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Abstract—In this paper, a control volume formulation is used to 
obtain the pressure distribution in a finite slider bearing with slip 
surfaces. The domain of the finite slider bearing is discretized into 
control volumes and the discretized form of the governing equation 
obtained by integrating the governing equation over each control 
volume. The derivatives which result are approximated using finite 
difference method. The values of the film thickness at the boundaries 
were evaluated by computing the harmonic mean as a means of 
ensuring continuity. The system of equations obtained exhibits 
diagonal dominance and is solved using Gauss Seidel iterative 
scheme. Comparison of the results obtained using the present method 
with that obtained using FEHYDROLUB, a finite element based 
software shows good agreement. The method has been shown to be 
suitable for simulating hydrodynamic lubrication problems 

Keywords— Control volume, hydrodynamic lubrication, 
pressure, FEHDYDROLUB.  

I. INTRODUCTION 

The solution of the hydrodynamic lubrication problem 
requires obtaining an approximate numerical solution to 
Reynolds equation. Several numerical techniques have been 
proposed to provide the solution of the fluid film lubrication 
problem The complexity, non linearity and absence of close 
form solution to the full Reynolds renders it unsolvable by 
known analytical methods. Researchers have therefore 
resorted to numerical means to solve the problem. 

A number of researchers have investigated obtained 
the solution of different slider bearing configurations using 
different numerical schemes. In recent times, most numerical 
work in hydrodynamic lubrication has involved the use of the 
Reynolds equation and the finite difference method [1]. A 
finite difference multigrid approach was used to investigate 
the squeeze film behavior of poroelastic bearing with couple 
stress fluid as lubricant by [2]. In [3], the modified Reynolds 
equation extended to include couple stress effects in lubricants 
blended with polar additives was solved using the Finite 
difference method with a successive over relaxation scheme. 
The conjugate Method of iteration was used to build up the 
pressure generated in a finite journal bearing lubricated with a 
couple stress fluids in [4]. Reference [5] provided a numerical 
solution for a mathematical model for hydrodynamic 
lubrication of misaligned journal bearings with couple stress 
fluids as lubricants using the Finite Difference Method. 
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Reference [6] calculated the steady and perturbed pressures of 
a two dimensional plane inclined slider bearing incorporating 
a couple stress fluids using the conjugate gradient method. In 
[7], the problem of finite hydrodynamic journal bearing 
lubricated by magnetic fluids with couple stresses was 
investigated using the finite difference method. The finite 
element method has been used prominently for some years to 
continuum and field problems Reference [8] presented the 
finite element solution for incompressible lubrication 
problems of complex geometries without the loss of accuracy 
as the finite difference method. In [9], a velocity-pressure 
integrated, mixed interpolation, Galerkin finite element 
method for the Navier-Stokes equations was reported. A finite 
element method was used to analyze the electromechanical 
field of a hydrodynamic-bearing (HDB) spindle motor of 
computer hard disk drive at elevated temperature in [10]. .The 
finite element method to solve the modified Reynolds 
equation governing the pressure distribution in an parabolic 
slider bearing with couple stress fluids in [11].. Reference [12] 
reported the steady state characteristics of an infinitely wide 
inclined slider bearingobtained using the finite element 
method. 

The open literature is replete with slider bearing design 
using finite difference and finite element methods as the 
numerical tool for analysis as can be deduced from the 
literature cited above. Previous researchers seem not to have 
exploited the applicability of control volume methods in slider 
bearing design. . It is this gap that the present paper seeks to 
fill. In particular, this work centers on the use of control 
volume method for solving the modified Reynolds equation 
governing the pressure distribution in a finite slider bearing 
with lip surfaces 

II. GOVERNING EQUATION 

The equation governing the pressure distribution in a finite 
slider bearing with slip surfaces is given by (1) 
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The boundary conditions are given by the specification of the 
pressure at the perimeter of the bearing which is equal to 
atmospheric pressure.  
 

Control Volume Method Applied To Simulation 
Of Hydrodynamic Lubrication Problem 

Mobolaji H. Oladeinde and John A. Akpobi 

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol II 
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-18210-0-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010



 

 

III. CONTROL VOLUME DESCRITIZATION 

Fig. 1 shows a typical control volume around a central node P. 
Control volume discretization is used to discretize the 
governing equation shown in (1). The control volume consists 
of a rectangular volume whose sides’ passes through the 
point’s n, s, e and w. 
 

