

Abstract — EIGRP is a routing protocol developed by Cisco

Systems as an alternative to traditional distance vector and link

state routing protocols. It has been widely accepted since it

merges important concepts of these two types of routing

protocols in a single one. The Diffusing Update Algorithm

(DUAL) is used by EIGRP to compute the shortest path by

performing local or diffusing computations. This algorithm was

first proposed by Dijkstra and Scholten, and offers a great set of

advantages that makes it outperform other loop-free routing

algorithms. The teaching and learning of DUAL can be very

difficult due to the complex finite state machine involved and the

lack of documentation for this algorithm. In this paper, we

present an alternative approach to teach advanced concepts of

DUAL by using Easy-EIGRP, a didactic implementation of

EIGRP developed in Java. Easy-EIGRP includes a powerful

module, called DUAL module, which implements the algorithm

and offers a set of graphic interfaces for debugging and

understanding the processes carried out by DUAL.

Index Terms — EIGRP, Easy-EIGRP, DUAL, Cisco Systems,

Routing Protocol, Didactic Applications.

I. INTRODUCTION

Routing protocols can be categorized, based on the

information they exchange and the way they compute their

routing tables, in: distance vector protocols and link state

protocols. In a distance vector protocol, each node knows the

shortest distance from a neighbor node to every destination

network; however it does not know all the nodes between its

neighbor and the final destination. This type of protocols

sends periodic updates which include every destination entry

of its routing table along with the corresponding shortest

distance to it. Distance vector protocols use the Bellman-Ford

algorithm for shortest path computation. The main

disadvantages of this algorithm are routing table loops and

counting to infinity. Some of the most important distance

vector protocols known are: RIPv1 [10] (Routing Information

Protocol v1), RIPv2 [13] (Routing Information Protocol v2),

and IGRP [5] (Interior Gateway Routing Protocol).

On the other hand, in link state protocols, every node

knows the whole network topology thanks to the update

Manuscript received July 15, 2010. This work was supported in part by

the Universidad Central de Venezuela and the CNTI (Centro Nacional de

Tecnologías de Información).

V. Trujillo is with the School of Computer Science, Universidad Central

de Venezuela, Facultad de Ciencias, Los Chaguaramos, Caracas, Venezuela

(e-mail: valentina.trujillo@gmail.com).

J. Expósito is with the DTIC (Dirección de Tecnología de Información y

Comunicaciones), Universidad Central de Venezuela, Edificio El

Rectorado, Los Chaguaramos, Caracas, Venezuela (e-mail:

exposito.j@gmail.com).

E. Gamess is with the Laboratory of Communications and Networks,

Universidad Central de Venezuela, Facultad de Ciencias, Caracas,

Venezuela (phone: +58-212-6051296; e-mail: egamess@gmail.com).

flooding that happens every time a topology change is

detected. Based on these updates, each node must calculate

the shortest path to a specific destination. Link state protocols

use some variant of Dijkstra’s algorithm for the shortest path

computation, which ensures that the counting to infinity

problem is not going to be present; however, an up-to-date

version of the entire topology is needed by every node, which

may constitute excessive storage and communication

overhead in a large, dynamic network [7]. OSPF [2][14]

(Open Shortest Path First) and IS-IS [11][15] (Intermediate

System to Intermediate System) are some of the most

commonly used link state routing protocols.
EIGRP [16] (Enhanced Interior Gateway Routing Protocol) is

often categorized as a hybrid protocol since it advertises its

routing table to its neighbors as distance vector protocols do,

however it uses the hello protocol and creates neighbor

relationships, similarly to link state protocols.

In addition, it sends partial updates when a metric or the

network topology changes, but it does not send full routing table

updates in periodic fashion as distance vector protocols do.

EIGRP uses the DUAL (Diffusing Update Algorithm)

algorithm, which ensures that there will never be loops, not

even temporary, as in the case of distance vector or link state

protocols. This algorithm is a new and advanced approach of

the distance vector algorithms which includes: loop-free

warranty, arbitrary transmissions or delay processing

operations, arbitrary positive link assumption and finite time

calculations for finding the shortest path towards a destination

on a topology change [7]. DUAL uses diffusing computations

with the aim of solving the shortest path problem and

improving the performance and resource usage of the

traditional algorithms.

