

Abstract— Two algorithms to construct a product machine

from two finite-state machines are presented and analyzed. The

first algorithm is simple and correctly produces a product

machine, but the product machine may include unreachable

states and associated transitions. The second algorithm produces

a functionally correct product machine that has no unreachable

states.

Index Terms—deterministic finite-state machine, product

machine construction, theory, unreachable state.

I. INTRODUCTION

The union or the intersection of two regular languages is

still a regular language, that is, regular languages are closed

under the operations union and intersection, e.g., [1]. In fact,

from two given deterministic finite-state machines, a product

machine can be constructed such that the product machine

simulates the two given machines simultaneously and accepts

a language that is the intersection or the union of the

languages of the given machines.

This article discusses and analyzes two algorithms to

construct a product machine from two given machines. The

first algorithm is simple and correctly produces a product

machine. However, the product machine may include

unreachable states and associated transitions. The second

algorithm addresses this problem and produces a functionally

correct product machine that has no unreachable states.

II. BASIC DEFINITIONS

A deterministic finite-state machine (DFSM) consists of a

set of states Q, an alphabet Σ, a transition function δ from Q×Σ

to Q, a start state s in Q, a set of accept states F, which is a

subset of Q. Formally, a DFSM is the 5-tupe (Q, Σ, δ, s, F).

Graphically, a finite-state machine is usually shown as a

state diagram. As an example, Fig.1 shows a DFSM M1=({a,

Manuscript received July 26, 2010.

S. C. Hsieh is with Computer Science Department, Ball State University,

Muncie, IN 47306 (e-mail: shsieh@bsu.edu).

b}, {0, 1}, δ1, a, {b}), where the set of states is {a, b}, the

alphabet is {0, 1}, the start state is the state a, the state b is the

only accept state, and the transition function δ1 is shown by the

collection of labeled arrows between the states: for example,

since there is an arrow labeled 1 from state a to state b, δ1(a, 1)

= b. The start state is marked by an incoming arrow that does

not have a source state, and the accept state is indicated by a

double circle. The machine M1 accepts those strings that have

an odd number of 1's and any number of 0's.

 Table I. State Transition Table for M1

 0 1

a a b

b b a

Often, a transition function is defined with a state transition

table. Table I shows the state transition table for M1. The

table defines the transition function δ1 in a tabular form. For

example, the fact δ1(a, 1) = b is shown by the value b in the

entry [a, 1] of the table (that is, in the row labeled a and in the

column labeled 1).

 Table II. State Transition Table for M2

 0 1

x y x

y x y

Fig. 2 shows another machine M2=({x, y}, {0, 1}, δ2, x,

{x}). The machine accepts those strings that have an even

number of 0's and any number of 1's. The transition function

δ2 is shown as a transition table in Table II.

III. PRODUCT MACHINE CONSTRUCTION

A product machine is constructed from two machines,

simulates the behavior of the two machines simultaneously,

and accepts either the intersection or the union of the

languages of the two machines. A product machine that

accepts the intersection of the languages of the two machines

Product Construction of Finite-State Machines

Samuel C. Hsieh

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

Ma={Qa, Σ, δa,sa,Fa} and Mb={Qb, Σ, δb,sb,Fb} is a DFSM

Mp={ Qa×Qb, Σ, δp, (sa, sb), Fa×Fb}.

The set of states of the product machine can be easily

found. It is the Cartesian product Qa×Qb. Obviously, each

state of Mp is a pair of states, denoted by (a, b). In the product

machine, the pair is unordered. i.e., (a, b) and (b, a) are

considered the same state of the product machine.

The start state of Mp is the pair that consists of the start

states of Ma and Mb. The accept states of Mp can also be

identified easily: for a state (a, b) of the product machine Mp

to be an accept state, one of a and b must be an accept state of

Ma and the other must be an accept state of Mb, i.e., both a and

b must be accept states in Ma and Mb.

Suppose Ta and Tb are the state transition tables for Ma and

Mb. The state transition table Tp for the product machine Mp

can be constructed by the following simple algorithm:

for each state a in Qa

 for each state b in Qb

 for each symbol r in Σ

 Tp[(a, b), r]=(Ta[a, r], Tb[b, r]);

Let Na be the number of states in Qa, Nb be the number of

states in Qb and NΣ be the number of symbols in Σ. The

running time of this commonly known algorithm is obviously

O(NaNbNΣ).

Table III. State Transition Table for M3

 0 1

(a,x) (a,y) (b,x)

(a,y) (a,x) (b,y)

(b,x) (b,y) (a,x)

(b,y) (b,x) (a,y)

The machine M3 shown in Fig. 3 is the product machine

constructed from the two machines M1 and M2 given in the

previous section. Table III shows the state transition table of

M3 constructed using the algorithm given above. Apparently,

M3 accepts those strings having an odd number of 1's and an

even number of 0's.

