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Abstract—We investigate analytical cost distribu-

tions in the setting of a dynamic stochastic scheduling

problem where customers are served from a central

location within some given time-frame, for the case

where customer locations are uniformly distributed

on the boundary of the unit circle. Two distance met-

rics are considered and analytical expressions for the

distribution of the resulting costs are derived, for an

infinite planning horizon, using the methods of math-

ematical statistics. We then investigate the optimiza-

tion of a threshold-based scheduling strategy, for var-

ious choices of the statistic to be optimized: in some

cases we can derive exact quantile distributions, al-

lowing optimization of any desired quantile.
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1 Introduction

We investigate the analytical tractability of a stochas-
tic version of a scheduling problem involving the opti-
mization of a threshold, the “dynamic multiperiod unca-
pacitated routing problem” [1, 2]. In this problem, cus-
tomers who enter the queue are served from a central de-
pot within a given time-frame, which allows for dynamic
scheduling of customers and introduces the requirement
for optimization. The information available for decision-
making is limited: the locations of future customers en-
tering the queue are unknown but follow some known
distribution. In our example, from [5, Sec 4], customer
locations are restricted to the boundary of the unit cir-
cle, with the depot at the centre, and cost is taken to be
equal to the distance travelled from the depot and back
again. One customer enters the queue each day, and all
customers must be served during that day or the next;
the serving capacity of the depot is considered unlimited
(although a capacity of 2 is sufficient in this description
of the problem).

In their scenario, Kleywegt et al [5] adopt an arc-
traversed distance metric for travel between customers
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and assess various strategies including a threshold-based
strategy, for which an optimal threshold is derived. We
reproduce that result here using analytical expressions
of distributions obtained through the methods of mathe-
matical statistics [4, 6] and extend the calculation to op-
timal thresholds for arbitrary quantiles of the expected
daily cost. We also examine the use of a chord-traversed,
Euclidean, distance metric and the corresponding opti-
mization of the threshold. In this case, the cost distribu-
tion is found analytically, but numerical approximations
are used for the optimal threshold.

2 Scheduling Strategies

A scheduling strategy describes the decision process
which determines which customers, if any, are served on
one particular day. One näıve strategy is the “always
serve” strategy, in which newly-queued customers are al-
ways served on the day that they enter the queue. For our
scenario, this means that exactly one customer is served
on every day. Another näıve strategy is to delay every sec-
ond customer, so that zero and two customers are served
on alternating days.

An alternative approach is to adopt a threshold-based
scheduling strategy, and it is here in which the dynamic
nature of this problem comes to the fore: the strat-
egy does not involve the repetition of a fixed pattern
of actions but, rather, is able to adapt to the particu-
lar stochastic customer locations which occur. In this
case, the first day’s customer is delayed, and thereafter
newly-queued customers are served if they lie within some
threshold distance from a waiting, delayed, customer (if
any). If they lie outside this threshold, or if there is
no must-serve customer in the queue, the newly-queued
customer is delayed until the next day. We denote the
distance between the customers who entered the queue
on days t-1 and t by Dt.

The three possible actions under this strategy are thus as
follows:

1. If the queue is empty, delay the newly-queued cus-
tomer (cost C1 = 0).

2. If there is a customer in the queue,
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Figure 1: Markov chain representation of the three possi-
ble costs (circular nodes) incurred during each day by the
threshold-based scheduling strategy. The labels on the
transitions represent the probability of each transition,
and p(θ) is the probability that the distance between two
consecutive customers is smaller than the threshold, θ.
Transitions with zero probability have been omitted.

(a) if the distance between that customer and the
newly-queued customer is less than the thresh-
old, serve both (cost C2 = 2 + Dt),

(b) otherwise, delay the newly-queued customer
(cost C3 = 2), and serve only the queued cus-
tomer.

The two näıve strategies are special cases of this strat-
egy, with “always serve” corresponding to a threshold
of zero and “always delay” corresponding to a threshold
equal to the maximum possible value of Dt. To derive the
expected daily cost for the threshold-based schedule, we
consider the costs associated with each action as states in
a Markov chain, which is shown, along with its transition
probabilities, in Figure 1.

Denote the threshold by θ and let p(θ) be the probability
that the distance between consecutive customers, Dt, is
less than θ. The transition matrix of the Markov chain
is then

P =





0 1 − p(θ) p(θ)
0 1 − p(θ) p(θ)
1 0 0



 .

As we are employing an infinite planning horizon, we now
seek the steady state distribution, PSS such that PSS =
PSSP (see, e.g., [3, Thm 6.3.1]). Solving yields

PSS =

[

p(θ)

1 + p(θ)

1 − p(θ)

1 + p(θ)

p(θ)

1 + p(θ)

]

,

whose elements are the long-run probabilities of being
in each state of the Markov chain. The expected daily
cost for this planning horizon is then given by CSS =
PSS[C1C2C3]

T, so that

CSS =
2 + p(θ)Dt

1 + p(θ)
, (1)

which is a function of the threshold as well as the (ran-
dom) distance between consecutive customers, and so de-
riving the distribution of these distances allows us to de-
rive the distribution of CSS. The threshold can then be
optimized with respect to some chosen aspect of the dis-
tribution (for example, minimizing the mean, or the 95th
percentile). Angelelli, et al, minimized the total cost, here
equivalent to minimizing the expected daily cost given
our infinite planning horizon. The distribution of inter-
customer distances will now be discussed.