Easy-EIGRP [6] is a didactic implementation of EIGRP

with an integrated graphical viewer for the DUAL finite state

machine that allows users to understand, in an easier way,

EIGRP’s complex processes (including local and diffusing

computations). In this paper, we present our alternative way

of teaching the advanced concepts of DUAL using

Easy-EIGRP.

The rest of the paper is organized as follows: In Section II,

the related work is viewed. DUAL is discussed in Section III.

Our approach of teaching the DUAL algorithm is presented

and justified in Section IV and finally, conclusions and future

work are discussed in Section V.

II. RELATED WORK

Currently, there is a wide range of options when it comes to

open source projects for TCP/IP based routing protocols. The

main goal of these projects is to promote inventive solutions

for network routing. Some of the most popular routing

software suites are: Zebra [8], Quagga [17] , XORP [9], BIRD

[1], Click [12], Vyatta [18], etc.

An Alternative Way of Teaching the Advanced

Concepts of the Diffusing Update Algorithm for EIGRP

Valentina Trujillo, Jesús Expósito, and Eric Gamess

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

It is noteworthy that none of the projects mentioned before

offer support for EIGRP, furthermore, none of them (not even

the Cisco Systems Command Line Interface) provide a

graphical view of the DUAL finite state machine which is the

main core of the protocol, and its understanding is essential

for EIGRP specialists.

For this reason we decided to develop our own didactic

EIGRP routing solution which provides a fully graphical

environment for the understanding of the protocol. In addition

we included a complete and interactive GUI for the DUAL

comprehension, stating in that way the innovative quality of

Easy-EIGRP.

III. DUAL IN EIGRP

DUAL is a convergence algorithm that replaces the

Bellman-Ford algorithm used by other distance vector

protocols. DUAL was proposed by E. W. Dijkstra and C. S.

Scholten [4]. The main goal of the algorithm is to perform

distributed shortest path routing while maintaining the

network free from loops at every instant.

The Diffusing Update Algorithm relies on protocols (such

as the Hello Protocol and the Reliable Transport Protocol)

and data structures (such as the neighbor table and the

topology table) to provide consistent information, leading to

optimum route selection.

For DUAL to operate correctly, the following conditions

must be met [7]:

 Within a finite time, a node detects the existence of a

neighbor or the loss of connectivity with a neighbor. This

is handled by the Neighbor Discovery/Recovery

mechanism implemented by EIGRP.

 All messages transmitted over an operational link are

received correctly and in the proper sequence within a

finite time. The EIGRP’s RTP (Reliable Transport

Protocol) has the responsibility to ensure that this

condition is met.

 All messages, changes in the cost of a link, link failures,

and new-neighbor notifications are processed one at a

time within a finite time and in the order in which they are

detected.

EIGRP uses the Hello protocol to discover neighbors and

to identify the local router to neighbors; when this happens,

EIGRP will attempt to form an adjacency with that neighbor.

Once the adjacency is establish, the router will receive

updates from its new neighbor which will contain all routes

known by the sending router and the metric of those routes.

For each neighbor, the router will calculate a distance based

on the distance advertised by the neighbor and the cost of the

link to it. The lowest distance to a specific destination is

called Feasible Distance (FD) [5].

The Feasible Condition (FC) is a condition that is met when

a neighbor’s advertised or reported distance (RD) to a

destination is strictly lower that the router’s FD to that

destination. Any neighbor that meets the FC would be labeled

as a Feasible Successor (FS). The FS that provides the lowest

distance to a destination would be labeled as a Successor and

this would be the next hop that the router would set in order to

reach that destination. It is important to mention that there

might be more than one Successor and that unequal cost

balancing is also allowed by EIGRP.

The FSs and the FC are the elements that ensure that loops

will be avoided. Because FSs always have the shortest metric

distance to a destination, a router will never choose a path that

will lead back through itself (creating a loop), since such path

would have a distance larger that the FD, therefore the FC

would not be met.

