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Abstract—In this paper, we present significant ad-
vances of the novel meccano technique to construct
adaptive tetrahedral meshes of 3-D complex solids.
Specifically, we will consider a solid whose bound-
ary is a surface of genus 0, i.e. a surface that is
homeomorphic to the surface of a sphere. In this
particular case, the automatic procedure is defined
by a surface triangulation of the solid, a simple mec-
cano composed by one cube and a tolerance that fixes
the desired approximation of the solid surface. The
main idea is based on an automatic mapping from the
cube faces to the solid surface, a 3-D local refinement
algorithm and a simultaneous mesh untangling and
smoothing procedure. Although the initial surface
triangulation can be a poor quality mesh, the mec-
cano technique constructs high quality surface and
volume adaptive meshes. A crucial consequence of
the new mesh generation technique is the resulting
discrete parametrization of a complex volume (solid)
to a simple cube (meccano). Several examples show
the efficiency of the proposed technique. Future possi-
bilities of the meccano method for meshing a complex
solid, whose boundary is a surface of genus greater
than zero, are commented.
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1 Introduction

Many authors have devoted great effort to solving the
automatic mesh generation problem in different ways
[3, 14, 15, 27], but the 3-D problem is still open [1]. Along
the past, the main objective has been to achieve high
quality adaptive meshes of complex solids with minimal
user intervention and low computational cost. At present,
it is well known that most mesh generators are based on
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Delaunay triangulation and advancing front technique,
but problems, related to mesh quality or mesh confor-
mity with the solid boundary, can still appear for com-
plex geometries. In addition, an appropriate definition of
element sizes is demanded for obtaining good quality ele-
ments and mesh adaption. Particularly, local adaptive re-
finement strategies have been employed to mainly adapt
the mesh to singularities of numerical solution. These
adaptive methods usually involve remeshing or nested re-
finement.

We introduced the new meccano technique in [22, 2, 23]
for constructing adaptive tetrahedral meshes of solids.
We have given this name to the method because the pro-
cess starts with the construction of a coarse approxima-
tion of the solid, i.e. a meccano composed by connected
polyhedral pieces. The method builds a 3-D triangulation
of the solid as a deformation of an appropriate tetrahedral
mesh of the meccano. A particular case is when meccano
is composed by connected cubes, i.e. a polycube.

The new automatic mesh generation strategy uses no De-
launay triangulation, nor advancing front technique, and
it simplifies the geometrical discretization problem for 3-
D complex domains, whose surfaces can be mapped to
the meccano faces. The main idea of the meccano method
is to combine a local refinement/derefinement algorithm
for 3-D nested triangulations [19], a parameterization of
surface triangulations [7] and a simultaneous untangling
and smoothing procedure [4]. At present, the meccano
technique has been implemented by using the local re-
finement/derefinement of Kossaczky [19], but the idea
could be implemented with other types of local refine-
ment algorithms [16]. The resulting adaptive tetrahedral
meshes with the meccano method have good quality for
finite element applications.

Our approach is based on the combination of several for-
mer procedures (refinement, mapping, untangling and
smoothing) which are not in themselves new, but the
overall integration is an original contribution. Many au-
thors have used them in different ways. Triangulations for
convex domains can be constructed from a coarse mesh
by using refinement/projection [24]. Adaptive nested
meshes have been constructed with refinement and dere-
finement algorithms for evolution problems [6]. Mappings
between physical and parametric spaces have been ana-
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lyzed by several authors. Significant advances in surface
parametrization have been done in [7, 9, 10, 26, 21, 28],
but the volume parametrization is still open. Floater et
al [11] give a simple counterexample to show that con-
vex combination mappings over tetrahedral meshes are
not necessarily one-to-one. Large domain deformations
can lead to severe mesh distortions, especially in 3-D.
Mesh optimization is thus key for keeping mesh shape
regularity and for avoiding a costly remeshing [17, 18].
In traditional mesh optimization, mesh moving is guided
by the minimization of certain overall functions, but it is
usually done in a local fashion. In general, this procedure
involves two steps [13, 12]: the first is for mesh untan-
gling and the second one for mesh smoothing. Each step
leads to a different objective function. In this paper, we
use the improvement proposed by [4, 5], where a simul-
taneous untangling and smoothing guided by the same
objective function is introduced.

Some advantages of the meccano technique are that: sur-
face triangulation is automatically constructed, the final
3-D triangulation is conforming with the object bound-
ary, inner surfaces are automatically preserved (for ex-
ample, interface between several materials), node distri-
bution is adapted in accordance with the object geom-
etry, and parallel computations can easily be developed
for meshing the meccano pieces. However, our procedure
demands an automatic construction of the meccano and
an admissible mapping between the meccano boundary
and the object surface must be defined.

