
Abstract— Accurate detection of fault in a hydraulic system is 
a crucial and equally challenging task. The method proposed 
here is a combination of analytical and fuzzy logic approach. 
Residuals generated by non-linear observer are evaluated using 
fuzzy logic. The fault severity of the system is evaluated based 
on the membership functions and rule base developed by the 
fuzzy logic system. This paper demonstrates the use of fuzzy 
logic as an extension to analytical system to enhance the overall 
performance of the system. The decision of whether ‘a fault has 
occurred or not?’ is upgraded to ‘what is the severity of that 
fault?’ at the output. More importantly, simulation results 
demonstrate how fuzzy logic is advantageous over the 
conventional method by being more informative regarding the 
fault condition and being more sensitive to faults and less 
sensitive to uncertainties and disturbances. 

 Index Terms —Fault detection, fault severity, fuzzy logic, 
hydraulic system. 

 

I. INTRODUCTION 

Hydraulic systems are very commonly used in industry. 
Like any other system these systems too are prone to 
different types of faults. A fault can be defined as deviation 
from the normal or expected. In a hydraulic system, the 
system malfunction is caused due to the changes in the 
system parameters which is in turn caused due to changes in 
the environmental conditions, faulty sensors and internal and 
external fluid leakages.  
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Faults can be categorized into two types: Firstly, partial 
fault failure where the system can continue to operate even if 
there is a small amount of fault and secondly total fault 
failure where the system needs to be shut down. The fault 
tolerance will depend totally on where the hydraulic system 
is used. It will be low if the system is being used in a 
precision required area like in an aircraft. On the other hand, 
it will be high if the system is being used in a heavy duty 
vehicle such as an excavator.  

Continuous online monitoring of fault in hydraulic system 
is becoming increasingly important day-by-day. It is crucial 
to provide correct information regarding the systems health 
to the operators. This should be done as quickly as possible 
in order to guide them to fix the problem. The fault severity 
of the system at the output is one such crucial information 
provided to the operators.  

The fault detection problem can be solved using different 
approaches like Wald’s Sequential Test, as in [4] which is a 
conventional approach or using innovative approaches like 
genetic algorithms as in [11], neural networks as in [6],[8], 
fuzzy logic as in [5] etc. each having its own advantages and 
disadvantages. In this paper we used fuzzy logic to detect the 
severity of fault at the output. Fuzzy logic has several 
advantages like less modeling complexity and ability to 
translate human reasoning using linguistic variables. This 
makes it possible to take into account the uncertainties and 
nonlinearities otherwise very difficult to model 
mathematically. In the last several years there has been 
significant growth in the number of fuzzy logic applications 
especially in the realms of consumer products, intelligent 
control applications and fault detection.  

The concept of fuzzy logic was first introduced in 1964 by 
Professor Lofti Zadeh in [12] which represented the 
vagueness of human concepts in terms of linguistic variables. 
After the introduction of fuzzy sets, their applications to 
solve real world problems were concentrated [2], [10]. 

Diagnosis of faults in motors using fuzzy logic can be seen 
in [5], [7]. Detection of stator winding fault in induction 
motor is presented in [5]. The currents in the 3 respective 
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windings are the inputs which are linguistically described as 
very small, small, medium and large. The output is the 
condition of motor i.e. good, damaged or seriously damaged 
is also expressed in linguistic terms. The knowledge is 
represented in terms of membership functions and rules 
obtained from analytical study, motor performance, 
simulated data and the engineer’s experience. Model 
simulation carried out in the SIMULINK environment using 
the fuzzy logic controller can also be seen. 

A model based fault diagnosis method for an industrial 
robot is proposed in [9]. Residuals are calculated by the 
observer using a dynamic robot model and later evaluated 
using fuzzy logic. The paper addresses the problem of false 
triggers and missing alarms which occurs when the residual 
which is slightly below the predefined threshold has no 
effect. However, a small increase in the value of residual 
(which may be due to measurement in noise) triggers an 
alarm. This problem is addressed based on the adaptive 
threshold concept using fuzzy logic.  

Reference [1] concentrates on robust fault detection on an 
aircraft flight control system. Robust l1 estimation technique 
is used to calculate residuals which are then evaluated using 
fuzzy logic and fixed threshold approach. The aim of robust 
fault detection system is to be sensitive to faults and 
insensitive to disturbances and uncertainties at the same time.  

In this paper we demonstrate a similar model based 
approach for evaluating of severity of fault in the hydraulic 
actuator using fixed threshold approach. The objective 
knowledge on the system is represented by mathematical 
modeling (calculating the residuals using nonlinear observer) 
while the subjective knowledge is represented using fuzzy 
logic (fuzzy rules and membership functions). 

