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differentiable norm (iii) Kadec-Klee property.
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1 Introduction

Let E be a real Banach space and let C be a nonempty
closed convex subset of E. A map T : C → C is non-
expansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C. We
denote by F (T ) the set of fixed points of T.

Numerous problems in mathematics and physical sciences
can be formulated in a fixed point problem for noexpan-
sive maps.In view of practical importance of these prob-
lems, methods of finding fixed points of nonexpansive
maps continue to be a flourishing topic in fixed point the-
ory. Iterative construction of fixed points of these maps
is a fascinating field of research (see, [1, 4, 7, 9, 10]). In
1967, Browder [1] studied the iterative construction of
fixed points of nonexpansive maps on closed and convex
subsets of a Hilbert space (see also [3]).

For a map T of C into itself, we consider the Ishikawa
iteration scheme: x1 ∈ C, and

{
xn+1 = αnTyn + (1− αn)xn,

yn = βnTxn + (1− βn)xn, n ≥ 1.
(1.1)

where {αn} and {βn} are sequences in [0, 1].

Set

δ(r) = inf
{

1− 1
2
‖x + y‖ : ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ r

}
.

A Banach space E is uniformly convex if for each r ∈
(0, 2], the number δ(r) > 0.
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For a sequence, the symbol → (resp.⇀) denotes norm
(resp. weak) convergence. The space E is said to sat-
isfy : (i) Opial’s property [8] if for any sequence {xn}
in E, xn ⇀ x implies that lim supn→∞ ‖xn − x‖ <
lim supn→∞ ‖xn − y‖ for all y ∈ E with y 6= x; (ii)
Kadec-Klee property [6] if for every sequence {xn} in E,
xn ⇀ x and ‖xn‖ → ‖x‖ together imply xn → x as
n →∞.

Let S = {x ∈ E : ‖x‖ = 1} and let E∗ be the dual of E,
that is, the space of all continuous linear functionals f on
E. The norm of E is : (iii) Gâteaux differentiable [10] if

lim
t→0

‖x + ty‖ − ‖x‖
t

exists for each x and y in S and (iv) Fréchet differen-
tiable [10] if for each x in S, the above limit is attained
uniformly for y ∈ S.

A mapping T : C → E is demiclosed at y ∈ E if for
each sequence {xn} in C and each x ∈ E, xn ⇀ x and
Txn → y imply that x ∈ C and Tx = y.

One of the fundamental and celebrated results in the
theory of nonexpansive maps is Browder’s demiclosed
principle[1] which states that if C is a nonempty closed
convex subset of a uniformly convex Banach space E,
then for every nonexpansive map T : C → E, I − T is
demiclosed at zero, i.e., for any {xn} ⊂ C, xn ⇀ x and
(I − T )xn → 0 imply that Tx = x.

The above stated demiclosed principle has played an im-
portant role in the study of approximation of fixed points
of nonexpansive maps through weak(strong) convergence
of certain iterates.

A suitable varient of Lemma 3.1 due to Górnicki [5] for
nonexpansive maps in uniformly convex Banach space is
as follows:
Lemma 1.1. Let C be a nonempty bounded closed convex
subset of a uniformly convex Banach space E and let T be
a nonexpansive map of C into itself. If xn ⇀ x({xn} ⊂
C, x ∈ C), then there exists strictly increasing convex map
g : [0,∞) → [0,∞) with g(0) = 0 such that

g (‖x− Tx‖) ≤ lim inf
n→∞

‖xn − Txn‖ .

Note that Browder’s demiclosed principle is a simple con-
sequence of Lemma 1.1.
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Tan and Xu[10] and Takahashi and Tamura[9], respec-
tively, proved the following interesting results.
Theorem A. Let C be a nonempty bounded closed con-
vex subset of a uniformly convex Banach space E which
satisfies Opial’s condition or whose norm is Fréchet dif-
ferentiable and let T be a nonexpansive map of C into
itself. Then the sequence {xn} given by (1.1) converges
weakly to a fixed point of T provided the following con-
dition is satisfied:
(C1)

∑∞
n=1 αn(1− αn) = ∞,

∑∞
n=1 βn(1− αn) < ∞ and

lim supn→∞ βn < 1.
Theorem B. Let C be a nonempty closed convex sub-
set of a uniformly convex Banach space E which satisfies
Opial’s condition or whose norm is Fréchet differentiable
and let T be a nonexpansive map of C into itself. Sup-
pose that {xn} in (1.1) satisfies the condition:
(C2) αn ∈ [a, 1] and βn ∈ [a, b] or αn ∈ [a, b] and
βn ∈ [0, b] for some a, b ∈ [0, 1].

Then {xn} converges weakly to a fixed point of T.

Note that Tan and Xu’s result is applicable to the case:
αn = 1−1/n and βn = 1/n for all n ≥ 1, while Takahashi
and Tamura’s result is applicable to the case: αn = βn =
1/2 for all n ≥ 1. Moreover, in both the results, the
demiclosed principle based on strong convegence of the
approximate sequence {xn−Txn} to 0 has been utilized.