In this paper, we consider a complex genus-zero solid de-
fined by a triangulation of its surface. In this case, it
is sufficient to fix a meccano composed by a single cube
and a tolerance that fixes the desired approximation of
the solid surface. In order to define an admissible map-
ping between the cube faces and patches of the initial
surface triangulation of the solid, we introduce a new au-
tomatic method to decompose the surface triangulation
into six patches that preserves the same topological con-
nections than the cube faces. Then, a discrete mapping
from each surface patch to the corresponding cube face is
constructed by using the parameterization of surface tri-
angulations proposed by M. Floater in [7, 8, 9, 10]. The
shape-preserving parametrizations, which are planar tri-
angulations on the cube faces, are the solutions of linear
systems based on convex combinations.

In the near future, more effort should be made in develop-
ing an automatic construction of the meccano when the
genus of the solid surface is greater than zero. Currently,
several authors are working on this aspect in the context
of polycube-maps, see for example [26, 21, 28]. They are
analyzing how to construct a polycube for a generic solid
and, simultaneously, how to define a conformal mapping
between the polycube boundary and the solid surface.
Although harmonic maps have been extensively studied
in the literature of surface parameterization, only a few

works are related to volume parametrization, for example
a procedure is presented in see [20].

In the following Section we present a brief description
of the main stages of the method for a generic meccano
composed of polyhedral pieces. In Section 3 we intro-
duce applications of the algorithm in the case that the
meccano is formed by a simple cube. Finally, conclusions
and future research are presented in Section 4.

2 The Meccano Method

The main steps of the general meccano tetrahedral mesh
generation algorithm are summarized in this section. A
detailed description of this technique can be analyzed in
[22, 2, 23]. The input data are the definition of the solid
boundary (for example by a given surface triangulation)
and a given tolerance (corresponding to the solid surface
approximation). The following algorithm describes the
whole mesh generation approach.

Meccano tetrahedral mesh generation algorithm

1. Construct a meccano approximation of the 3-D

solid formed by polyhedral pieces.

2. Define an admissible mapping between the mec-

cano boundary faces and the solid boundary.

3. Build a coarse tetrahedral mesh of the meccano.

4. Generate a local refined tetrahedral mesh of the

meccano, such that the mapping of the mec-

cano boundary triangulation approximates the

solid boundary for a given precision.

5. Move the boundary nodes of the meccano to the

object surface with the mapping defined in 2.

6. Relocate the inner nodes of the meccano.

7. Optimize the tetrahedral mesh with the simulta-

neous untangling and smoothing procedure.

The first step of the procedure is to construct a mec-
cano approximation by connecting different polyhedral
pieces. Once the meccano approximation is fixed, we
have to define an admissible one-to-one mapping between
the boundary faces of the meccano and the boundary of
the object. In step 3, the meccano is decomposed into
a coarse and valid tetrahedral mesh by an appropriate
subdivision of its initial polyhedral pieces. We continue
with a local refinement strategy to obtain an adapted
mesh which can approximate the boundaries of the do-
main within a given precision. Then, we construct a mesh
of the solid by mapping the boundary nodes from the
meccano faces to the true solid surface and by relocat-
ing the inner nodes at a reasonable position. After those
two steps the resulting mesh is tangled, but it has an
admissible topology. Finally, a simultaneous untangling
and smoothing procedure is applied and a valid adaptive
tetrahedral mesh of the object is obtained.
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We note that the general idea of the meccano technique
could be understood as the connection of different poly-
hedral pieces. So, the use of cuboid pieces, or a polycube
meccano, are particular cases.

3 Application of the Meccano Method to

Complex Genus-Zero Solids

In this section, we present the application of the meccano
algorithm in the case of the solid surface being genus-
zero and the meccano being formed by a single cube. We
assume as datum a triangulation of the solid surface as
data.

We introduce an automatic parametrization between the
surface triangulation of the solid and the cube bound-
ary. To that end, we automatically divide the sur-
face triangulation into six patches, with the same topo-
logical connection that cube faces, so that each patch
is mapped to a cube face. These parametrizations
have been done with GoTools core and parametrization
modules from SINTEF ICT, available in the website
http://www.sintef.no/math software. This code imple-
ments Floater’s parametrization in C++. Specifically, in
the following application we have used the mean value
method for the parametrization of the inner nodes of the
patch triangulation, and the boundary nodes are fixed
with chord length parametrization [7, 9].

