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Abstract—Peridynamics is a new formulation of

solid mechanics and possesses some advantages in

handling discontinuities within a continuum. Since

the formulation is based on direct interactions be-

tween points in a continuum separated by a finite

distance, integration of interactions between points

plays a crucial role in peridynamics. This research

is focused on developing a new method of numerical

integration with error control for bond-based peridy-

namics. In this method, the continuum is discretized

into cubic cells, and integration over full and partial

cells in the horizon of interaction are calculated ac-

curately. An adaptive trapezoidal integration scheme

with a combined relative-absolute error control is em-

ployed. Numerical examples of areal force density for

triaxial and pure shear loading show that the new

method is much more accurate and efficient than the

previous method published in the literature.

Keywords: peridynamics, adaptive error control, trape-

zoidal integration

1 Introduction

Problems involving crack growth and damage are impor-
tant in solid mechanics. The partial differential equations
in the classic theory are incompatible with the disconti-
nuities because the spatial derivatives needed by those
equations are undefined along the crack tips or crack sur-
faces. A non-local theory called peridynamics has been
developed by Silling in an attempt to overcome the afore-
mentioned difficulty [1]. In peridynamics the classic par-
tial differential equations are replaced with integral equa-
tions so that the same equations hold true anywhere in
the body, including crack tips or surfaces.

The peridynamic theory has been applied successfully to
crack and damage problems [2,3]. A meshfree method to
numerically implement the peridynamic theory was pro-
posed in [4]. The peridynamic theory also serves as a
nice framework that allows the use of other constitutive
models [5–8]. The convergence of peridynamics has been
studied in [9, 10]. The peridynamic theory has also been
advanced from the original bond-based peridynamics to
state-based peridynamics [11] which removes the restric-
tion of a constant Poisson’s ratio of 1

4 and introduces the
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classic concepts of stress and strain. These new develop-
ments also allow peridynamic theory to handle dynamic
fracture problems [12, 13].

In the literature, the bond-based peridynamic theory has
been focused mostly on dynamic material behavior rather
than fundamental mechanics problems involving stress
and strain calculations, and published methods of nu-
merical integration [1,4] yield poor stress results. In this
work a new integration method is developed which allows
for a more accurate integration of the governing equation
in bond-based peridynamics. With this new method, the
calculation of stresses and strains with predetermined ac-
curacy can be achieved. The new method is verified with
some well-defined elasticity problems with closed form
solutions.

2 A Brief Review of Bond-Based Peridy-

namic Theory

Bond-based peridynamics [1, 4] assumes that the solid
body is composed of small particles. Each particle in-
teracts with others within a finite distance δ called the
horizon. The pairwise interaction between two particles
exists even when they are not in contact. This physical
interaction is referred to as a bond, which in some way
has a close analogy to a mechanical spring.

In bond-based peridynamics, the equation of motion for
particle i in the reference configuration at time t is:

ρü(xi, t) =

∫
Hi

f [u(xj , t) − u(xi, t), xj − xi] dVj

+ b(xi, t), ∀j ∈ Hi (1)

where Hi is a spherical neighborhood of particles that in-
teracts with particle i, dVj is an infinitesimal volume asso-
ciated with particle j, u is the displacement vector field,
b is a prescribed body force density field, ρ is the mass
density, and f is the pairwise peridynamic force (hence-
forth referred to as the bond force) function whose value
is the force vector (per unit volume squared) that particle
j exerts on particle i.

There are two frequently used terms in peridynamic the-
ory: the relative position ξ of two particles i and j in the
reference configuration:

ξ = xj − xi (2)
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and the relative displacement η:

η = u(xj , t) − u(xi, t) (3)

So |ξ| and |η+ξ| represent the initial and current length
of the bond, respectively.

A simple and useful type of bond-based peridynamic ma-
terial is called the Prototype Microelastic Brittle (PMB)
material [4]. For a PMB material, the bond force func-
tion f is a linear function of the current bond stretch s,
which also serves as the constitutive model:

f(η, ξ) = μ(ξ)
18K

πδ4

η + ξ

|η + ξ|s (4)

where K is the bulk modulus, and s is defined as:

s =
|η + ξ| − |ξ|

|ξ| (5)

and μ(ξ) is a history-dependent scalar-valued function
that equals either 1 or 0:

μ(ξ) =

{
1 for s < s0

0 otherwise
(6)

where s0 is the critical bond stretch for bond failure.

