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Abstract--There has been a lot of research about scheduling 
manufacturing systems with dispatching rules in the past. 
However, most studies concentrate on simplified scenarios 
considering only one type of resource, usually machines.  

In this study dispatching rules are applied to a more realistic 
scenario, which is dual constrained by machines and operators 
and has a re-entrant process flow. Interdependencies of 
dispatching rules are analyzed by long-term simulation. 
Strength and weaknesses of various priority rule combinations 
are determined under different utilization levels. To gain 
further insights into the problem we additionally solve static 
instances optimally and with priority rules. For the optimal 
solutions we extend a mixed integer linear program (MILP) of 
the production system to cover operators and re-entrant 
process flows.  
 

Index Terms--Discrete-event simulation, dual-resource 
constraints, MILP, priority rule scheduling, shop-floor control 
 

I. INTRODUCTION 
Shop-Scheduling has attracted researchers for many 

decades and is still of big interest, because of its practical 
relevance and the fact that optimal solutions can only be 
found for very small instances due to its np-complete 
character. Multi- or dual resource problems are significantly 
less analyzed, despite being more realistic Scheduling with 
priority/dispatching rules is quite appealing for various 
reasons (see section II.B) and often used, especially when 
considering more realistic and complex manufacturing 
systems.  

This work analyses the quality of dispatching rules in the 
dual-resource constrained case. Different combinations of 
rules are tested in order to analyze their interdependencies. 
Our analysis combines simulation with the optimal solution 
of static instances. To evaluate the results of the simulation 
a mixed integer linear program (MILP) has been developed 
to calculate optimal solutions. 

The paper is organized as followed: In chapter 2 a short 
literature review about shop scheduling, dispatching rules 
and dual constrained scheduling is given. This is followed 
by the problem description in chapter 3. In chapter 4 small 
instances in comparison with optimal solutions are analyzed 
and in chapter 5 a long term simulation study is described. 
The paper closes with a conclusion and description of future 
research. 
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II. LITERATURE REVIEW 
In this chapter a literature review is given considering the 

job shop problem, dispatching rules and the dual constrained 
scheduling. 

A.  Shop scheduling  
Haupt [1] gives a definition of the scheduling or 

sequencing problem as “the determination of the order in 
which a set of jobs (tasks) {i|i = 1, ..., n) is to be processed 
through a set of machines (processors, work stations) 
(k|k=1...m).” Usual abstractions of real-world scheduling 
problems are the job shop and flow shop problem. With 
both problem types the number of operations and their 
sequence are known in advance and fixed. In a job shop 
scenario each job can have its own route whereas in the 
classical flow shop all jobs share a common routing. 
Because of its high complexity (np-hard) and its high 
practical relevance the problem has attracted researchers and 
practitioners for decades now. Due to its high complexity 
optimal solutions can only be calculated for small instances. 
The 10x10 (10 machines, 10 jobs) Fisher Thompson [2] 
model for example remained unsolved for over two decades. 

To still find good solutions for such problems many 
heuristics, which do not guarantee to find an optimum, are 
proposed. Examples are:  

• Shifting bottleneck [3] 
• Simulated annealing [4] 
• Taboo search [5] 
• Genetic algorithms (e.g. [6] [7]). 

Many of these approaches however focus on quite 
restrictive assumptions of their scenarios. Extending these 
often quite complex heuristics to more realistic is usually 
not straightforward. New, flexible approaches and different 
solutions need to be applied. Decentralized planning and 
scheduling as well as smart autonomous items in our 
opinion are a very promising approach for this (e.g. [8]). 
Decentralized decisions can be based on local decision 
rules. This is where dispatching rules come into play. 

B.  Dispatching rules 
Dispatching rules are applied to assign a job to a resource 
(machine/operator/etc.). This is done each time the resource 
gets idle and there are jobs waiting or a new job arrives at an 
idle resource. The dispatching rule assigns a priority to each 
job. This priority can be based on attributes of the job, the 
resource or the system. The job with the highest priority is 
chosen to be processed next. 

Priority-scheduling rules have been developed and 
analyzed for many years [1] [9] [10] [11] [12]. They are 
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widely used in industry, especially in complex 
manufacturing systems, e.g. semiconductor manufacturing. 
Their popularity is derived from the fact that they perform 
reasonably well in a wide range of environments, are 
relatively easy to understand, because of their intuitive 
nature. They also need only minimal computational time, 
which allows them to be used even in real-time 
environments. 