Using Lemma 1.1, we establish weak convergence of the
Ishikawa iterates of nonexpansive maps under a variety
of new parametric control conditions and without using
any of the properties: (i) Opial’s property (ii) Fréchet
differentiable norm (iii) Kadec-Klee property.
In the sequel, we need the following lemmas.
Lemma 1.2 [11, Theorem 2]. Let r > 0 be a fixed real
number. Then a Banach space E is uniformly convex if
and only if there is a continuous strictly increasing convex
map g : [0,∞) → [0,∞) with g(0) = 0 such that for all
x, y ∈ Br[0] = {x ∈ E : ‖x‖ ≤ r},

‖λx + (1− λ)y‖2 ≤ λ ‖x‖2+(1−λ) ‖y‖2−λ(1−λ)g(‖x− y‖)

for all λ ∈ [0, 1].
Lemma 1.3 [12, Lemma 2.2]. Let g : [0,∞) → [0,∞)
with g(0) = 0 be a strictly increasing map. If a se-
quence {xn} in [0,∞) satisfies limn→∞ g(xn) = 0, then
limn→∞ xn = 0.

2 Weak Convergence

We establish a pair of lemmas for the development of our
convergence result.
Lemma 2.1. Let C be a nonempty closed convex subset
of a uniformly convex Banach space E. Let T : C → C be
nonexpansive map with at least one fixed point. Suppose
{xn} is given by (1.1). Then limn→∞ ‖xn − p‖ exists for
each p ∈ F (T ).

Proof. For any p ∈ F (T ), utilizing (1.1), we have

‖xn+1 − p‖ ≤ ‖αn(Tyn − p) + (1− αn)(xn − p)‖
≤ αn ‖Tyn − p‖+ (1− αn) ‖xn − p‖
≤ αn ‖βn(Txn − p) + (1− βn)(xn − p)‖

+(1− αn) ‖xn − p‖
≤ (αnβn + αn(1− βn) + 1− αn) ‖xn − p‖
= ‖xn − p‖ .

This proves that {‖xn − p‖} is a non-increasing and
bounded sequence and hence limn→∞ ‖xn − p‖ exists.
Lemma 2.2. Let C be a nonempty closed convex subset
of a uniformly convex Banach space E and let T be a
nonexpansive map of C into itself with at least one fixed
point. Let {αn} and {βn} be sequences in [0, 1] and sat-
isfy one of the following three sets of conditions:
(C3) :

∑∞
n=1 αn(1− αn) = ∞, lim supn→∞ βn < 1;

(C4) :
∑∞

n=1 βn(1− βn) = ∞, lim infn→∞ αn > 0;
(C5) : 0 ≤ αn ≤ b < 1,

∑∞
n=1 αn = ∞, βn → 0 as n →∞.

Then lim infn→∞ ‖xn − Txn‖ = 0.
Proof. Let p ∈ F (T ). With the help of Lemma 1.2 and
the scheme (1.1), we have:

‖xn+1 − p‖2 ≤ ‖αn(Tyn − p) + (1− αn)(xn − p)‖2
≤ αn ‖Tyn − p‖2 + (1− αn) ‖xn − p‖2

−αn(1− αn)g(‖xn − Tyn‖)
≤ αn ‖yn − p‖2 + (1− αn) ‖xn − p‖2

−αn(1− αn)g(‖xn − Tyn‖)
≤ αn[βn ‖xn − p‖2 + (1− βn) ‖xn − p‖2

−βn(1− βn)g(‖xn − Txn‖)]
+(1− αn) ‖xn − p‖2
−αn(1− αn)g(‖xn − Tyn‖)

≤ ‖xn − p‖2 − αn(1− αn)g(‖xn − Tyn‖)
−αnβn(1− βn)g(‖xn − Txn‖)

From the above estimate, we have the following two im-
portant inequalities:

αn(1− αn)g(‖xn − Tyn‖) ≤ ‖xn − p‖2 − ‖xn+1 − p‖2
(2.1)

and

αnβn(1−βn)g(‖xn − Txn‖) ≤ ‖xn − p‖2−‖xn+1 − p‖2 .
(2.2)

Case I: αn and βn satisfy (C3).

Let m ≥ 1. Then from the inequality (2.1), we have

∑m

n=1
αn(1− αn)g(‖xn − Tyn‖) ≤

‖x1 − p‖2 − ‖xm+1 − p‖2 < ∞
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.

When m →∞ in the above inequality, we have
∑∞

n=1 αn(1−αn)g(‖xn − Tyn‖) < ∞. Since
∑∞

n=1 αn(1−
αn) = ∞, therefore we have lim infn→∞ g(‖xn − Tyn‖) =
0.

From Lemma 1.3, we get that lim infn→∞ ‖xn − Tyn‖ =
0.

Since

‖xn − Txn‖ ≤ ‖xn − Tyn‖+ ‖Txn − Tyn‖
≤ ‖xn − Tyn‖+ ‖xn − yn‖
= ‖xn − Tyn‖+ ‖xn − yn‖
= ‖xn − Tyn‖+ βn ‖xn − Txn‖ ,

so we have

(1− βn) ‖xn − Txn‖ ≤ ‖xn − Tyn‖ .

