
 

 

 

  

Abstract— Two algorithms to construct a product machine 

from two finite-state machines are presented and analyzed. The 

first algorithm is simple and correctly produces a product 

machine, but the product machine may include unreachable 

states and associated transitions. The second algorithm produces 

a functionally correct product machine that has no unreachable 

states. 

 
Index Terms—deterministic finite-state machine, product 

machine construction, theory,  unreachable state.  

 

I. INTRODUCTION 

The union or the intersection of two regular languages is 

still a regular language, that is, regular languages are closed 

under the operations union and intersection, e.g.,  [1]. In fact, 

from two given deterministic finite-state machines, a product 

machine can be constructed such that the product machine 

simulates the two given machines simultaneously and accepts 

a language that is the intersection or the union of the 

languages of the given machines.  

This article discusses and analyzes two algorithms to 

construct a product machine from two given machines. The 

first algorithm is simple and correctly produces a product 

machine. However, the product machine may include 

unreachable states and associated transitions. The second 

algorithm addresses this problem and produces a functionally 

correct product machine that has no unreachable states. 

  

II. BASIC DEFINITIONS 

A deterministic finite-state machine (DFSM) consists of a 

set of states Q, an alphabet Σ, a transition function δ from Q×Σ 

to Q, a start state s in Q, a set of accept states F, which is a 

subset of Q. Formally, a DFSM is the 5-tupe (Q, Σ, δ, s, F).  

 
Graphically, a finite-state machine is usually shown as a 

state diagram. As an example, Fig.1 shows a DFSM M1=({a, 
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b}, {0, 1}, δ1, a, {b}), where the set of states is {a, b}, the 

alphabet is {0, 1}, the start state is the state a, the state b is the 

only accept state, and the transition function δ1 is shown by the 

collection of labeled arrows between the states: for example, 

since there is an arrow labeled 1 from state a to state b, δ1(a, 1) 

= b. The start state is marked by an incoming arrow that does 

not have a source state, and the accept state is indicated by a 

double circle.  The machine M1 accepts those strings that have 

an odd number of 1's and any number of 0's. 

 

     Table I. State Transition Table for M1 

 0 1 

a a b 

b b a 

 

Often, a transition function is defined with a state transition 

table.  Table I shows the state transition table for M1. The 

table defines the transition function δ1 in a tabular form. For 

example, the fact δ1(a, 1) = b is shown by the value b in the 

entry [a, 1] of the table (that is, in the row labeled a and in the 

column labeled 1). 

 
 

     Table II. State Transition Table for M2 

 0 1 

x y x 

y x y 

 

Fig. 2 shows another machine M2=({x, y}, {0, 1}, δ2, x, 

{x}). The machine accepts those strings that have an even 

number of 0's and any number of 1's. The transition function  

δ2 is shown as a transition table in Table II.  

  

III. PRODUCT MACHINE CONSTRUCTION 

A product machine is constructed from two machines, 

simulates the behavior of the two machines simultaneously, 

and accepts either the intersection or the union of the 

languages of the two machines. A product machine that 

accepts the intersection of the languages of the two machines 
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Ma={Qa, Σ, δa,sa,Fa} and Mb={Qb, Σ, δb,sb,Fb} is a DFSM 

Mp={ Qa×Qb, Σ, δp, (sa, sb), Fa×Fb}.  

The set of states of the product machine can be easily 

found. It is the Cartesian product Qa×Qb. Obviously, each 

state of Mp is a pair of states, denoted by (a, b). In the product 

machine, the pair is unordered. i.e.,  (a, b) and (b, a) are 

considered the same state of the product machine.   

The start state of Mp is the pair that consists of the start 

states of Ma and Mb. The accept states of Mp can also be 

identified easily: for a state (a, b) of the product machine Mp 

to be an accept state, one of a and b must be an accept state of  

Ma and the other must be an accept state of Mb, i.e., both a and 

b must be accept states in Ma and Mb.  

Suppose Ta and Tb are the state transition tables for Ma and 

Mb. The state transition table Tp for the product machine Mp 

can be constructed by the following simple algorithm: 

 

for each state a in Qa 

 for each state b in Qb 

  for each symbol r in Σ  

   Tp[(a, b), r]=(Ta[a, r], Tb[b, r]); 

 

Let Na be the number of states in Qa, Nb be the number of 

states in Qb and NΣ be the number of symbols in Σ. The 

running time of this commonly known algorithm is obviously 

O(NaNbNΣ). 

   

 
 

Table III. State Transition Table for M3 

 0 1 

(a,x) (a,y) (b,x) 

(a,y) (a,x) (b,y) 

(b,x) (b,y) (a,x) 

(b,y) (b,x) (a,y) 

  

The machine M3 shown in Fig. 3 is the product machine 

constructed from the two machines M1 and M2 given in the 

previous section.  Table III shows the state transition table of 

M3 constructed using the algorithm given above. Apparently, 

M3 accepts those strings having an odd number of 1's and an 

even number of 0's. 