Depending on the manufacturing system and the various 
objectives (mean flow time, maximum flow time, variance 
of flow time, proportion of tardy jobs, mean tardiness, 
maximum tardiness, variance of tardiness, etc.) no single 
rule has been found, which outperforms all others. [10] As a 
result there are also approaches to find new dispatching 
rules or choose appropriate ones according to the system’s 
current state. (e.g. [11] [12] [13]) 

C.  Multiple /dual resources constrained scheduling 
Most research has been done on the machine-only 

constrained problem, where machines are the only limiting 
resource. Nevertheless, closer to the ‘real’ world are multi 
or dual constrained (DRC) problems, where more than one 
resource restricts the output of the system and impacts the 
shop performance. Gargeya and Deane [14] defined the 
multiple resource constrained job shop as “a job shop in 
which two or more resources are constraining output. The 
resources may include machines, labor and auxiliary 
resources. Dual constrained job shops are constrained by 
two resources (machine and labor, machines and auxiliary 
resources or labor and auxiliary resources). Dual constrained 
job shops are thus a specific type of multiple resource 
constrained job shops.” 

To solve the multi-resource constrained problem different 
approaches were proposed. Mati and Xie [15] developed a 
greedy heuristic. This heuristic is guided by a genetic 
algorithm in order to identify effective job sequences. 
Dauzère-Pérès et al. [16] [17] developed a disjunctive graph 
representation of the multi-resource problem and proposed a 
connected neighborhood structure, which can be used to 
apply a local search algorithm such as taboo search. Patel et 
al. [18] proposed a genetic algorithm for dual resource 
constrained manufacturing and they compared different 
dispatching rules against different performance measures. 

In the study of Chen et al. [19], an integer optimization 
formulation with a separable structure is developed where 
both machines and operators are modeled as resources with 
finite capacities. By relaxing resource capacity constraints 
and portions of precedence constraints, the problem is 
decomposed into smaller sub-problems that are effectively 
solved by using a dynamic programming procedure. The 
multipliers are updated using the surrogate sub gradient 
method. A heuristic is then used to obtain a feasible 
schedule based on sub-problem solutions.  
 

III. PROBLEM DESCRIPTION 
ElMaraghy et al. [20] defined the machine / worker / job 

scheduling problem as: “Given process plans for each part, a 
shop capacity constrained by machines and workers, where 

the number of workers is less than the number of machines 
in the system, and workers are capable of operating more 
than one machine, the objective is to find a feasible schedule 
for a set of job orders such that a given performance criteria 
is optimized.” An interesting object of investigation in DRC 
is the interaction effect of the resource constraints and how 
they impact the performance measure like the mean flow 
time.   

The experimental design used in this study corresponds to 
the MiniFab scenario [21] [22], which is shown 
schematically in Fig. 1. For practical reasons the model has 
been simplified, nevertheless the main properties remain.  
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Figure 1 : Process flow of the 5 Machine 6 step production model 

 
The MiniFab scenario is a simplification of a 

semiconductor manufacturing system, but still containing 
the characteristics of such a system. It consists of 5 
machines with 6-step re-entrant processes. Operators are 
used to load and unload machines. Machines Ma and Mb as 
well as Mc and Md are parallel identical machines sharing a 
common buffer. To be able to get optimal solutions we do 
not consider sequence-dependent setup times, parallel 
batching and machine break downs at the moment. 

Operations at the machines are divided into three parts: 
loading, processing and unloading. Processing starts directly 
after the machines are loaded. Unloading begins after 
processing, but if there is no operator available for 
unloading, the machine stays idle. In table 1 processing, 
loading and unloading times are listed, which are used for 
the calculations and simulations in this paper.  

 
Table 1: Processing and (un)loading times used 

 machine loading processing unloading 
Step1 Ma / Mb 15 55 25 
Step2 Mc / Md 20 25 15 

Step3 Me 15 45 15 
Step4 Ma / Mb 20 35 25 
Step5 Mc / Md 15 65 25 

Step6 Me 10 10 10 

 
The processing and (un)loading times as well as the 

machine and sequence settings are fixed. The machines 
select a job out of the waiting queue and call an operator to 
load them (point in time a in Fig. 2). If no operator is 
available the machines wait until eventually they are loaded 
(b-c) and proceed with processing afterwards (c-d).  
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Figure 2: Gantt chart illustration of machine-operator assignment 

 
If an operator is available, unloading is performed 

immediately (e-f), otherwise there is an additional waiting 
period (d-e). The operators are not needed during processing 
and can work on other machines in that time period. 