We have implemented the meccano method by using the
local refinement of ALBERTA. This code is an adaptive
multilevel finite element toolbox [25] developed in C. This
software can be used to solve several types of 1-D, 2-D
or 3-D problems. ALBERTA uses the Kossaczky refine-
ment algorithm [19] and requires an initial mesh topol-
ogy [24]. The recursive refinement algorithm could not
terminate for general meshes. The meccano technique
constructs meshes that verify the imposed restrictions of
ALBERTA in relation to topology and structure. The
minimum quality of refined meshes is function of the ini-
tial mesh quality.

The performance of our novel tetrahedral mesh genera-
tor is shown in the following applications. The first cor-
responds to a Bust, the second to the Stanford Bunny
and the third to a Bone. We have obtained a surface
triangulation of these objects from internet.

Example 1: Bust

The original surface triangulation of the Bust has been
obtained from the website http://shapes.aimatshape.net,
i.e. AIM@SHAPE Shape Repository. It has 64000 trian-
gles and 32002 nodes. The bounding box of the solid is
defined by the points (x, y, z)min = (−120,−30.5,−44)
and (x, y, z)max = (106, 50, 46).

We consider a cube, with an edge length equal to 20,

as meccano. Its center is placed inside the solid at the
point (5,−3, 4). We obtain an initial subdivision of Bust
surface in seven maximal connected subtriangulations by
using the Voronoi diagram associated to the centers of the
cube faces. In order to get a compatible decomposition of
the surface triangulation, we apply an iterative procedure
to reduce the current seven patches to six.

We map each surface patch Σi

S
to the cube face Σi

C
by us-

ing the Floater parametrization [7]. The definition of the
one-to-one mapping between the cube and Bust bound-
aries is straightforward once the global parametrization
of the Bust surface triangulation is built.

Fixing a tolerance ε2 = 0.1, the meccano method gener-
ates a tetrahedral mesh of the cube with 147352 tetrahe-
dra and 34524 nodes, see a cross section of the cube mesh
in Figure 1(a). This mesh has 32254 triangles and 16129
nodes on its boundary and it has been reached after 42
Kossaczky refinements from the initial subdivision of the
cube into six tetrahedra. The mapping of the cube ex-
ternal nodes to the Bust surface produces a 3-D tangled
mesh with 8947 inverted elements, see Figure 1(b). The
location of the cube is shown in this Figure. The relo-
cation of inner nodes by using volume parametrizations
reduces the number of inverted tetrahedra to 285. We ap-
ply our mesh optimization procedure [4] and the mesh is
untangled in 2 iterations. The mesh quality is improved
to a minimum value of 0.07 and an average q

κ
= 0.73

after 10 smoothing iterations. We note that the meccano
technique generates a high quality tetrahedra mesh (see
Figures 1(c) and 1(d)): only 1 tetrahedron has a quality
lower than 0.1, 13 lower than 0.2 and 405 lower than 0.3.

The CPU time for constructing the final mesh of the Bust
is 93.27 seconds on a Dell precision 690, 2 Dual Core Xeon
processor and 8 Gb RAM memory. More precisely, the
CPU time of each step of the meccano algorithm is: 1.83
seconds for the subdivision of the initial surface trian-
gulation into six patches, 3.03 seconds for the Floater
parametrization, 44.50 seconds for the Kossaczky recur-
sive bisections, 2.31 seconds for the external node map-
ping and inner node relocation, and 41.60 seconds for the
mesh optimization.

Example 2: Bunny

The original surface triangulation of the Stan-
ford Bunny has been obtained from the website
http://graphics.stanford.edu/data/3Dscanrep/ , i.e. the
Stanford Computer Graphics Laboratory. It has 12654
triangles and 7502 nodes. The bounding box of the solid
is defined by the points (x, y, z)min = (−10, 3.5,−6) and
(x, y, z)max = (6, 2, 6).

We consider a unit cube as meccano. Its center is placed
inside the solid at the point (−4.5, 10.5, 0.5). We obtain
an initial subdivision of the Bunny surface in eight maxi-
mal connected subtriangulations using Voronoi diagram.
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(a) (b) (c) (d)

Figure 1: Cross sections of the cube (a) and the Bust tetrahedral mesh before (b) and after (c) the application of
the mesh optimization procedure. (d) Resulting tetrahedral mesh of the Bust obtained by the meccano method.

(a) (b) (c) (d)

Figure 2: Cross sections of the cube (a) and the Bunny tetrahedral mesh before (b) and after (c) the application of
the mesh optimization procedure. (d) Resulting tetrahedral mesh of the Bunny obtained by the meccano method.