EIGRP works with a topology table, where all the known

destinations are recorded. Each destination is registered along

with its FD and the corresponding FSs. For each FS, its

advertised distance and interface of connectivity will be

recorded.

The DUAL's computations can be summarized into two

processes (local computations and diffusing computations) as

described below.

A. Local Computations

The local computations are carried out by an EIGRP router

as long as it can resolve a change in the network topology

without querying its neighbors, in other words, if the router

can resolve a specific situation locally. For example, if an

EIGRP router faces with an increased metric from its

Successor and the router has at least one additional FS for the

same destination, the action is immediate, the new route is

selected and updates are sent to all the neighbors to inform

them about the change in the network topology. When

performing local computations, the affected route will stay

passive. It is important to mention that if an EIGRP router can

resolve a topology variation with local computations, that

does not mean its neighbors are going to have the same

opportunity.

B. Diffusing Computations

When an EIGRP router cannot find an alternate route (no

alternate route exists, or the new best route still goes through

the affected Successor), it starts a diffusing computation by

asking all its neighbors about an alternate route. A diffusing

computation is performed in a series of steps:

1) The affected route is marked active in the topology table.

2) A reply-status table is created to track the replies

expected from the neighbors.

3) A query is sent to the neighbors.

4) Responses are collected and stored in the topology table.

At the same time, the corresponding entry in the

reply-status table is updated.

5) The best response is selected in the topology table and

the new best route is installed in the routing table.

6) If necessary, an update is sent to the neighbors to inform

them of the changed network topology [16].

Every time a query is sent to a neighbor, an independent

timer is started for this neighbor in order to guaranteed

network convergence in a reasonable time, which constitutes

one of EIGRP principles.

EIGRP ensures one more time that any loop will be avoided

thanks to the use of the route’s status flag. If, for example, a

router receives a query from a neighbor which is performing a

diffusing computation, and the query is about a route that has

already being marked as active, the router will reply with its

current best path and it will stop the query processing,

avoiding the creation of a query loop and an upcoming

package flooding.

In most cases, after a diffusing computation is complete,

the router that initiated the computation must distribute the

obtained results.

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

DUAL has a finite state machine (DUAL finite state

machine) which controls all the possible states in which a

router can be found while performing diffusing computations

(if the router is performing local computations, the finite state

machine will be executing the IE1 event, leading to the r=0,

O=1 state). Because there are multiple types of input events

that can cause a route to change its state, some of which might

occur while a route is active, DUAL defines multiple active

states. A query origin flag (O) is used to indicate the current

state. Figure 1 and Table I show the complete DUAL finite

state machine [5][6].

Figure 1: DUAL Finite State Machine

Table I: Input events for the DUAL Finite State Machine

Input

Event
Description

IE1
Any input event from which FC is satisfied

or the destination is unreachable

IE2
Query received from the Successor; FC not

satisfied

IE3
Input event other than a query from the

Successor; FC not satisfied

IE4
Input event other than a last reply or a query

from the Successor

IE5

Input event other than a last reply, a query

from the Successor, or an increase in the

distance to destination

IE6 Input event other than a last reply

IE7
Input event other than a last reply or an

increase in the distance to destination

IE8 Increase in the distance to destination

IE9
Last reply received; FC not met with current

FD

IE10 Query received from Successor

IE11 Last reply received; FC met with current FD

IE12 Last reply received; set FD to infinity

As discussed before, diffusing computation requires that a

router receives the replies from all the neighbors it queried in

order to select the new best route. However, there are extreme

circumstances in which a neighbor might fail to respond a

query. Any of those circumstances blocks the router

originating the diffusing computation. To prevent these types

of deadlock situations, EIGRP contains a built-in safety

measure: a maximum amount of time a diffusing computation

can take to execute. Whenever a diffusing computation takes

longer than the timeout value, the diffusing computation is

aborted; the adjacency with any non-responding neighbors is

cleared, and the computation proceeds as though these

neighbors replied with an infinite metric. The route for which

the computation is aborted is said to be SIA (Stuck In Active).