We vary the number of operators from 0 to 3 to create 
scenarios constraining the available capacity in different 
ways. The four resulting scenarios are: 

• NO_OPERATOR: we don’t consider operators at 
all in this case, operations only require machines. 
(5 machines, 0 operator) 

• MACHINE_CONSTRAINED: three operators are 
available, making machines the more critical 
resource. (5 machines, 3 operator) 

• OPERATOR_CONSTRAINED: there is just one 
operator; therefore operators are much more critical 
than machines. In fact in this scenario the operator 
becomes the capacity-constraining factor, reducing 
the maximum long-term system capacity to 6.857 
instead of 13.714 orders per day. (5 machines, 1 
operator) 

• DUAL_CONSTRAINED: there are two operators 
in the model, resulting in machines being roughly 
as critical as operators. (5 machines, 2 operator) 

We consider FIFO (First In buffer First Out), FSFO (First 
in System first Out), Rnd (Random) and SPT (Shortest 
Processing Time first) as sequencing rules for the machines. 
Besides FIFO, FSFO, Rnd and SPT we consider two 
additional decision rules for operators: MQL (longest 
Machine Queue Length first) and SSPT (Shortest Step 
Processing Time first). With MQL operators give priority to 
machines with a long queue of waiting jobs. SSPT is similar 
to SPT, but instead of considering the processing time of the 
complete operation, only the length of the required load or 
unload processing steps are used. Furthermore we vary the 
tie-breaker rule which is used as a secondary criterion if 
priorities of the primary rule are equal. The 72 combinations 
of sequencing rules investigated are listed in table 2. Using 
FIFO, FSFO and Rnd no equal priorities can occur, so there 
is no need for a tie-breaker rule in these cases. 

To decide which job to process next, we use a two-step 
procedure, first using the machine rule to select a job out of 
the waiting jobs in front of a machine. This sends a 
processing request to the operator pool. The operator rule is 
then used to decide between the requests of the different 
machines. If no operator is available immediately, the 
machine is kept in a waiting state. 

In this study we only consider the common performance 
measure mean flow time. Our experiments are divided into 
two parts. First we have experiments with only a few jobs, 

which enable us to compare optimal schedules with the 
schedules the priority rules provide (chapter 4). And 
secondly we perform a long term simulation study, with a 
time span of ten years to analyse the priority rules in detail 
(chapter V). 
 

IV. EXPERIMENTS WITH STATIC INSTANCES:  
SOLVER VS. PRIORITY RULES 

To determine not only the differences between priority 
rules and their combinations, it is interesting to analyse their 
performance in comparison to optimal solutions to see the 
total deviation and evaluate priority rules in general. 

A. Experimental design 
We simulated instances from the same scenario with only 

2-50 jobs in the system. All jobs were released at the same 
time and known in advance. This simplification makes it 
possible to calculate optimal solutions for the instances with 
only a few jobs in the system. For larger instances feasible 
schedules (solutions of the MILP) could be found, but they 
were not proven optimal. Due to the complexity of the 
model, there still was a gap between the found solution 
(upper bound) and the theoretical possible solution (lower 
bound).  

The optimum results are calculated with CPLEX [23] 
solving a MILP-formulation, which is an extension of the 
advanced job shop formulation used by Pan and Chen [24]. 
Operators and re-entrant processes were added to their 
flexible job shop MILP, so that the MiniFab model as 
described above can be solved and optimal schedules are 
calculated. (A detailed description would extend the scope 
of this paper and will be published additionally) 

In our study, we were able to calculate some optimal 
solutions, which were in most cases only a bit better than the 
best rule combination. In table 2 we listed the solver results 
with the remaining gap and the performance of the best and 
worst rule combination taken from any of the 72 
combinations (see chapter 3). For a detailed analysis of the 
static runs, we chose the FSFO ShortestOpStepLength 
[FSFO] rule, which seems to be the best performing one. In 
Fig. 3 the corresponding graphs are plotted. The FSFO 
ShortestOpStepLength [FSFO] rule is indicated by the green 
line. The grey bar defines the area between best and worst 
solver solutions. Black dots correspond with the solver 
results, gaps between found solutions and lower bounds are 
printed as lines. 

B. Analyses of static instances 
There need to be about 4 or 5 jobs in the system and first 

differences between good and bad rule combinations can be 
found. An example is the DUAL_CONSTRAINED case 
with 5 jobs in the system: The rule combination FSFO 
(machine) ShortestOpStepLength [FSFO] (operator) has a 
mean flow time of 656 minutes and the combination FIFO 
(machine) FSFO (operator) has 724 minutes. This is already 
a difference of more than 10%. The difference to the solver 
solution is only around 2%.  