. 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
Fig. 1 A control volume around a node P 

 
The control volume is used to solve for the pressure at the 
point O in terms of the pressures at the points N, E, S and W. 
Integrating (1) over the control volume, (2) is obtained 
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Integrating (2), (3) is obtained 
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Equation (2) was obtained by substituting the expressions in 
(4) into (1). 
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It can be observed that (3) contains derivatives which can be 
approximated using the finite difference method. The 
derivatives in (3) can be approximated using (5) and (6) 
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Substituting (5) and (6) into (3) and noting (7), the final 
discretized form of (1) is obtained. 
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IV NUMERICAL EXAMPLE 
 

 In the following section, we implement the method described 
above to the solution of the equation governing the pressure 
distribution in a plane inclined slider bearing with slip 
velocity. The following data are used for the control volume 
discretization. Slip velocity (A) = 50, Slider velocity = 100, 
film thickness ratio = 1.5. The length of the bearing in the x 
direction is equal to the length of the bearing in the y direction 
such that the ratio xL / 1yL  .  

 
    A  Discretization of Solution Domain 

 

The grid spacing in the x direction x and that in the y 

direction y are choose to be equal in length. Since the 

governing equation has been presented in dimensionless form, 
the grid spacing is obtained by specifying the number of grids 
in each direction and the grid spacing is computed by finding 
the reciprocal of the number of grids. 

    B  Solution Using a 2x2 grid 

The discretized form of the governing equation for the three 
nodes in the control volume is given by the system of 
equations below. 

 

1 2

1 2 3

2 3
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P P

P P P
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In matrix form, the system of equations above can be written 
as shown below 

 

1

2

3

37.9586 6.87753 0 0.5625

6.87753 21.09730 3.50101 0.5625

0 3.50101 10.1446 0.5625
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         

 

 
Solving the system of equations above we obtain the following 
solution. 

1 0.02316P 
  2 0.04605P 

  3 0.07134P 
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C  Solution Using a 4X4 Grid 
For a 4x4 grid the grid spacing x  and y  are equal to 0.25.  

The system of equations governing the pressure distribution in 
all the internal nodes in the control volume is shown below.  
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The system of equations above is observed to exhibit diagonal 
dominance and was solved using Gauss Seidel iteration 

method with a convergence criterion of -510 . On pressure 
convergence the solution below is obtained 
 
 1 0.01798P  2 0.02373P  3 0.01798P  4 0.03558P   

5 0.04714P  6 0.03558P  7 0.05657P  8 0.07396P   
 9 0.05657P   
 

V. DISCUSSION OF RESULTS 

The governing equation has been solved using the control 
volume method for two different control volume meshes 
namely a 2x4 control volume and a 4x4 control volume. In the 
2x4 control volume solution, the pressure obtained at the node 
at 0.25, 0.25) is equal to 0.02316 while that obtained using 
the 4x4 control volume is 0.02376. At the point 0.5,0.25) the 
2x4 control volume produces a pressure of 0.04605 whereas 
the 4x4 control volume produces a pressure equal to 0.04714. 
At point 0.75,0.25) the 2x4 control volume gives a pressure 
of 0.07134 while the 4x4 control volume produces a pressure 
of 0.07396. It can be observed that as the size of the control 
volume decreases from 2x4 to 4x4, the pressure at the nodes 
converges towards the exact nodal pressure. In order to have 
comparative values from different method of simulation to 
compare the present results with, FEHYDROLUB, finite 
element based software developed by the authors was used to 
solve the same problem. It was observed that the exact value 
of the pressure at the middle of the bearing corresponding to 
the point 0.5, 0.25) is equal to 0.04914. This value was 
obtained when a series of simulations were made with 
progressively smaller elements until the results obtained 
became mesh independent. The pressure obtained by the 
present method at the middle of the bearing for a 4x4 control 
volume is 0.04714. With smaller control volumes, it is 
expected that the control volume solution will converge 
asymptotically to the exact. A control volume based software 
for solving hydrodynamic lubrication problem is being 
developed by the authors and will be presented in subsequent 
articles. 

VI. CONCLUSION 

A control volume method has been used to solve the 
hydrodynamic lubrication problem of slider bearings. The 
solution obtained is stable and converges with increase in the 
number of control volumes in the domain. It has been shown 
that the present method can be used to model hydrodynamic 
lubrication problems successfully. 
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