The bond-based peridynamic theory can be related to
classic elasticity theory through the concept of force per
unit area. Assume an infinite body R undergoes a defor-
mation. Choose a particle x and a unit vector n at x and
let a plane pass through x to divide the whole body into
two parts: R− and R+:

R
+ = {x′ ∈ R : (x′ − x) · n ≥ 0} (7)

R
− = {x′ ∈ R : (x′ − x) · n ≤ 0} (8)

and let L be the following set of colinear points:

L = {x̂ ∈ R
− : x̂ = x − pn, 0 ≤ p < ∞} (9)

The areal force density τ (x, n) at x in the direction of
unit vector n is defined as [1]:

τ (x, n) =

∫
L

∫
R+

f(u′ − û, x′ − x̂)dVx
′ dl̂ (10)

where d l̂ represents the differential path length over L .

A meaningful representation of a stress tensor σ can be
proposed [1]:

τ (x, n) = σn, ∀n (11)

This stress tensor is a Piola-Kirchhoff stress tensor since
τ (x, n) is force per unit area in the reference configura-
tion.

In the literature, a meshfree code named EMU [4] has
been developed to numerically implement the peridy-
namic theory. In this implementation the domain of in-
terest is discretized into a cubic lattice system. Each

cubic cell contains a representative point at the mass cen-
ter called node. Generally all cubes have the same size
so all nodes together form a uniform grid system. The
distance between two nearest neighboring nodes is called
grid spacing (denoted as Δx).

For convenience, the node of interest is referred to as the
source node. Based on the peridynamic theory, the fam-

ily nodes of a source node is a set of nodes which have
peridynamic interaction with the source node. Following
the concept of horizon, the family nodes form a spheri-
cal neighborhood (henceforth referred to as the horizon

sphere) centered at the source node with radius equals to
horizon. A horizon of three times the grid spacing has
been suggested in [4].

For numerical integration, the equation of motion at the
source node i can be discretized to:

ρüi =
∑

j

∫
f(η, ξ) dVj + bi, ∀j ∈ Hi (12)

where Hi is the horizon sphere of node i. For each family
node j in Hi, the integration is carried out over the cell
volume of node j which may be fully or partially in the
horizon sphere. Equation (12) is the discretized form of
equation of motion corresponding to Eqn. (1).

Because the principle of bond-based peridynamics in-
volves only two-particle interactions, it is inevitable that
all bond-based peridynamic materials have a fixed Pois-
son’s ratio of 1

4 [1]. A further development of the theory
removes this restriction [11].

3 Deficiencies in the Existing Numerical

Implementation of Peridynamics

There are two deficiencies in the existing implementation
of peridynamics presented in [1, 2, 4] that may prevent it
from achieving accurate and consistent results:

(1) Theoretically, all material points in the horizon sphere
should be included in the calculation of bond forces. The
implementation in [2, 4], however, counts each cell as ei-
ther entirely in or entirely out of the horizon, and thus
results in an inaccurate accounting of material points.
Consider a grid of Δx = δ/3. Figure 1A shows all the
family nodes (solid dots) counted by the existing imple-
mentation [2,4] in a projection view where the circle rep-
resents the horizon sphere and the square grids represent
the cells of the nodes. Because only cells with their cen-
ter nodes in the horizon sphere (solid dots) are considered
family nodes, the partial cell areas (denoted with horizon-
tal line pattern) whose center nodes are located outside
the horizon sphere (open dots) are omitted. Since the
omitted volume contains material points that are part of
the horizon sphere, the summation in Eqn. (12) excludes
partial cell volumes represented by open dots. Grid re-
finement may reduce the error, but the problem remains.
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Figure 1: (A) Accounting of the family nodes by the
numerical implementation presented in [2, 4]; (B) The
volume of the quarter horizon sphere calculated by the
cubic-cell integration.