The results of the scenario with NO_OPERATORS and 
the MACHINE_RESTRICTED scenario are very similar as 
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Fig. 3 and table 2 show. When there are more jobs in the 
system the performance differences between the rule 
combinations arises.  

In the DUAL_CONSTRAINED case, it can be detected 
that the performance differences between rule combinations 
are much higher, and they arise in smaller scenarios. This 
result was expected, because in the dual constrained case the 
interdependences between the machine priority rule and the 
operator priority rule are the strongest and amplify each 
other. 

In the OPERATOR_CONSTRAINED case the shop is 
restricted the most, which leads very quickly to high mean 
flow times. The differences between the rule combinations 
are also very high in this case. The solution the solver 
provided for the cases with 3 and 4 jobs indicate that either 
the rule performance or the order of selection (machines 
first, operators second) do not perform very well in this 
scenario. It seems more likely that the order of selection is 
responsible for this effect. The operator is clearly the 
bottleneck and the scheduling should be arranged in that 
way that he is utilized as best as possible, which is clearly 
not the case. 

For instances with more jobs we were not able to proof 
the same effect, because the solver provided no optimal 
solutions even after days of calculations. The found 
solutions were comparable to the used rules. 

 
Table 2: Results of static scenarios in minutes 

[mean flow time
in minutes] 2 3 4 5 6 7 8 9 10 20 50

NO_OPERATOR
optimum 483 520 568 622 678 733 785 870 918
gap (lower/upper bound) 0% 0% 0% 0% 0% 8% 0% 27% 37%
best rule 483 520 568 628 684 739 799 861 908 1424 2989
worst rule 483 520 568 637 716 794 881 956 1040 1940 4616
span best-worst 0% 0% 0% 1% 5% 7% 10% 11% 15% 36% 54%
FSFO SSPT[FSFO] 483 520 568 628 684 739 799 861 908 1424 2989
MACH_CONSTRAINED
optimum 483 520 568 622
gap (lower/upper bound) 0% 0% 0% 0%
best rule 483 520 568 628 684 739 809 869 919 1437 3039
worst rule 483 520 568 637 716 804 905 998 1095 2085 5050
span best-worst 0% 0% 0% 1% 5% 9% 12% 15% 19% 45% 66%
FSFO SSPT[FSFO] 483 520 568 628 684 739 809 869 930 1437 3042
DUAL_CONSTRAINED
optimum 483 524 569 640 746 838 930
gap (lower/upper bound) 0% 1% 0% 3% 9% 19% 16%
best rule 483 525 589 655 708 781 854 912 967 1527 3173
worst rule 483 530 620 724 823 916 999 1135 1229 2325 5500
span best-worst 0% 1% 5% 11% 16% 17% 17% 24% 27% 52% 73%
FSFO SSPT[FSFO] 483 528 598 656 708 789 875 924 979 1547 3173
OP_CONSTRAINED
optimum 483 520 568 929 1088 1272
gap (lower/upper bound) 0% 0% 0% 33% 38% 47%
best rule 535 643 756 917 1013 1118 1225 1351 1456 2524 5695
worst rule 548 685 842 1041 1243 1423 1616 1807 2022 4024 10010
span best-worst 2% 6% 11% 13% 23% 27% 32% 34% 39% 59% 76%
FSFO SSPT[FSFO] 540 643 803 918 1013 1118 1229 1351 1486 2541 5695

number of jobs
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Figure 3: Results for all static cases. Green line: FSFO ShortestOpStepLength [FSFO] rule, grey area: best/worst rule combination 

result, black points: Solver results with gap, if any (line) 
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V. LONG-TERM SIMULATION 
To validate the results from our static analyses we perform 

an extensive simulation study with a time horizon of ten 
years.   

A. Long-term simulation 
To assess the performance of the various rule combinations 

in the long term we simulate the system under three load 
conditions for each of the 4 scenarios: 70%, 80% and 90% 
bottleneck utilization. Given the scenario and load level we 
determine the appropriate arrival rate based on a static 
analysis of system capacity. Interarrival times follow an 
exponential distribution. 

We simulate a time span of 10 years, ignoring data from the 
first year in our results. Altogether we determine system 
performance for 864 different parameter settings (4 scenarios 
with 3 load levels each, 72 rule combinations). For the 
different parameter settings we use common random numbers 
as a variance reduction technique [25]. The results presented 
here are the averages of the mean flow time achieved in 20 
replications.  

B. Analysis of long term simulations 
Fig. 3 shows graphically the scenario and load level setting 

and the best rule result achieved in this case. The four lines in 
the xy-plane correspond to our scenarios:  

• NO_OPERATOR – green line 
• MACHINE_CONSTRAINED – blue line 
• DUAL_CONSTRAINED – magenta line 
• OPERATOR_CONSTRAINED – dark blue line. 