 

II. SYSTEM UNDER CONSIDERATION 

The schematic of the system under consideration, the 
mathematical model and the design of nonlinear observer can 
be seen in [4]. Using the mathematical equations, the 
nonlinear observer predicts the next state of the system given 
the estimate state which is denoted as z(k) in the discrete time 
system. The actual state of the system y(k) is known through 
the sensors. The residual e(k) is calculated as follows 

* ( ) * ( )( ) y k M z kp pe k M                          (1) 

Mp is an identity matrix of size m n , 4 1M Ip    

It is perceived that the performance of the actuator is 
selected based on four parameters. In this study, note that 
each parameter has a range of value from zero (0) to one (1). 

The elements of the state vector z ≈ [v Pi Po xsp] 
T are velocity 

v, input pressure Pi, output pressure Po and xsp spool 
displacement. This means we can get these four residuals 
respectively. In this paper we have concentrated on the 
velocity residual  keeping the identity matrix Mp = [1 0 0 0] 

Theoretically, these residuals should be zero under no fault 
condition. However, in practical context, due to noise, 
inexact mathematical modeling and system nonlinearity, this 
residual is never zero even under no fault condition. 
Reference [4] uses a conventional method called Wald’s 
Sequential Test to detect fault. In this method, the cumulative 
residual error is calculated over a period of time and fault is 
detected using the fixed threshold concept.  

This conventional method has some disadvantages. A 
value just below the threshold is not considered as a fault 
while some value just above the threshold will be considered 
as a fault. This can also lead to missing alarms and false 
triggers. This information could be potentially misguiding to 
the operators working on the hydraulic system. This is the 
drawback of binary logic. The conventional method is rigid 
and does not consider a smooth transition between the faulty 
and the no fault condition. The probability assignment 
procedure is heuristic and depends on the number of 
Zeros/Ones in the failure signature. This does not give any 
information about the fault in between the thresholds. In 
order to take care of this condition we try to replace this 
binary logic by multi-valued one using fuzzy logic. 
Evaluating these residuals using fuzzy logic replaces the 
yes/no decision of fault by the severity of fault at the output. 

 

III. ROLE OF FUZZY LOGIC 

The block diagram for the overall system is as shown 
below where u(t) is the control input. 

 

Fig 1. Block Diagram  
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As already seen, the difference between the expected state 
z(k) and the actual state of the system y(k) gives the residual 
e(k). The value of residual is added over a period of time 
which gives the cumulative residual ∑e(k). This value is 
subtracted from the predecided threshold and is called 
cumulative residual difference. The lower the value of this 
cumulative residual difference, higher is the fault severity, 
indicating that the cumulative residual is approaching the 
threshold and vice versa. The threshold is determined through 
observations. It will vary depending upon the fault tolerance 
of the application in which the hydraulic system is used. 
Even if there is no fault, the modeling errors or noise drive 
several residuals beyond their threshold. This is usually 
indicated by all suspect residuals being weak. The residual is 
bounded between the upper and the lower threshold. As soon 
as it approaches these thresholds, the fault severity increases. 
Thus, the residual and the cumulative residual difference are 
given as two inputs to the fuzzy logic controller. Based on 
these two inputs, the controller decides the fault severity at 
the output. 

With the test threshold for the ith residual denoted as
 
, ei(k) 

the residual-to-threshold ratio si(k) may be obtained as:  

                                

( )
( )

e kis ki ei
                                 (2) 

Obviously si(k) is greater than or equal to 1 if the test is fired 
on the residual and si(k) is less than 1 if it did not. 
 

IV. DESIGN OF FUZZY LOGIC CONTROLLER 

A. Inputs 

Fig. 2 illustrates the actual and calculated velocities. The 
difference is due to the error introduced in the actual system 
by adding random noise to the velocity during simulation. 
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Fig  2. Graph showing Actual velocity and observed velocity vs time 

The plot of residual, cumulative residual, cumulative 
residual difference along with the thresholds can be seen in 
the fig. 3 and fig. 4. As seen earlier, the residual and the 
cumulative residual difference are the two inputs to the fuzzy 
logic controller. 
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Fig 3. Graph showing ‘Residual’ along with the upper and lower thresholds 
vs ‘number of observations’ 
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Fig 4. Graph showing the cumulative residual and the cumulative residual 
difference along with the upper and lower thresholds vs the number of 

observations 

B.   Membership Functions 

    The first input which is residual is divided into 7 
membership functions namely, Big Negative (BN), 
Negative(N), Small Negative(SN), Zero(Z), Small 
Positive(SP), Positive(P) and Big Positive(BP) shown below. 

 

Fig 5.  Membership functions for the first input 'Residual' 
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    Similarly, we developed 5 membership functions for the 
second input which is cumulative residual difference. They 
are Large Negative(LNeg), Medium Negative(MNeg), Small 
Negative(SNeg), Zero(Zero) and Positive(POS) as seen in the 
following fig.  