(2) The three-dimensional integration in Eqn. (12) is
performed using a one-point integration [2, 4, 14]:

ρüi =
∑

j

[
f(η, ξ) · β(Δx)3

]
+ bi (13)

where (Δx)3 is the cell volume and β is the volume re-

duction factor defined as:

β =

⎧⎪⎨
⎪⎩

1 for |ξ| ≤ δ − 0.5Δx
δ + 0.5Δx − |ξ|

Δx
for |ξ| ≤ δ + 0.5Δx

0 otherwise

(14)

For convenience, the integration method implemented
in [1, 2, 4] is referred to as cubic-cell integration. Fig-
ure 1B illustrates the cubic-cell integration method when
|ξ| is within the range of δ-0.5Δx and δ+0.5Δx, i.e., the
cubic cell is partially in the horizon sphere. In the figure,
the circular arc represents a quarter of the horizon sphere.
The volume of the quarter sphere calculated by the cubic-
cell integration is marked as the dark shaded area. The
volume missed in the calculation is marked as the hor-
izontal line patterned area. For family node 1, a small
extra volume is added to the actual intersection volume.
For family node 2, the cubic-cell integration overcompen-
sates the missing volume in the cell with the calculated
volume (vertical slashed area). For node 3, since it is not
counted as a family node, its cell contributes nothing to
the integration. Partial cell volumes of three other nodes
(represented by unnumbered open dots) in the figure are
also excluded from the calculation. Such an approxima-
tion in counting the volume integration elements leads to
poor accuracy of the numerical bond-based peridynamic
model.

4 A New Method of Adaptive Integra-

tion with Error Control

The key to improving the accuracy in the numerical im-
plementation of peridynamics is to evaluate the integra-
tion in Eqn. (12) properly. Kilic et al [7] recently intro-
duced a volume integration scheme based on the collo-
cation method. In this scheme, the Gaussian integration

Figure 2: Modified accounting of family nodes (solid
dots) by the adaptive integration.

method with shape function transformation [8] is used
to solve the volume integration over every subdomain.
The work presented here employs an adaptive integra-
tion with error control. This method bears some resem-
blance to the recent advances on XFEM method in that
both identify the intersection configurations of cutter in-
terfaces/elements and cut elements [15–17].

The new integration method proposed here is focused on
a more accurate numerical integration of Eqn. (12), i.e.,
the integration is calculated over the intersection volume
with controlled accuracy. For convenience, the new inte-
gration method is referred to as adaptive integration.

4.1 Modification of Counting the Family
Nodes

To integrate Eqn. (12) accurately, the family nodes must
be counted properly. Besides all the nodes fully in the
horizon sphere, the adaptive integration also considers
those nodes which are out of the horizon sphere yet with

cell volumes intersecting the horizon sphere as family
nodes. For every node, the shortest distance from the
source node to the cell associated with that node is cal-
culated. If the distance is smaller than the horizon, then
the cell has volume inside the horizon sphere and the node
is considered a family node. The newly-evaluated family
nodes are shown in Fig. 2.

4.2 Categorization of Geometric Configura-
tions

The integration limits in three directions need to be de-
termined to evaluate the integral in Eqn. (12). For cells
fully inside the horizon sphere the integration limits in
the X (Y, or Z) direction are simply the coordinates of
projection of the two opposite cell walls normal to X (Y,
or Z) onto the X (Y, or Z) axis. For cells partially in-
side the horizon sphere, the limits are more difficult to
calculated and are described in detail below. Two terms
are defined: family coordinate is referred to as the local
coordinate centered at the source node, and first octant

is referred to as the octant where all three family coor-
dinates are positive. Various possibilities of geometric
configuration are classified into two categories as follows.
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Figure 3: Possible geometric configurations for three sub-
types of type one. (A) Subtype 1; (B) Subtype 2; (C)
Subtype 3.

4.2.1 Geometric Configuration Type One

This type is for the configuration when the family node

is located on one axis of the family coordinate. Without
loss of generality, assume node j is in the first octant of
the global coordinate system and on the Z+ axis of the
family coordinate. If the global coordinates of the source
node i and family node j are given as (xi

1, xi
2, xi

3) and
(xj

1, xj
2, xj

3) respectively, then with the given assumption,

xi
1 = xj

1, xi
2 = xj

2.