It is clear that the processes describe before are not easy to

understand just basing ourselves on the theory, it is necessary

a more visual and didactic approach that allows users

(students with only basic knowledge of networking on most

cases) to understand every single detail of this algorithm. That

is the reason why we developed a graphical implementation of

the DUAL algorithm which can be found in the DUAL Finite

State Machine module of Easy-EIGRP. The main purpose of

this module is to provide an intuitive and interactive tool for

teaching and learning how EIGRP really works.

IV. DUAL’S IMPLEMENTATION IN EASY-EIGRP

Easy-EIGRP [6] is a didactic application which main goal

is the teaching and learning of EIGRP. Easy-EIGRP provides

five modules with the aim of allowing users an improved,

efficient and easy way to understand the protocol; these

modules are: (1) the EIGRP Manager, (2) the DUAL Finite

State Machine module, (3) the Partial Network Map Viewer,

(4) the EIGRP Tables Viewer and, (5) the Logger module. In

this paper we will focus on the DUAL Finite State Machine

module, although it is worth to mention that the Logger

module plays an important role when it comes to debugging

(refer to [6] for further details).

The DUAL implementation is based in a set of Java classes

(DUAL, NeighborDiscovery, RTP, etc) which are represented

in Figure 2, along with their corresponding relationships. For

reasons of space, Figure 2 only shows the most important

classes relative to our DUAL’s implementation.

The NeighborDiscovery class is responsible for

discovering neighbors and setting new adjacencies. It also

manages EIGRP table’s inputs (represented by the

RoutingTable, the TopologyTable and the NeighborTable

classes) every time a topology change is detected based on the

loss (which will be announced by the HoldTimerRTOThread)

or discovery of a neighbor.

The diagram also shows that the NeighborTable, the

RoutingTable and the TopologyTable are composed of

Neighbors, Routes and Destination objects respectively. In

turn, Destination objects are formed of a set of

FeasibleSuccessors and Distances.

The RTP (Realiable Transport Protocol) class is the one

that will manage EIGRP’s packet exchange, guaranteeing the

delivery and the ordering of these packets. This class relies on

the ListenerThread’s operation, because this thread is the

entity that will monitor the PC’s corresponding interfaces,

passing the received packets to the RTP layer, where these

packets will be processed.

Finally, the DUAL class embodies the decision process for

all route computation by tracking all routes advertised by all

neighbors. Whenever a local or a diffusing computation

Passive
r=0

O=1

Passive
r=1

O=0

Passive
r=1

O=1

Passive
r=1

O=2

Passive
r=1

O=3

IE4 IE5 IE6 IE7

IE9

IE8

IE9

IE8

IE10

IE11 IE11

IE10

IE3 IE12 IE12 IE2

IE1 Sources of Inputs Events

 Change in link cost

 Change in topology

 Reception of update

 Reception of query

 Reception of reply

r = reply status flag
O = query origin flag
IE = input event

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

Figure 2: Easy-EIGRP’s DUAL Class Diagram

happens, DUAL will notify the pertinent changes to the

EIGRPTablesPanel that eventually will update the EIGRP’s

tables. If a diffusing computation occurs, DUAL will indicate

to change the state of a Destination on the TopologyTable and

to assemble its corresponding replyStatusTable. Additionally,

the HoldTimerRTOThread will keep track of the SIA timers

in order to prevent possible deadlock situations discussed in

Section III.

The interaction of the DUAL class can be represented as

shown in Figure 3 (took from [16]). Its operation was

designed following some basic rules defined in [16]:

1) Whenever a router chooses a new Successor, it informs

all its other neighbors about the new RD (Reported

Distance).

2) Every time a router selects a Successor, it sends a poison

update to its Successor.

3) A poison update is sent to all neighbors on the interface

through which the Successor is reachable unless

split-horizon is turned off, in which case, it is sent to only

the Successor.

Easy-EIGRP also implements a set of methods which are

capable of determining and handling both local and diffusing

computations which are discussed next.

It is important to mention that, since Easy-EIGRP was

developed using reverse engineering, all its processes,

operations and rules are the same defined by EIGRP.