(a) (b) (c) (d)

Figure 3: Cross sections of the cube (a) and the Bone tetrahedral mesh before (b) and after (c) the application of
the mesh optimization procedure. (d) Resulting tetrahedral mesh of the Bone obtained by the meccano method.
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We reduce the surface partition to six patches and we
construct the Floater parametrization from each surface
patch Σi

S
to the corresponding cube face Σi

C
. Fixing a

tolerance ε2 = 0.0005, the meccano method generates a
cube tetrahedral mesh with 54496 tetrahedra and 13015
nodes, see Figure 2(a). This mesh has 11530 triangles
and 6329 nodes on its boundary and has been reached af-
ter 44 Kossaczky refinements from the initial subdivision
of the cube into six tetrahedra.

The mapping of the cube external nodes to the Bunny
surface produces a 3-D tangled mesh with 2384 inverted
elements, see Figure 2(b). The relocation of inner nodes
by using volume parametrizations reduces the number
of inverted tetrahedra to 42. We apply 8 iterations of
the tetrahedral mesh optimization and only one inverted
tetrahedron can not be untangled. To solve this prob-
lem, we allow the movement of the external nodes of this
inverted tetrahedron and we apply 8 new optimization
iterations. The mesh is then untangled and, finally, we
apply 8 smoothing iterations fixing the boundary nodes.
The resulting mesh quality is improved to a minimum
value of 0.08 and an average q

κ
= 0.68, see Figures 2(c)

and 2(d). We note that the meccano technique generates
a high quality tetrahedra mesh: only 1 tetrahedron has a
quality below 0.1, 41 below 0.2 and 391 below 0.3.

The CPU time for constructing the final mesh of the
Bunny is 40.28 seconds on a Dell precision 690, 2 Dual
Core Xeon processor and 8 Gb RAM memory. More pre-
cisely, the CPU time of each step of the meccano algo-
rithm is: 0.24 seconds for the subdivision of the initial
surface triangulation into six patches, 0.37 seconds for
the Floater parametrization, 8.62 seconds for the Kos-
saczky recursive bisections, 0.70 seconds for the external
node mapping and inner node relocation, and 30.35 sec-
onds for the mesh optimization.

Example 3: Bone

The original surface triangulation of the Bone has been
obtained from http://www-c.inria.fr/gamma/download/-
affichage.php?dir=ANATOMY&name=ballJoint, and it
can be found in the CYBERWARE Catalogue. This sur-
face mesh contains 274120 triangles and 137062 nodes.

Steps of the meccano technique are shown in Figure
3. The resulting mesh has 47824 tetrahedra and 11525
nodes. This mesh has 11530 triangles and 5767 nodes on
its boundary and it has been reached after 23 Kossaczky
refinements from the initial subdivision of the cube into
six tetrahedra. A tangled tetrahedra mesh with 1307 in-
verted elements appears after the mapping of the cube
external nodes to the bone surface. The node relocation
process reduces the number of inverted tetrahedra to 16.
Finally, our mesh optimization algorithm produces a high
quality tetrahedra mesh: the minimum mesh quality is
0.15 and the average quality is 0.64.

4 Conclusions and Future Research

The meccano technique is a very efficient adaptive tetra-
hedral mesh generator for solids whose boundary is a sur-
face of genus 0. We remark that the method requires
minimum user intervention and has a low computational
cost. The procedure is fully automatic and it is only de-
fined by a surface triangulation of the solid, a cube and
a tolerance that fixes the desired approximation of the
solid surface.

We have introduced an automatic partition of the given
solid surface triangulation for fixing an admissible map-
ping between the cube faces and the solid surface patches,
such that each cube face is the parametric space of its
corresponding patch.

The mesh generation technique is based on sub-processes
(subdivision, mapping, optimization) which are not in
themselves new, but the overall integration using a simple
shape as starting point is an original contribution of the
method and has some obvious performance advantages.
Another interesting property of the new mesh generation
strategy is that it automatically achieves a good mesh
adaption to the geometrical characteristics of the domain.
In addition, the quality of the resulting meshes is high.

The main ideas presented in this paper can be applied for
constructing tetrahedral or hexahedral meshes of complex
solids. In future works, the meccano technique can be
extended for meshing a complex solid whose boundary is
a surface of genus greater than zero. In this case, the
meccano can be a polycube or constructed by polyhedral
pieces with compatible connections. At present, the user
has to define the meccano associated to the solid, but we
are implementing a special CAD package for more general
input solid.
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