Selecting one of the scenarios fixes the achievable 
combination of machine and operator utilization along the 
respective line. To give an example: if 
MACHINE_CONSTRAINED (blue) is chosen and a load 
level of 90% bottleneck utilization (in this case: machine 
utilization), this results in an operator utilization of 60%. The 
grey bar at this point shows the best flow time achieved, i.e. 
out of the 72 rule combinations investigated. 

The best results can obviously be achieved if no operator 
constraints are present at all. This corresponds to the green 
line (NO_OPERATOR) in our simulation; we also have the 
lowest flow times in this scenario, compared to the other 
scenarios at the same load level. The 
DUAL_CONSTRAINED case (magenta) on the other hand is 
the most difficult, operator and machines are equally critical. 
This can also be seen in Fig. 2. 
 

 
Figure 3: best rule performance for the 4 scenarios and 3 load level settings. 

 

Table 3 lists our simulation results in more detail. Mean 
flow time as measured in our simulation experiment is 
expressed there as a flow factor, i.e. flow time divided by total 
processing time. The best and worst rule performances for a 
given scenario and load level are highlighted.  

To summarize our results, FSFO is the best machine rule 
irrespectively of the scenario and load level. Results 
concerning the best operator rule are a bit more complex: for 
the MACHINE_CONSTRAINED and 
OPERATOR_CONSTRAINED scenarios the operator rule 
SSPT[FSFO], i.e. Shortest Step Processing Time first with 
FSFO used as a tie breaker, yields the best results if used 
together with FSFO as a machine rule.  

The FIFO rule performs quite badly in our experiments. In 
most cases it does not yield better results than random 
selection, i.e. choosing an arbitrary job to process next. 

In the DUAL_CONSTRAINED scenario SSPT[FIFO] is 
the best, i.e. SSPT with tie breaker FIFO, for the 70% and 
80% load levels. This changes if load is further increased to 
90%. Most rule combinations are not able to handle this high 
load for both machines and operators anymore and the system 
is running full, more jobs are entering the system than leaving. 
In these cases no values are given in the respective table cells. 
Only combinations with MQL as an operator rule are able to 
handle this high load. The best results in this case are 
produced by the combination of the FSFO machine rule and 
MQL[FIFO] as an operator rule. The MQL – rule prefers 
machines with long queues, which means that operators go to 
high loaded machines first. That is the reason, why higher 
utilization level can be handled. Although this rule 
combination gives by far the best results for this case, the 
increase in average flow time is very high.  

Comparing the results for MACHINE_CONSTRAINED 
and NO_OPERATOR, the increase in mean flow time is only 
small, especially for lower load levels. If only flow time 
estimates are of interest, it seems viable to simplify the model 
by ignoring the operator requirements. 

The experiments with small instances show that in the 
OPERATOR_CONSTRAINED cases the optimal solution are 
much better than the results produced by heuristics. In the 
long term simulation the best rule results are higher for 
scenarios with moderate load levels of 70% and 80% 
compared to the DUAL_CONSTRAINED. Only the 90% load 
level results are smaller than its DUAL_CONSTRAINED 
equivalent but still about 56% higher than in the 
MACHINE_CONSTRAINED scenario. This seems to an 
effect of the heuristic procedure used (machines choose next 
job first, then operators choose between the machines that are 
ready to process). In future research more simulation runs will 
a different heuristic setup will be performed to analyze this 
effect in more detail.  

In summary, all four scenarios show that the performance 
of dispatching rules differs in some cases tremendously. The 
interdependences of the rules especially in the 
DUAL_CONSTRAINED scenarios lead to high performance 
differences. Other system factors, e.g. the utilization rate also 
affect the results. 
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Table 3: Results for all 72 rule combinations investigated. Except for the last row (span) all values are flow factors, i.e. mean flow time divided by the 

processing time (445 minutes). The last column contains a mean performance averaged over all scenario/load level combinations (but excluding 
DUAL_CONSTRAINED / 90%, see text); so (system overflow) more incoming than outgoing jobs. 

