED

 utilisation of bootleneck utilisation of bootleneck

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-18210-2-7 WCECS 2009

VI. CONCLUSION AND FURTHER RESEARCH
The paper analyses a priority-rule based approach to

shop-floor scheduling considering both machines and
operators. Our dual-constrained scenario derived from
semiconductor manufacturing. To gain insights into priority
rule performance we use two approaches: simulation of
small problem instances and its comparison with optimal
solutions and simulation of long term system behavior.
Especially in shop environments, where more than one
resource is constraining the system’s performance proper
selection and combination of priority rules is crucial. The
long term simulation has also shown, that in high utilization
scenarios many rule combinations are not able to handle the
workload at all, which underlines the importance of
choosing the right combination.

Comparison of known optimal solutions and best rule
results indicates only a small difference between the
optimum and the best rule result. The differences between
well performing rule combinations and unsuitable
combinations is much higher than the differences to optimal
solutions, which shows that well adjusted priority rules
provide good solutions. It would be interesting to see if this
remains true for larger problem instances, so a more
efficient optimal solution procedure is needed here.

It is interesting to see, that the rule combination’s
performance depends on the utilization level of the system.
This brings up the idea to develop a control system, which
selects or develops priority rules automatically, considering
system parameters and adopting to changing shop floor
conditions.

REFERENCES
[1] R. Haupt, “A survey of priority rule-based scheduling,” OR

Spectrum, vol. 11, pp. 3–16, March 1989.
[2] G. Fisher, H; Thompson, “Probabilistic learning combinations

of local job-shop scheduling rules,” Industrial Scheduling;
J.F. Muth, G.L. Thompson(Hrsg.); Englewood Cliffs, pp. 225
– 251, 1963.

[3] J. Adams, E. Balas, and D. Zawack, “The shifting bottleneck
procedure for job shop scheduling,” Management Science,
vol. 34, no. 3, pp. 391–401, 1988.

[4] P. J. M. v. Laarhoven, E. H. L. Aarts, and J. K. Lenstra, “Job
shop scheduling by simulated annealing,” Operations
Research, vol. 40, no. 1, pp. 113–125, 1992.

[5] C. Zhang, P. Li, Z. Guan, and Y. Rao, “A tabu search
algorithm with a new neighborhood structure for the job shop
scheduling problem,” Computers & Operations Research,
vol. 34, no. 11, pp. 3229 – 3242, 2007.

[6] H. Zhou, W. Cheung, and L. C. Leung, “Minimizing weighted
tardiness of job-shop scheduling using a hybrid genetic
algorithm,” European Journal of Operational Research,
vol. 194, no. 3, pp. 637 – 649, 2009.

[7] A. Manikas and Y. Chang, “Multi-criteria sequence-
dependent job shop scheduling using genetic algorithms,”
Computers & Industrial Engineering, May 2008.

[8] B. Scholz-Reiter, M. Görges, and T. Philipp, “Autonomously
controlled production systems–influence of autonomous
control level on logistic performance,” CIRP Annals -
Manufacturing Technology, vol. 58, no. 1, pp. 395 – 398,
2009.

[9] J. H. Blackstone, D. T. Phillips, and G. L. Hogg, “A state-of-
the-art survey of dispatching rules for manufacturing job shop

operations,” International Journal of Production Research,
vol. 20, no. 1, pp. 27–45, 1982.

[10] C. Rajendran and O. Holthaus, “A comparative study of
dispatching rules in dynamic flowshops and jobshops,”
European Journal of Operational Research, vol. 116,
pp. 156–170, July 1999. dispatching rules, comparison, job
shop, flow shop.

[11] C. Geiger, R. Uzsoy, and H. Aytu?, “Rapid modeling and
discovery of priority dispatching rules: An autonomous
learning approach,” Journal of Scheduling, vol. 9, pp. 7–34,
Feb. 2006. genetic programming, single machine.

[12] C. D. Geiger and R. Uzsoy, “Learning effective dispatching
rules for batch processor scheduling,” in International Journal
of Production Research geiger2006, pp. 1431–1454. batching,
genetic programming, single machine.

[13] K.-C. JEONG and Y.-D. KIM, “A real-time scheduling
mechanism for a exible manufacturing system: using
simulation and dispatching rules,” 1998.

[14] V. B. Gargeya and R. H. Deane, “Scheduling research in
multiple resource constrained job shops: a review and
critique,” International Journal of Production Research,
no. 34, pp. 2077–2097, 1996.

[15] Y. MATI and X. XIE, “A genetic-search-guided greedy
algorithm for multi-resource shop scheduling with resource
flexibility,” 2007.

[16] S. Dauzère-Pérès, W. Roux, and J. B. Lasserre, “Multi-
resource shop scheduling with resource flexibility,” European
Journal of Operational Research, vol. 107, no. 2, pp. 289 –
305, 1998.

[17] S. Dauzère-Pérès and C. Pavageau, “Extensions of an
integrated approach for multi-resource shop scheduling,”
2003.

[18] E. H. Patel, V. and I. Ben-Abdallah, “Scheduling in dual-
resources constrained manufacturing systems using genetic
algorithms,” 1999.

[19] P. B. Chen, Dong ; Luh, “Optimization-based manufacturing
scheduling with multiple resources, setup requirements, and
transfer lots,” IIE Transactions, vol. 35, pp. 973 – 985, 2003.

[20] H. ElMaraghy, V. Patel, and I. B. Abdallah, “Scheduling of
manufacturing systems under dual-resource constraints using
genetic algorithms,” Journal of Manufacturing Systems,
vol. 19, no. 3, pp. 186 – 201, 2000.

[21] R. L. Gerry Feigin, John Fowler, “Masm test data sets. (2009).
http://www.eas.asu.edu/ masmlab. last accessed on 28th may
2009.”

[22] K. S. . T. Mohamed K. El Adl Annando A. Rodriguez,
“Hierarchical modeling and control of re-entrant
semiconductor manufacturing facilities,” 1996.

[23] ILOG, “Cplex - mathematical programming optimizers.”
http://www.ilog.com/products/cplex/.

[24] J. C.-H. Pan and J.-S. Chen, “Mixed binary integer
programming formulations for the reentrant job shop
scheduling problem,” Comput. Oper. Res., vol. 32, no. 5,
pp. 1197–1212, 2005.

[25] A. M. Law and D. W. Kelton, Simulation Modelling and
Analysis. McGraw-Hill Education - Europe, April 2000.

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II
WCECS 2009, October 20-22, 2009, San Francisco, USA

ISBN:978-988-18210-2-7 WCECS 2009