Easy-EIGRP intends to emulate the EIGRP protocol.

When Easy-EIGRP is not performing diffusing

computations, each route is in the passive state, as stated by

the DUAL’s rules of EIGRP.

Figure 3: DUAL’s Module Interaction

Route Selection Process

DUAL

Topology Database

Internal External

Neighbor
Table

Topology Mechanisms

Hello
Protocol

RTP

Other
Protocols

Dual

- DESTINATION_UNREACHABLE: int 0xffffffff
- SIA_timer: int = 3

+ announceMetricChange(String, boolean) : void
+ announceNewInterface(String) : void
+ announceNewNeighbor(ArrayList<Destination>, String, String) : void
+ announceSummarization() : void
+ Dual()
+ initializateDiffusingComputations(Destination, String, Distance, String, String) : void
+ processUpdate(EIGRPPacket, String, byte[], String, NetworkInterface) : void

NeighborDiscovery

- threeWayHandShackingNeighbors: ArrayList<String>

+ exchangeMyTopologyTable(String, String, byte[], int, int, int, NetworkInterface) : void
+ NeighborDiscovery()
+ processPacket(EIGRPPacket, byte[], NetworkInterface, String, String) : void

NeighborTable

- hCount: int
- neighbors: ArrayList<Neighbor>

+ addNeighbor(Neighbor) : void
+ cleanTable() : void
+ getNeighbors() : ArrayList<Neighbor>
+ NeighborTable()
+ removeNeighbor(String) : Neighbor
+ removeNeighborThroughInterface(String) : void

Runnable

HoldTimerRTOThread

JPanel
EIGRPTablesPanel

Neighbor

ReplyStatusTable

- interfaceName: String
- ipNeighbor: String
- query: EIGRPPacket
- reply: EIGRPPacket
- timeOfQuery: Calendar

+ ReplyStatusNode() : void

Distance

Route

FeasibleSuccessor

Thread

ListenerThread

EIGRPHeader

GeneralTLV

InternTLV

SoftwareVersion

TopologyTable

- destinations: ArrayList<Destination>
+ addDestination(Destination) : boolean
+ cleanTable() : void
+ getDestinations() : ArrayList<Destination>
+ isSuccessor(String, String) : boolean
+ removeDestination(String, String) : void
+ removeInterface(String) : void
+ TopologyTable()
+ updateDestination(String, int, int) : void

EIGRPPacket

- eigrpHeader: EIGRPHeader
- generalTLV: GeneralTLV
- internTLVs: ArrayList<InternTLV>
- packet: byte[]
- softwareVersion: SoftwareVersion

+ EIGRPPacket()

+ EIGRPPacket(byte[])

RoutingTable

- routes: ArrayList<Route>

+ addRoute(Route) : void

+ removeAllSummaryRoutes(Interface) : void
+ removeRoute(String, String) : void
+ removeRoutesThroughtInterface(String) : void

+ RoutingTable()

+ updateRoute(Route) : void

Destination

- code: char
- destination: String
- feasibleSuccessors: ArrayList<FeasibleSuccessor>
- isDirectlyConnected: boolean
- manualSumInterface: String
- netMask: String
- nSuccessor: int
- reachableThroughInterface: Interface
- replyStatusTable: ArrayList<ReplyStatusNode>

+ addFeasibleSuccessor(FeasibleSuccessor) : boolean
+ Destination()
- feasibleCondition(Distance, Distance) : boolean
+ isDirectlyConnected() : boolean
+ isSummaryRoute() : boolean
+ removeFeasibleSuccessor(String) : void
+ removeNoFeasibleSUccessor(String) : void
+ sortFeasibleSuccessors() : void

manage

manage

manage

1
1

1 0..*

1

0..*

0..1 1

1

0..*

1
1..* 1

1

2

1

1 0..*

1
2

1 1

1 1

1 1

0..* 1
1..*

1

RTP

- receivedPackets: ArrayList<AckPending>
- waitingForACK: ArrayList<AckPending>

+ resendQueuedPackets(NetworkInterface) : void
+ RTP()
+ validACKReceived(EIGRPPacket) : boolean

in
st

an
ti

at
e

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

Figure 4: Easy-EIGRP’s DUAL Finite State Machine Viewer

Easy-EIGRP will reassess its list of FSs for a route, when a

change in the cost or state of a directly connected link is

detected or due to the reception of an update, a query or a

reply packet.