 

70% 80% 90% 70% 80% 90% 70% 80% 90% 70% 80% 90%
FIFO FIFO 1,42  1,74  2,71  1,49   1,94   3,71   2,26   3,40   8,26     2,22   6,28   so 3,22   
FIFO FSFO 1,42  1,74  2,71  1,48   1,89   3,46   1,86   2,53   4,92     1,91   3,50   so 2,49   
FIFO MQL[FIFO] 1,42  1,74  2,71  1,47   1,87   3,22   2,04   2,75   5,00     1,88   2,94   so 2,46   
FIFO MQL[FSFO] 1,42  1,74  2,71  1,47   1,86   3,21   1,88   2,56   4,76     1,85   2,91   so 2,40   
FIFO MQL[Rnd] 1,42  1,74  2,71  1,47   1,86   3,20   2,02   2,74   4,99     1,87   2,92   so 2,45   
FIFO Rnd 1,42  1,74  2,71  1,50   1,95   3,81   2,29   3,48   8,93     2,27   6,90   so 3,36   
FIFO SSPT[FIFO] 1,42  1,74  2,71  1,46   1,83   3,11   1,93   2,58   4,55     1,79   2,84   so 2,36   
FIFO SSPT[FSFO] 1,42  1,74  2,71  1,46   1,83   3,08   1,88   2,50   4,44     1,76   2,70   so 2,32   
FIFO SSPT[Rnd] 1,42  1,74  2,71  1,46   1,84   3,12   1,93   2,58   4,56     1,80   2,86   so 2,37   
FIFO SPT[FIFO] 1,42  1,74  2,71  1,47   1,85   3,22   2,04   2,84   6,02     1,82   3,03   so 2,56   
FIFO SPT[FSFO] 1,42  1,74  2,71  1,47   1,85   3,23   2,07   2,93   6,63     1,83   3,12   so 2,64   
FIFO SPT[Rnd] 1,42  1,74  2,71  1,47   1,85   3,20   2,03   2,81   5,80     1,82   3,03   so 2,54   
FSFO FIFO 1,32   1,52  2,13  1,35   1,59   2,30   1,99   2,69   5,15     1,71   2,63   so 2,22   
FSFO FSFO 1,32   1,52  2,13  1,34   1,58   2,26   1,76   2,27   3,98     1,61   2,29   so 2,00   
FSFO MQL[FIFO] 1,32   1,52  2,13  1,34   1,58   2,32   1,95   2,53   4,18     1,66   2,35   6,56     2,08   
FSFO MQL[FSFO] 1,32   1,52  2,13  1,34   1,58   2,33   1,82   2,37   4,01     1,62   2,28   8,40     2,03   
FSFO MQL[Rnd] 1,32   1,52  2,13  1,34   1,58   2,33   1,93   2,51   4,16     1,65   2,36   14,65   2,08   
FSFO Rnd 1,32   1,52  2,13  1,35   1,61   2,52   2,03   2,82   6,00     1,76   3,23   so 2,39   
FSFO SSPT[FIFO] 1,32   1,52  2,13  1,34   1,56   2,25   1,83   2,31   3,68     1,54   2,00   so 1,95   
FSFO SSPT[FSFO] 1,32   1,52  2,13  1,34   1,56   2,25   1,76   2,21   3,51     1,58   2,27   so 1,95   
FSFO SSPT[Rnd] 1,32   1,52  2,13  1,34   1,57   2,28   1,83   2,32   3,70     1,58   2,17   9,77     1,98   
FSFO SPT[FIFO] 1,32   1,52  2,13  1,35   1,59   2,41   1,92   2,68   7,26     1,56   2,61   so 2,39   
FSFO SPT[FSFO] 1,32   1,52  2,13  1,35   1,59   2,41   1,89   2,49   5,01     1,58   2,65   so 2,18   
FSFO SPT[Rnd] 1,32   1,52  2,13  1,34   1,58   2,33   1,88   2,46   4,71     1,57   3,03   so 2,17   
Rnd FIFO 1,42  1,73  2,69  1,49   1,93   3,80   2,26   3,41   8,63     2,23   6,85   so 3,31   
Rnd FSFO 1,42  1,73  2,69  1,47   1,88   3,42   1,86   2,53   4,72     1,94   3,60   so 2,48   
Rnd MQL[FIFO] 1,42  1,73  2,69  1,47   1,85   3,19   2,03   2,75   4,99     1,87   2,93   so 2,45   
Rnd MQL[FSFO] 1,42  1,73  2,69  1,46   1,85   3,17   1,89   2,57   4,79     1,85   2,91   so 2,39   
Rnd MQL[Rnd] 1,42  1,73  2,69  1,46   1,85   3,17   2,02   2,74   4,98     1,86   2,92   so 2,44   
Rnd Rnd 1,42  1,73  2,69  1,49   1,94   3,87   2,27   3,45   8,91     2,29   7,99   so 3,46   
Rnd SSPT[FIFO] 1,42  1,73  2,69  1,45   1,82   3,09   1,93   2,56   4,53     1,79   2,86   so 2,35   
Rnd SSPT[FSFO] 1,42  1,73  2,69  1,45   1,81   3,05   1,87   2,49   4,44     1,77   2,79   so 2,32   
Rnd SSPT[Rnd] 1,42  1,73  2,69  1,46   1,82   3,10   1,93   2,57   4,54     1,80   2,90   so 2,36   
Rnd SPT[FIFO] 1,42  1,73  2,69  1,46   1,84   3,19   2,03   2,84   6,14     1,84   3,24   so 2,58   
Rnd SPT[FSFO] 1,42  1,73  2,69  1,46   1,83   3,17   2,03   2,81   5,70     1,84   3,23   so 2,54   
Rnd SPT[Rnd] 1,42  1,73  2,69  1,46   1,83   3,17   2,02   2,79   5,75     1,83   3,22   so 2,54   