Therefore, from lim infn→∞ ‖xn − Tyn‖ = 0 and
lim supn→∞ βn < 1, we deduce that

lim inf
n→∞

‖xn − Txn‖ = 0.

Case II: αn and βn satisfy (C4).

From the inequality (2.2), we have
∑m

n=1
αnβn(1− βn)g(‖xn − Txn‖)

≤ ‖x1 − p‖2 − ‖xm+1 − p‖2 < ∞.

Letting m → ∞, we get that
∑∞

n=1 αnβn(1 −
βn)g(‖xn − Txn‖) < ∞.

Since
∑∞

n=1 βn(1 − βn) = ∞, therefore
lim infn→∞ αng(‖xn − Txn‖) = 0.

That is, (lim infn→∞ αn) (lim infn→∞ g(‖xn − Txn‖)) =
0.

As lim infn→∞ αn > 0, therefore
lim infn→∞ g(‖xn − Txn‖) = 0.

By Lemma 1.3, we get that

lim inf
n→∞

‖xn − Txn‖ = 0.

Case III: αn and βn satisfy (C5).

Using the condition ”0 ≤ αn ≤ b < 1” in the inequal-
ity(2.1), we have

αn(1− b)g(‖xn − Tyn‖) ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 .

Summing the first m terms of the above inequality, we
have that

(1− b)
∑m

n=1
αng(‖xn − Tyn‖)

≤ ‖x1 − p‖2 − ‖xm+1 − p‖2 < ∞.

When m →∞, we get (1− b)
∑∞

n=1 αng(‖xn − Tyn‖) <
∞. Since

∑∞
n=1 αn = ∞, therefore

lim infn→∞ g(‖xn − Tyn‖) = 0. Again from Lemma
1.3, we get that lim infn→∞ ‖xn − Tyn‖ = 0.

Since ‖xn − Txn‖ ≤ ‖xn − Tyn‖ + βn ‖xn − Txn‖ ≤
‖xn − Tyn‖+βnM for some M > 0 and βn → 0, therefore
we get

lim inf
n→∞

‖xn − Txn‖ = 0. (2.3)

Now we prove our convergence result.
Theorem 2.3: Let C be a nonempty closed convex sub-
set of a uniformly convex Banach space E and let T be
a nonexpansive map of C into itself with at least one
fixed point. Let {αn} and {βn} be sequences in [0, 1]
and satisfy one of the three sets of conditions of Lemma
2.2. Then the sequence {xn} defined by (1.1), converges
weakly to a fixed point of T.
Proof. Let ωw(xn), the weak ω-limit set of {xn}, be
given by:

ωw(xn) = {y ∈ E : xnk
⇀ y for {xnk

} ⊆ {xn}} .

Since limn→∞ ‖xn − p‖ exists for each p ∈ F (T ), there-
fore the sequence {xn} is bounded.Without any loss of
generality, we can suppose that C is bounded. This
gives that there exists a subsequence {xni} of {xn}
such that xni ⇀ p ∈ ωw(xn) as i → ∞ and vice
versa. This shows that ωw(xn) 6= φ and so by
Lemma 1.1, g (‖p− Tp‖) ≤ lim infk→∞ ‖xnk

− Txnk
‖ .

But lim infk→∞ ‖xnk
− Txnk

‖ = 0 by Lemma 2.2. That
is, g (‖p− Tp‖) = 0. By the properties of g, we get that
‖p− Tp‖ = 0. That is p ∈ F (T ) and hence ωw(xn) ⊂
F (T ). Next, we follow Chang et. al[2]to prove the weak
convergence of the sequence. For any p ∈ ωw(xn), there
exists a subsequence {xnj} of {xn} such that

xnj
⇀ p as j →∞. (2.4)

Hence from (2.4) and continuity of T , it follows that

Txni ⇀ p. (2.5)

Now from (1.1), (2.4) and (2.5), we get that

yni = (1− βni)xni + βniTxni ⇀ p. (2.6)

From (2.4), (2.6) and the continuity of T , we have that

Tyni
= (Tyni

− xni
) + xni

⇀ p. (2.7)

Again from (1.1) and (2.7), we conclude that

xni+1 = (1− αni
)xni

+ αni
Tyni

⇀ p

Continuing in this way, by induction, we can prove that,
for any m > 0,

xni+m ⇀ p.
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By induction, we get that
⋃∞

m=0{xnj+m} con-
verges weakly to p as j → ∞; in fact {xn}∞n=n1

=⋃∞
m=0{xnj+m}∞j=1 gives that xn ⇀ p as n →∞.

Remark 2.4. A comparison of Theorem 2.3 with Theo-
rem A reveals that the assumption

∑∞
n=1 βn(1−αn) < ∞

in Theorem A is superflous. Also, it is obvious that the
assumption (C2) in Theorem B implies (C3) − (C4).
Also Theorem A and Theorem B are established under
the Opial’s property or Fréchet differentiable norm.
Moreover, Kadec-Klee property is required in Theorem
4.1[4] to establish the weak convergence of the Ishikawa
iterates. The weak convergence theorem presented in
this paper is valid in any uniformly convex Banach space.
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