 

Fig 6. Membership functions for the second input 'Cumulative Residual 
Difference’ 

As already seen there are 4 parameters which can be used 
to calculate the residuals. Among them the velocity is the 
most concerned parameter in this case of study. Hence, the 
velocity residual is selected to determine the fault severity at 
the output.  

The membership functions for the output i.e. fault severity 
are F0, F1, F2, F3, F4, F5 and F6 where F0 represents the 
lowest fault severity and F6 represents the highest fault 
severity. The shapes of the membership functions which are 
triangular and trapezoidal were selected based on the simple 
guidelines suggested in [3]. This can be seen in the following 
fig. 

 

Fig 7.  Membership functions for the output 'Fault Severity' 

C.  Rule Based Inference 

Inference rules were developed which relate the two inputs 
to the output. They are summarized in the Table I. As seen 
from the table, there are in all 35 rules. For example, if the 
residual is Big Positive (BP) and the cumulative residual 
difference is Large Negative (LNeg) then the output fault 
severity is the highest (F6). Similarly, if the residual is Zero 

(Z) and the cumulative residual difference is Positive (Pos) 
then the output fault severity is the lowest (F0). 

TABLE І: RULE BASED INFERENCE 
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  BN  NEG   SN   Z   SP  POS   BP 

  Pos   F3   F2   F1   F0   F1   F2   F3 

 Zero   F4   F3   F2   F1   F2   F3   F4 

 SNeg   F5   F4   F3   F2   F3   F4   F5 

MNeg   F6   F5   F4   F3   F4   F5   F6 

LNeg   F6   F6   F5   F4   F5   F6   F6 

 
D. Defuzzification 

After converting the crisp information into fuzzy the last 
step is to reverse that. Converting the fuzzy information to 
crisp is known as defuzzification. The center of area/centroid 
method was used to defuzzify these sets which can be 
represented mathematically as follows: 

                      

( )

( )

f fi iDefuzzified value
fi











                       (3) 

Where fi is the fault severity at the output and µ(fi) is the 
output membership function. 

E.  Rule Viewer 

The rules can also be seen from the rule viewer using the 
fuzzy logic toolbox in MATLAB software. When the residual 
is 0.01, it is far away from both the upper and lower 
thresholds (almost at the center) and hence, has lower fault 
severity. Also, the cumulative residual difference is 9 which 
means the difference between the actual value of cumulative 
residual and threshold is high i.e. cumulative residual is far 
away from the threshold. Hence, the fault severity should be 
low. A combination of these values of residual and 
cumulative residual gives fault severity percentage of 9.96% 
which is low. Similarly, when the residual is 0.089 it 
indicates that it is very close to the threshold. A cumulative 
residual difference of -9 indicates that the threshold has been 
already crossed by the cumulative residual (hence it is 
negative). Both of these conditions lead to a very high fault 
severity of 98.4%. This can be seen with the help of the rule 
viewer facility in the fuzzy logic toolbox. These examples are 
shown in fig. 8 and fig. 9 respectively with the help of rule 
viewer. 
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Fig 8. Test Results for low fault severity 

 

Fig 9. Test results for high fault severity

 

Fig 10. MATLAB/SIMULINK mode 
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V. SIMULATION 
This simulation was carried out in MATLAB 

SIMULINK using fuzzy logic controller from the fuzzy 
logic toolbox as shown in fig. 10. The upper subsystem 
represents the actual system (actual state of the hydraulic 
system) and the lower subsystem is the nonlinear observer 
(which predicts the state of the system). The SIMULINK 
diagram is the implementation of the block diagram shown 
in fig. 1. The simulation is carried out for a unit step input. 
Fault is introduced in the actual system by adding noise to 
the velocity in the actual system and different fault 
severities are tested at the output.  

 

VI. CONCLUSION 

The main goal here was to provide the technicians 
continuous online information about the systems health 
which would guide them to make decisions. This information 
needs to be given at an incipient stage in order to avoid any 
further serious damage to the system.  

Using fuzzy logic over conventional method like Wald’s 
sequential test [4] has several advantages. It provides the 
important information about system’s health in between the 
thresholds too. It provides information about smooth 
transition from no fault to faulty condition. This also helps in 
avoiding false triggers and missing alarms. Fuzzy logic is a 
good option because there is no general mathematical model 
available which describes the output fault severity based on 
the available inputs. The observed knowledge is directly used 
for fault detection process instead of any detailed modeling. 

This work shows that fuzzy logic when used in 
combination with analytical methods like non linear observer 
can enhance the output. It acts as a good extension to upgrade 
the system. 
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