A product machine that accepts the union of the languages

of two machines M1 and M2 can be constructed in the same

way except that, in order for a state (a, b) of the product

machine to be an accept state, at least one of the states a and b

must be an accept state of Ma or Mb. As an example, if the

three states of M3 (a,x), (b,x) and (b,y) are accept states, then

M3 will accept the union of the languages of M1 and M2. That

is, M3 will accept those strings having an odd number of 1's or

an even number of 0's.

IV. AVOIDING UNREACHABLE STATES

The algorithm discussed in the previous section may

produce a product machine that has states that cannot be

reached from its start state. Removing the unreachable states

of a machine does not alter the function of the machine.

 Table IV. State Transition Table for M4

 0 1

c c d

d d c

As an example, consider the machine M4 shown in Fig. 4

and its state transition table in Table IV. To make the

example simple, the machine M4 is obtained by renaming

the states of M1 and accepts the same language as M1.

The product machine of M1 and M4 constructed using the

algorithm discussed in the previous section to accept the

intersection of the languages of M1 and M4 is shown in Fig. 5.

Indeed, the product machine functions correctly: it accepts the

strings that both M1 and M4 accept, but it includes the

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

unreachable states (a, d) and (b, c), which can be eliminated

without changing the function of the machine.

An algorithm that constructs a product machine that does

not include unreachable states will now be presented.

Suppose Ta and Tb are the state transition tables for two

machines Ma and Mb whose product machine is to be

constructed. The algorithm will produce a product machine

Mp. Mp initially has no transitions and only one state: the start

state, which is the pair that consists of the start states of Ma

and Mb. As the algorithm proceeds, more states and

transitions will be added to Mp. When the algorithm

terminates, Mp will be the product machine of Ma and Mb

with no unreachable states. The algorithm also makes use of a

set R, which initially contains the start state of Mp. The

purpose of using the set R is to keep track of those states in Mp

whose outgoing transitions have yet to be added to Mp. The

algorithm is given below.

repeat the following

{

 remove a state (a,b) from R;

 for each symbol r in Σ do the following

{

 if (Ta[a,r], Tb[b,r]) is not in Mp

 add (Ta[a, r],Tb[b, r]) to Mp and to R; //end if

 add to Mp a transition on r from (a,b) to (Ta[a,r],Tb[b,r]);

 } //end for-each

}

until R is empty; //end repeat-until

The if statement in the algorithm guarantees that each state is

added to Mp and R only once. It is worth noting that a new

state is added to Mp if and only if there is a transition from a

state already in Mp to the new state. Since initially the start

state is the only state in Mp, all of the states of Mp are

reachable from the start state.

As an example of using the algorithm, suppose the product

machine of M1 and M4 is to be constructed by the above

algorithm. Let T1 and T4 be the transition tables of M1 and M4.

Initially R and Mp contain only the state (a,c). As the

algorithm begins, (a,c) is removed from R. For the symbol 0,

since the state (T1[a,0], T2[c,0]) = (a,c) is already in Mp, (a,c)

is not added to Mp or R. The transition from (a,c) to (a,c) on

the symbol 0 is then added to Mp. For the symbol 1, since the

state (T1[a,1], T2[c,1]) = (b,d) is not in Mp, (b,d) is added to

Mp and R. The transition from (a,c) to (b,d) on the symbol 1 is

then added to Mp. Since R is not empty, another iteration of

the repeat-until loop begins. The state (b,d) is removed from

R. For the symbol 0, since the state (T1[b,0], T2[d,0]) = (b,d)

is already in Mp, (b,d) is not added to Mp or R. The transition

from (b,d) to (b,d) on the symbol 0 is then added to Mp. For

the symbol 1, since the state (T1[b,1], T2[d,1])=(a,c) is already

in Mp, (a,c) is not added to Mp or R. The transition from (b,d)

to (a,c) on the symbol 1 is then added to Mp. The repeat-until

loop then terminates because R is now empty. The resultant

product machine Mp is shown in Fig. 6. Obviously, the

product machine has no unreachable state and, as expected, it

accepts the same language as M1 and M4 do.

The if statement requires searching the set of states in Mp.

Let E be the number of transitions in the product machine

(i.e., the number of arrows in its state diagram) and NΣ be the

number of symbols in the alphabet. The number of states is

E/NΣ because every state has NΣ outgoing transitions. With an

efficient implementation, searching a set of E/NΣ elements

takes O(log(E/NΣ)) time. An analysis shows that searching is

performed for every transition added, and the algorithm takes

O(E log(E/NΣ)) time.

V. SUMMARY

Two algorithms to construct a product machine from two

finite-state machines are presented and analyzed. The first

algorithm is simple and correctly produces a product machine

but the product machine may include unreachable states and

associated transitions. The second algorithm produces a

functionally correct product machine that has no unreachable

states.

REFERENCES

[1] M. Sipser, Introduction to the Theory of Computation. Boston:

Thomson Course Technology, 2006, ch.1.

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