A product machine that accepts the union of the languages 

of two machines M1 and M2 can be constructed in the same 

way except that, in order for a state (a, b) of the product 

machine to be an accept state, at least one of the states a and b 

must be an accept state of Ma or Mb. As an example, if the 

three states of M3 (a,x), (b,x) and (b,y) are accept states, then 

M3 will accept the union of the languages of M1 and M2. That 

is, M3 will accept those strings having an odd number of 1's or 

an even number of 0's.  

  

IV. AVOIDING UNREACHABLE STATES 

The algorithm discussed in the previous section may 

produce a product machine that has states that cannot be 

reached from its start state.  Removing the unreachable states 

of a machine does not alter the function of the machine.  

 
 

     Table IV. State Transition Table for M4 

 0 1 

c c d 

d d c 

 

As an example, consider the machine M4 shown in Fig. 4 

and its state transition table in Table IV. To make the 

example simple,  the machine M4 is obtained by renaming 

the states of M1 and accepts the same language as M1.  

 

 
The product machine of M1 and M4 constructed using the 

algorithm discussed in the previous section to accept the 

intersection of the languages of M1 and M4 is shown in Fig. 5. 

Indeed, the product machine functions correctly: it accepts the 

strings that both M1 and M4 accept, but it includes the 
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unreachable states (a, d) and (b, c), which can be eliminated 

without changing the function of the machine. 

 

An algorithm that constructs a product machine that does 

not include unreachable states will now be presented. 

Suppose Ta and Tb are the state transition tables for two 

machines Ma and Mb whose product machine is to be 

constructed. The algorithm will produce a product machine 

Mp. Mp initially has no transitions and only one state: the start 

state,  which is the pair that consists of the start states of Ma 

and Mb. As the algorithm proceeds, more states and 

transitions will be added to Mp. When the algorithm 

terminates,  Mp will be the product machine of Ma and Mb 

with no unreachable states. The algorithm also makes use of a 

set R, which initially contains the start state of Mp. The 

purpose of using the set R is to keep track of those states in Mp 

whose outgoing transitions have yet to be added to Mp. The 

algorithm is given below. 

 

repeat the following  

{   

 remove a state (a,b) from R; 

 for each symbol r in Σ do the following 

{ 

  if (Ta[a,r], Tb[b,r]) is not in Mp 

        add (Ta[a, r],Tb[b, r]) to Mp and to R; //end if 

  add to Mp a transition on r from (a,b) to (Ta[a,r],Tb[b,r]);  

     }  //end for-each 

} 

until  R is empty;  //end repeat-until 

 

The if statement in the algorithm guarantees that each state is 

added to Mp and R only once. It is worth noting that a new 

state is added to Mp if and only if there is a transition from a 

state already in Mp to the new state.  Since initially the start 

state is the only state in Mp,  all of the states of Mp are  

reachable from the start state. 

 
As an example of using the algorithm, suppose the product 

machine of  M1 and M4 is to be constructed by the above 

algorithm. Let T1 and T4 be the transition tables of M1 and M4. 

Initially R and Mp contain only the state (a,c).  As the 

algorithm begins, (a,c) is removed from R.   For the symbol 0, 

since the state (T1[a,0], T2[c,0]) = (a,c) is already in Mp, (a,c) 

is not added to Mp or R. The transition from (a,c) to (a,c) on 

the symbol 0 is then added to Mp. For the symbol 1, since the 

state (T1[a,1], T2[c,1]) = (b,d) is not in Mp, (b,d) is added to 

Mp and R. The transition from (a,c) to (b,d) on the symbol 1 is 

then added to Mp. Since R is not empty, another iteration of 

the repeat-until loop begins. The state (b,d) is removed from 

R. For the symbol 0, since the state (T1[b,0], T2[d,0]) = (b,d) 

is already in Mp, (b,d) is not added to Mp or R. The transition 

from (b,d) to (b,d) on the symbol 0 is then added to Mp. For 

the symbol 1, since the state (T1[b,1], T2[d,1])=(a,c) is already 

in Mp, (a,c) is not added to Mp or R. The transition from (b,d) 

to (a,c) on the symbol 1 is then added to Mp.  The repeat-until 

loop then terminates because R is now empty.  The resultant 

product machine Mp is shown in Fig. 6. Obviously, the 

product machine has no unreachable state and, as expected, it 

accepts the same language as M1 and M4 do.  

The if statement requires searching the set of states in Mp. 

Let E be the number of transitions in the product machine 

(i.e., the number of arrows in its state diagram) and NΣ be the 

number of symbols in the alphabet. The number of states is 

E/NΣ because every state has NΣ outgoing transitions. With an 

efficient implementation, searching a set of E/NΣ elements  

takes O(log(E/NΣ)) time. An analysis shows that searching is 

performed for every transition added, and the algorithm takes 

O(E log(E/NΣ))  time.  

  

V. SUMMARY 

Two algorithms to construct a product machine from two 

finite-state machines are presented and analyzed. The first 

algorithm is simple and correctly produces a product machine 

but the product machine may include unreachable states and 

associated transitions. The second algorithm produces a 

functionally correct product machine that has no unreachable 

states.  
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