There are three subtypes of possible configurations be-
tween node i and j. Figure 3 depicts one possible geomet-
ric configuration for each subtype. Subtype 1 is chosen
to illustrate the sequence of finding the integration limits.
As shown in Fig. 3A, the intersection volume is formed
by vertices A-B-C-D-E. The integration is carried out
by integrating the Z direction first and the X direction
last. The equation of circle A-B-C-D and the X coor-
dinates of points B and D need to be solved to define
the integration limits of X and Y directions. After they
are solved, the integration of Eqn. (12) for the geometric
configuration shown in Fig. 3A is expressed as:

I =

∫ xD
1

xB
1

∫ xi
2+
√

δ2
−(xj

3
−xi

3
−0.5Δx)2−(X−xi

1
)2

xi
2
−

√
δ2−(xj

3
−xi

3
−0.5Δx)2−(X−xi

1
)2

×
∫ xi

3+
√

δ2
−(X−xi

1
)2−(Y −xi

2
)2

x
j
3
−0.5Δx

f(η, ξ) dxdydz (15)

where dxdydz is the infinitesimal volume associated with
the integration point within the intersection volume.

4.2.2 Geometric Configuration Type Two

This type is for the configuration when the family node

is not located on any axis of the family coordinate. Fig-
ure 4 shows one possible configuration for this type. The
intersection volume is formed by vertices A-B-C-D-E-
F -G-K-L. Based on the figure, the integration can be

Figure 4: One possible geometric configuration for type
two. (A) 3D view; (B) Projection onto the front face of
the cell.

divided into two parts: part 1 integrates over the vol-
ume formed by vertices A-B-C-D-E-F -G-F ′-E′-L, part
2 integrates over the volume formed by vertices F -E-M -
F ′-E′-K. After all the integration limits are solved, the
integration can be carried out readily.

4.3 Adaptive Integration Using the Trape-
zoidal Rule with Error Control

Because of its simplicity and ease of error control, the
composite trapezoidal rule [18] is used to carry out the
preceding integrations. For the 1D case, it is stated as:

∫ b

a

f(x) dx ≈ b − a

n

×
[

f(a) + f(b)

2
+

n−1∑
k=1

f

(
a + k

b − a

n

)]
(16)

where the integer n is referred to as the trapezoidal index.
The composite trapezoidal rule is used to achieve piece-
wise approximation of the curved surface of the intersec-
tion volume. The accuracy can be easily improved by
adding more trapezoidal points into the calculation, i.e.,
by increasing the value of n. By applying the composite
trapezoidal rule to each direction of the aforementioned
3D integrations (such as Eqn. (15)), the position of the
integration points can be found.

A combined relative-absolute error control is used to
achieve the prescribed accuracy. If the value of integra-
tion from the current iteration is denoted as Ir where r is
the current step, and the value from the previous itera-
tion is denoted as Ir−1, the error control scheme is stated
as the following pseudo code:

if (abs(Ir−1) > TOL)
if (abs(Ir − Ir−1) <= EPS · abs(Ir−1))

return Ir

else

if (abs(Ir − Ir−1) <= EPS)

return Ir

where abs(·) indicates the absolute value, EPS is the pre-
scribed accuracy, and TOL is a pre-defined tolerance to
prevent the dead lock when the integrand is very close to
zero. A typical value of TOL is chosen to be 1.0 × 10−4.
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Figure 5: The convergence rates of the horizon sphere
volume calculation by two integration methods.

Table 1: The volume of horizon sphere calculated by two
volume integration methods.

Grid spacing [h] AI (error) [h3][%] CCI (error) [h3][%]
δ/3 24416.9 (0.050) 22476.7 (7.992)
δ/4 24421.8 (0.029) 21857.9 (10.525)
δ/5 24422.8 (0.025) 22483.1 (7.976)
δ/6 24424.9 (0.017) 23234.1 (4.891)
δ/8 24426.4 (0.011) 23117.8 (5.367)
δ/9 24426.9 (0.009) 23507.4 (3.773)
δ/10 24427.4 (0.007) 23485.6 (3.862)
δ/15 24428.2 (0.003) 23839.0 (2.415)
δ/20 24428.5 (0.002) 23933.7 (2.028)
δ/30 24428.8 (0.001) 24123.5 (1.251)
δ/36 24428.8 (0.001) 24168.5 (1.066)

The adaptive integration scheme developed in this work
can evaluate an integration with controlled accuracy. The
convergence speed is proved to be close to quadratic (i.e.,
O(Δx2)) and the error control method is quite effective.