In case Easy-EIGRP’s DUAL module is not able to find a

possible Successor (different from the current one) for the

affected destination, the application will begin a diffusing

computation and it will change the route to the active state.

Next, Easy-EIGRP will perform every single step stated in

Section III.B.

Easy-EIGRP begins a diffusing computation by sending

queries to all its neighbors. Simultaneously, the application

will create a data structure which represents EIGRP’s

reply-status table; this table will contain an input (including

the neighbor’s IP address, a time stamp for the query sent, a

time stamp for the reply received, etc.) for each neighbor

queried.

Since every step processed on a diffusing computation

corresponds to an input event in the DUAL finite state

machine (see Figure 1) and since there is no didactic tool that

represents or explain this process, we developed a graphical

view that allows users to witness the whole computation (see

Figure 4).

Easy-EIGRP’s DUAL finite state machine module is

composed of 5 sections:

1) The prefix list panel, located on the left upper corner, is

responsible for listing and maintaining record of all the

prefixes that were handled by the application at some

point. It is noteworthy that even if the prefix is lost, this

panel will maintain the prefix record for playback.

2) The DUAL finite state machine panel, located on the

right upper corner, allows users to view an image of the

whole finite state machine used by EIGRP, which can be

animated at any time the user decides it.

3) In the middle left, users can find a logger which will

provide information about every change registered by the

finite state machine. Every time users select an event on

the logger, the image of the finite state machine will be

updated, showing users the current state of the machine at

that point. In some cases, the finite state machine panel

will show additional information on its right upper corner

about the selected event, generating a correspondence

between the event described by the logger and the events

establish on Table I. It is important to mention that each

prefix owns an independent logger that, no matter what

happens, will always keep past events or computations.

4) The reply-status table, located in the middle right is

independent for each diffusing computation process and

is unique for each prefix. The table is composed of 4

fields: SIA timer, IP address of the queried neighbor,

reply status and a field that represents the reply status

graphically. The last field can show 3 types of images: a

clock (indicating the router is waiting for a reply), a green

check mark (indicating the router already received the

expected reply) or a red X (indicating that the expected

reply never arrived and that the SIA timer limit has been

reached). Each reply-status table’s row has a directly

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

correspondence with an entry of the replyStatusTable

(more specifically with a ReplyStatusNode) of a

Destination object (see Figure 2).

5) Finally, there is a media reproduction control panel in the

bottom of the module. The main goal of this panel is to

provide full flexibility of reproduction (forward,

backward, pause, etc.) of past or current diffusing

computations. Easy-EIGRP allows users to modify the

delay of the reproducing events in order to allow a

detailed analysis. This panel also let users specify a range

of events on the logger for later reproduction.

It is a fact that it is easier to understand abstract topics, such

as the diffusing computation processes and general

networking issues, with the help of images, colors and

animations, that using traditional command line interfaces or

shells. That is the reason why Easy-EIGRP implements these

types of tools which provide a more natural way of observing

and analyzing the behavior and the decision process of

DUAL. Every single section of the DUAL module was

designed and developed to improve and facilitate a detailed

study of the algorithm, providing an excellent, interactive and

friendly interface.

DUAL Finite State Machine Module

A
n

im
at

io
n

N
av

eg
ab

ili
ty

Lo
gg

er
 In

fo
rm

at
io

n

Ev
en

ts
 R

ep
ro

d
u

ct
io

n

C
o

n
tr

o
ls

 S
ec

ti
o

n

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 5: Survey Results

To prove that the benefits of this graphical view are

significant, we conducted a set of experimental laboratories

where we grouped around 50 computer science students with

different levels of networking knowledge. We created two

types of laboratories. In the first laboratory, a computer with

several network interface cards was connected to Cisco 2811

routers through FastEthernet connections.