SPT[FIFO] FIFO 1,37   1,65  2,44  1,41   1,72   2,73   2,02   2,76   5,44     1,84   3,41   so 2,44   
SPT[FIFO] FSFO 1,37   1,65  2,44  1,41   1,73   2,72   2,08   3,24   8,09     1,93   3,67   so 2,76   
SPT[FIFO] MQL[FIFO] 1,37   1,65  2,44  1,40   1,70   2,59   2,02   2,77   5,23     1,73   2,53   13,14   2,31   
SPT[FIFO] MQL[FSFO] 1,37   1,65  2,44  1,40   1,70   2,59   1,90   2,63   5,10     1,73   2,55   13,20   2,28   
SPT[FIFO] MQL[Rnd] 1,37   1,65  2,44  1,40   1,70   2,59   2,02   2,77   5,26     1,73   2,53   14,17   2,31   
SPT[FIFO] Rnd 1,37   1,65  2,44  1,41   1,73   2,76   2,07   2,90   6,23     1,89   3,80   so 2,57   
SPT[FIFO] SSPT[FIFO] 1,37   1,65  2,44  1,40   1,70   2,59   2,12   3,17   7,04     1,74   2,69   so 2,54   
SPT[FIFO] SSPT[FSFO] 1,37   1,65  2,44  1,40   1,69   2,58   2,09   3,14   7,03     1,75   2,72   so 2,53   
SPT[FIFO] SSPT[Rnd] 1,37   1,65  2,44  1,40   1,70   2,59   2,11   3,15   6,99     1,74   2,68   so 2,53   
SPT[FIFO] SPT[FIFO] 1,37   1,65  2,44  1,41   1,72   2,69   2,35   3,77   10,48   2,12   5,00   so 3,18   
SPT[FIFO] SPT[FSFO] 1,37   1,65  2,44  1,41   1,73   2,69   2,40   3,94   12,06   2,15   5,23   so 3,37   
SPT[FIFO] SPT[Rnd] 1,37   1,65  2,44  1,41   1,72   2,68   2,32   3,63   9,09     2,06   4,55   so 2,99   
SPT[FSFO] FIFO 1,37   1,65  2,44  1,41   1,72   2,73   2,02   2,76   5,44     1,84   3,41   so 2,44   
SPT[FSFO] FSFO 1,37   1,65  2,44  1,41   1,73   2,72   2,08   3,24   8,09     1,93   3,67   so 2,76   
SPT[FSFO] MQL[FIFO] 1,37   1,65  2,44  1,40   1,70   2,59   2,02   2,77   5,23     1,73   2,53   13,14   2,31   
SPT[FSFO] MQL[FSFO] 1,37   1,65  2,44  1,40   1,70   2,59   1,90   2,63   5,10     1,73   2,55   13,20   2,28   
SPT[FSFO] MQL[Rnd] 1,37   1,65  2,44  1,40   1,70   2,59   2,02   2,77   5,26     1,73   2,53   14,17   2,31   
SPT[FSFO] Rnd 1,37   1,65  2,44  1,41   1,73   2,76   2,07   2,90   6,23     1,89   3,80   so 2,57   
SPT[FSFO] SSPT[FIFO] 1,37   1,65  2,44  1,40   1,70   2,59   2,12   3,17   7,04     1,74   2,69   so 2,54   
SPT[FSFO] SSPT[FSFO] 1,37   1,65  2,44  1,40   1,69   2,58   2,09   3,14   7,03     1,75   2,72   so 2,53   
SPT[FSFO] SSPT[Rnd] 1,37   1,65  2,44  1,40   1,70   2,59   2,11   3,15   6,99     1,74   2,68   so 2,53   
SPT[FSFO] SPT[FIFO] 1,37   1,65  2,44  1,41   1,72   2,69   2,35   3,77   10,48   2,12   5,00   so 3,18   
SPT[FSFO] SPT[FSFO] 1,37   1,65  2,44  1,41   1,73   2,69   2,40   3,94   12,06   2,15   5,23   so 3,37   
SPT[FSFO] SPT[Rnd] 1,37   1,65  2,44  1,41   1,72   2,68   2,32   3,63   9,09     2,06   4,55   so 2,99   
SPT[Rnd] FIFO 1,37   1,65  2,44  1,41   1,72   2,73   2,02   2,76   5,44     1,84   3,41   so 2,44   
SPT[Rnd] FSFO 1,37   1,65  2,44  1,41   1,73   2,71   2,07   3,18   7,67     1,88   3,33   so 2,68   
SPT[Rnd] MQL[FIFO] 1,37   1,65  2,44  1,40   1,70   2,59   2,02   2,77   5,23     1,73   2,53   13,12   2,31   
SPT[Rnd] MQL[FSFO] 1,37   1,65  2,44  1,40   1,70   2,59   1,90   2,64   5,11     1,73   2,54   13,71   2,28   
SPT[Rnd] MQL[Rnd] 1,37   1,65  2,44  1,40   1,70   2,59   2,02   2,77   5,26     1,73   2,53   14,16   2,31   
SPT[Rnd] Rnd 1,37   1,65  2,44  1,41   1,73   2,76   2,07   2,90   6,23     1,89   3,80   so 2,57   
SPT[Rnd] SSPT[FIFO] 1,37   1,65  2,44  1,40   1,70   2,59   2,12   3,17   7,04     1,74   2,69   so 2,54   
SPT[Rnd] SSPT[FSFO] 1,37   1,65  2,44  1,40   1,69   2,58   2,09   3,14   7,03     1,75   2,73   so 2,53   
SPT[Rnd] SSPT[Rnd] 1,37   1,65  2,44  1,40   1,70   2,59   2,11   3,15   6,99     1,74   2,68   so 2,53   
SPT[Rnd] SPT[FIFO] 1,37   1,65  2,44  1,41   1,72   2,69   2,35   3,77   10,48   2,12   5,00   so 3,18   
SPT[Rnd] SPT[FSFO] 1,37   1,65  2,44  1,41   1,72   2,69   2,33   3,64   8,99     2,10   4,78   so 3,01   
SPT[Rnd] SPT[Rnd] 1,37   1,65  2,44  1,41   1,72   2,68   2,32   3,63   9,09     2,06   4,55   so 2,99   