3 Distance Distributions

The distribution of inter-customer distances depends on
the distance metric employed. We consider here two met-
rics, the arc-traversed distance and the chord-traversed,
Euclidean, distance. In both cases, customer locations
are uniformly distributed around the unit circle. With-
out loss of generality we need only consider the angle be-
tween the radial lines between each customer and the ori-
gin. This angle is also uniformly distributed, and as the
arc-traversed distance is equal to this angle (expressed
in radians) we therefore have Dt ∼ Unif([0, π]), with a
cumulative distribution function of

F (Dt) =
Dt

π
, (2)

for 0 ≤ Dt ≤ π (and zero elsewhere), so that

p(θ) =
θ

π
. (3)

For the Euclidean distance metric, we can show that the
distribution function of Dt is

f(Dt) =
2

π
√

4 − D2
t

. (4)

for 0 ≤ Dt ≤ 2. The derivation of this distribution, and
others given below, is lengthy but mechanical, and so is
omitted here1. For further details regarding the deriva-
tion of distributions of functions of random variates, see,
for example [4] or [6]. The cumulative distribution func-
tion of Dt in the Euclidean case is given by

F (Dt) =
2

π
sin−1

(

Dt

2

)

, (5)

so that we can write

p(θ) =
2

π
sin−1

(

θ

2

)

. (6)

The expressions for p(θ) from Equations (3) and (6) will
be used to find the distribution of CSS.

1Briefly, if X is a random variate with distribution function
fX(x) and Y = h(X) is monotonic, and if fX(x) is continuous
on the support, S, of fY , then the distribution function of Y is
fY (y) = fX(h−1(y))|J | for y ∈ S, where J is the Jacobian of the
inverse transformation h−1. This theory is applied repeatedly to
construct the distribution function for various complicated trans-
formations.
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4 Cost Distributions

From the distance distributions, we can again apply the
theory of transforms of random variates and derive the
distribution of CSS from Equation (1).

For the arc-traversed case, we can show that the distri-
bution function of CSS is

f(CSS) =
π + θ

θ2
, (7)

on the range

2π

π + θ
≤ CSS ≤

2π + θ2

π + θ
(8)

(and zero elsewhere), for a fixed threshold 0 ≤ θ ≤ π.
This is a uniform distribution, therefore, on a range de-
pendent on the chosen threshold, but observe that the
possible range of CSS varies with θ. The cumulative dis-
tribution function is

F (CSS) =
π + θ

θ2
CSS, (9)

Using the possible range of CSS, we can write the quantile
function,

Q(q) = (1 − q)
2π

π + θ
+ q

2π + θ2

π + θ

=
2π + qθ2

π + θ
(10)

Turning now to the Euclidean distance metric, whose dis-
tribution is given in Equation (4), the distribution func-
tion for CSS becomes

f(CSS) =
2 + 2p(θ)

πp(θ)
√

4p(θ)2 − (CSS + CSSp(θ) − 2)2
, (11)

for

2π

π + 2 sin−1
(

θ

2

) ≤ CSS ≤
2π + 2θ sin−1

(

θ

2

)

π + 2 sin−1
(

θ

2

) , (12)

with p(θ) as given in Equation (6). Again the range of
possible expected daily costs varies with the thresholds,
but in this case the quantile function does not appear to
be analytically tractable. The minimum and maximum
values for CSS, for both distance metrics, are shown in
Figure 2.

5 Threshold Optimization

In the arc-traversed case, the maximum possible value of
CSS, from Equation (8), is minimized at

θ =
√

π2 + 2π − π, (13)
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Figure 2: Maximum, minimum and median possible val-
ues for the expected daily cost using an infinite plan-
ning horizon, for both the arc-traversed (solid lines) and
the chord-traversed (dashed lines) distance metrics. Dots
mark the location of minima.

in agreement with the value given in [5] (setting the cost
discount over time to zero). However, more generally,
solving

dQ(q)

dθ
=

qθ2 + 2qπθ − 2π

(π + θ)2
= 0 (14)

gives us the threshold which minimizes the 100qth quan-
tile,

θ =

√

π2 +
2π

q
− π, (15)

for which Equation (13) is the case where q=1. The me-
dian, for which q=0.5, is minimized at

θ =
√

π2 + 4π − π. (16)

Obtaining the complete distribution function has the ad-
vantage that we can optimize any quantile that we like. In
some cases we might, for instance, wish to select a thresh-
old which minimizes the the 5th or 95th quantile. This is
particularly interesting in the case where the maximum
possible cost is threshold-invariant but lower quantiles
are not; such an example, obtained using an alternative
geometry to those presented in this paper, is shown in
Figure 3.

The Euclidean distance metric, however, turns out to be
more intractable. We have been unable to find an analyt-
ical value for θ which minimizes the maximum possible
value of CSS for the chord-traverse metric, but Maple pro-
vides a numerical value of approximately 0.908129. The
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Figure 3: Contour plot of exected daily cost for an alter-
nate geometry, along with maximum and minimum costs
observed in 106 simulations (thick lines). The theoreti-
cal maximum (the 100th percentile) is

√
2, but here the

99.9999th quantile almost dips as low as 1.05.

quantile function also appears to be intractable at this
stage. In all cases, however, simulations can be used to
estimate the optimal threshold for any aspect of the prob-
lem, and were employed at each stage of this work as an
invaluable sanity check for our derivations.

6 Conclusions and Future Work

We have investigated an interesting problem from the op-
erations research field from the point of view of mathe-
matical statistics, allowing us to derive analytical expres-
sions for the distribution of some interesting geometric
transformations of random variates, as well as of cost
functions in the stochastic dynamic scheduling problem.

By using this approach we are able to generalize the opti-
mal threshold for arbitrary quantiles of the cost function’s
distribution. Many avenues of future directions are avail-
able, including extension to a two-dimensional subset of
the Euclidean plane, which we are currently examining.
Another area of particular interest is stochastic capacity,
such as capacity fluctuations due to equipment failure.
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