In the computer, students installed Easy-EIGRP and

configured EIGRP in all the devices to see how routing

information was propagated and to understand DUAL. The

idea behind the second laboratory is to do a realistic EIGRP

practice in a single computer. For that, we did a virtual

appliance for Easy-EIGRP, and students created some virtual

machines (by cloning the virtual appliance), connected them

in a network, configured Easy-EIGRP in these virtual

machines, and also studied how routing information was

propagated and handled by DUAL.

After the experiment ended, a survey was filled by them.

The results are shown in Figure 5, where we can see the high

acceptance level of Easy-EIGRP’s DUAL module,

particularly about characteristics such a impact of the events

reproduction, animations features, utility of the controls

section, navigability, etc.

V. CONCLUSIONS AND FUTURE WORK

Easy-EIGRP is a limited implementation of the EIGRP

protocol which can be used on both Windows and Linux for

teaching and learning purposes. This application includes a

powerful module which implements DUAL and offers a set of

graphical interfaces for debugging and understanding the

processes carried out by this complex algorithm.

We had been using Easy-EIGRP to support the teaching and

learning of DUAL with a group of networking students. The

feedback that we received from these students was very

positive. Most of them could easily understand EIGRP’s

operation; in addition, they claimed that the DUAL Finite

State Machine panel provided them a very positive support in

order to analyze how the Diffusing Update Algorithm works.

For future work, we plan to further develop Easy-EIGRP to

support IPv6 (Internet Protocol version 6) [3], since IPv6 will

become the predominant layer-3 protocols in tomorrow’s

networks.

Since our main goal is to offer Cisco instructors an excellent

didactic application for the teaching of EIGRP, we already

contacted Cisco Systems for a possible distribution of

Easy-EIGRP, and now we are looking forward for an answer.

REFERENCES

[1] The BIRD Internet Routing Daemon. http://bird.network.cz.

[2] R. Coltun, D. Ferguson, and J. Moy. OSPF for IPv6. RFC 2740.

December, 1999.

[3] J. Davies. Understanding IPv6. Microsoft Press. Second Edition.

January, 2008.

[4] E.W. Dijkstra and C.S. Scholten. Termination Detection for Diffusing

Computations. Information Processing Letters, Vol. 11, No 1. August,

1980.

[5] J. Doyle and J. Carrol. Routing TCP/IP. Volume I. Cisco Press, Second

Edition. October, 2005.

[6] J. Expósito, V. Trujillo, and E. Gamess. Easy-EIGRP: A Didactic

Application for Teaching and Learning of the Enhanced Interior

Gateway Routing Protocol. The Sixth International Conference on

Networking and Services (ICNS 2010). Cancun, Mexico. March,

2010.

[7] J. García-Lunes-Aceves. Loop-Free Routing Using Diffusing

Computations. IEEE/ACM Transactions on Networking, Vol. 1, No. 1.

February, 1993.

[8] GNU Zebra. http://www.zebra.org.

[9] M. Handley, O. Hodson, and E. Kohler. XORP: An Open Platform for

Network Research. ACM SIGCOMM Computer Communication

Review. October, 2002.

[10] C. Hedrick. Routing Information Protocol. STD 34, RFC 1058. June,

1988.

[11] ISO. Intermediate System to Intermediate System Intra-Domain

Routing Exchange Protocol for use in Conjunction with the Protocol

for Providing the Connectionless-Mode Network Service. ISO 8473,

International Standard 10589:2002, Second Edition.

[12] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. Frans Kaashoek. The

Click Modular Router. Laboratory for Computer Science, MIT.

[13] G. Malkin. RIP Version 2. RFC 2453. November, 1998.

[14] J. Moy. The OSPF Specification. RFC 1131. October, 1989.

[15] D. Oran. OSI IS-IS Intra-domain Routing Protocol. RFC 1142.

February, 1990.

[16] I. Pepelnjk. EIGRP Network Design Solutions: The Definitive

Resource for EIGRP Design, Deployment, and Operation. Cisco Press.

January, 2000.

[17] Quagga Routing Suite. http://www.quagga.net.

[18] Vyatta. http://www.vyatta.org.

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