flowfactor best rule 1,32   1,52  2,13  1,34   1,56   2,25   1,76   2,21   3,51     1,54   2,00   6,56     1,95   
flowfactor worst rule 1,42  1,74  2,71  1,50   1,95   3,87   2,40   3,94   12,06   2,29   7,99   14,65   3,46   
flowtime span ((worst-best)/best) 8,2% 14,7% 27,3% 12,2% 24,8% 72,5% 36,0% 78,0% 243,0% 48,6% 299,6% 123,5% 77,4%

 utilisation of bootleneck  utilisation of bootleneck 
(0 Operator) (1 Operator) (2 Operator) (3 Operator)

 operator rule
[tie breaker] 

 machine rule
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VI. CONCLUSION AND FURTHER RESEARCH 
The paper analyses a priority-rule based approach to 

shop-floor scheduling considering both machines and 
operators. Our dual-constrained scenario derived from 
semiconductor manufacturing. To gain insights into priority 
rule performance we use two approaches: simulation of 
small problem instances and its comparison with optimal 
solutions and simulation of long term system behavior. 
Especially in shop environments, where more than one 
resource is constraining the system’s performance proper 
selection and combination of priority rules is crucial. The 
long term simulation has also shown, that in high utilization 
scenarios many rule combinations are not able to handle the 
workload at all, which underlines the importance of 
choosing the right combination. 

Comparison of known optimal solutions and best rule 
results indicates only a small difference between the 
optimum and the best rule result. The differences between 
well performing rule combinations and unsuitable 
combinations is much higher than the differences to optimal 
solutions, which shows that well adjusted priority rules 
provide good solutions. It would be interesting to see if this 
remains true for larger problem instances, so a more 
efficient optimal solution procedure is needed here. 

It is interesting to see, that the rule combination’s 
performance depends on the utilization level of the system. 
This brings up the idea to develop a control system, which 
selects or develops priority rules automatically, considering 
system parameters and adopting to changing shop floor 
conditions.  
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