5 Numerical Results

5.1 The Volume of the Horizon Sphere

In this example, the adaptive integration (AI) and cubic-
cell integration (CCI) are used to calculate the volume
of the horizon sphere of a source node. As only a finite
array of nodes is used in the simulation, the source node
is chosen at or near the center of the array so that its
horizon sphere is fully inside the array. For example, in
a uniform grid with Δx = δ/3 as shown in Fig. 2, node i
is the source node which has a total of 250 family nodes.
Various grid spacings with a fixed horizon are used to
investigate the rate of convergence, defined as the slope
of the relative error-grid spacing plot, for both methods.

The physical length unit is denoted as h in the follow-
ing calculations. The horizon is fixed to 18h so that
the accurate volume of the horizon sphere is 4πR3/3 (or
24429.0h3). Table 1 compares the results by the AI and
CCI methods with grid spacing ranging from Δx = δ/3 to
Δx = δ/36. The rates of convergence for the two methods
are shown in Fig. 5. Both methods become more accu-

Figure 6: The convergence rates of σ33 in triaxial stress
state and σ13 in pure shear for two integration methods.

rate as the grid gets finer. The results by the AI method
match the accurate volume very well (within 0.05%) even
at the coarsest grid (Δx = δ/3) and maintain a conver-
gence rate of 1.73. For a given grid spacing Δx, the AI
method is 2 to 3 orders of magnitude more accurate than
the CCI method. Obvious fluctuations during the grid
refinement (at Δx = δ/4 and Δx = δ/8) are observed
from the results by the CCI method, which is possibly
caused by the deficiencies discussed in Section 3.

5.2 Infinite Body Under Two Stress States

In this example, the areal force densities at a source
node under triaxial (σ11=100N/h2, σ22=−150N/h2,
σ33=220N/h2) and pure shear (σ13=200N/h2) stress
states for an infinite body are calculated by both the
AI and CCI methods and are compared with the closed
form solutions. Various grid spacings with a fixed horizon
are used to investigate the rate of convergence for both
methods.

For example, for a grid spacing of Δx = δ/3, a uni-
form gird of 10×10×10 nodes is created and the node
near the center of the domain at the coordinate of
(Δx/2, Δx/2, Δx/2) is chosen to be the source node.
The displacement of every node is prescribed according to
the displacement solution of an infinite body for the given
stress state. Consequently, this finite domain behaves like
an infinite body. By assuming small deformation and lin-
ear elastic response, the closed form solution for stress at
every node can be solved using classic elasticity theory.

A PMB material with Young’s modulus of 1.0×105N/h2

is used. The horizon is fixed at 18h for all the calcula-
tions. For the AI method, the tolerance TOL is chosen
to be 1.0 × 10−4. The areal force density at the source
node is calculated based on Eqn. (10).

The convergence rates of the largest principle stress σ33

in the triaxial stress state for both methods are shown in
Fig. 6. The AI method shows a convergence rate of 1.53
with an error of 0.05% at Δx = δ/20. The CCI method
has a relatively flat convergence rate of 1.04 with an error
of 2.64% at Δx = δ/20.
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The convergence rates of σ13 in the pure shear stress state
for both methods are shown in Fig. 6. The AI method
shows a convergence rate of 1.72 with an error of 0.017%
at Δx = δ/20. The CCI method shows obvious fluctuat-
ing trend as the grid gets finer and exhibits slow conver-
gence rate of 0.66 in the pure shear stress state.

6 Conclusions

Integration plays an important role in the formulation of
peridynamics. Published cubic-cell integration method in
the literature, however, gives relatively low accuracy and
the convergence rate with mesh refinement is low, in the
range of 0.66 to 1.04 for the examples tested. The study
here presents a new adaptive integration method with er-
ror control. The adaptive integration method improves
the numerical implementation of bond-based peridynam-
ics in the following ways:

1. The way to count the family nodes is modified to
include all the material points in the whole horizon
sphere.

2. A systematic categorization of geometric configura-
tion for the intersection volume between the cell of
a family node and the horizon sphere of the source
node is developed so that accurate integration over
the intersection volume becomes possible.

3. Adaptive trapezoidal quadrature with a combined
relative-absolute error control is introduced into the
new integration method for achieving numerical in-
tegration with desired accuracy.

4. Examples show results produced by the new adaptive
integration method match the closed form solutions
quite well even at the coarsest grid. The tested ex-
amples show the new adaptive integration method
has high convergence rates (in the range of 1.53 to
1.72, or nearly quadratic, for the examples tested)
and is both accurate and efficient.
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