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How to Prove the Riemann Hypothesis 
 

Fayez Fok Al Adeh. 
 

     Abstract- To prove the Riemann Hypothesis is to show 
that the nontrivial zeros of the Riemann zeta function, 
which are complex, have real part equal to 0.5 . The proof 
given herein is divided into two parts. Integral calculus is 
used in the first part, while variational calculus is employed 
in the second part. Given that (a) is the real part of any 
nontrivial zero of the Riemann zeta function, it is assumed 
that (a) is a fixed exponent in the equations 50-59 and hence 
it is verified that a=0.5. In the remaining equations 
beginning in equation (60) (a) is treated as a parameter 
(a<0.5) and a contradiction is obtained. 
At the end of the proof (from equation (73) onward), it is 
verified again that a = 0.5  
     Index Terms-Functional Equation, L'Hospital's Rule, 
Variational Caculus. 
     Subj-class: Functional analysis, complex variables, 
general mathematics. 

I. INTRODUCTION 
The Riemann zeta function is the function of the complex 

variable s = a + bi (i = 1− ), defined in the half plane a >1 by 
the absolute convergent series 
  
  (1) 
 
and in the whole complex plane by analytic continuation.  
The function )(sζ  has zeros at the negative even integers -2, -
4, … and one refers to them as the trivial zeros. The Riemann 
Hypothesis states that the nontrivial zeros of )(sζ  have real 
part equal to 0.5.  

II, PROOF OF THE RIEMANN HYPOTHESIS 
We begin with the equation 

)(sζ =0      (2) 
where 
s= a+bi      (3) 
i.e.       

0)( =+ biaζ      (4) 

It is known that the nontrivial zeros of )(sζ  are all complex. 
Their real parts lie between zero and one.  
If  0 < a < 1 then  

)(sζ  = s ∫
∞

+
−

0
1

][
sx

xx
dx   (0 < a < 1) (5) 

[x] is the integer function 
Hence  

∫
∞

+
−

0
1

][
sx

xx
dx = 0     (6) 

Therefore 
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Separating the real and imaginary parts we get 
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According to the functional equation, if )(sζ =0 then )1( s−ζ =0. 
Hence we get besides (11) 

0)logsin()]([2
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In (11) replace the dummy variable x by the dummy variable y 
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dyybyyay   (13) 

We form the product of the integrals (12)and (13).This is justified by 
the fact that both integrals (12) and (13) are absolutely convergent .As 
to integral (12) we notice that  
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( where ((z)) is the fractional part of z , 0≤  ((z))<1) 

= lim(t 0→ ) ∫
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0

ax +−1 dx + lim (t 0→ ) 
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(t is avery small positive number) (since ((x)) =x whenever 0≤ x<1)  
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 Since the limits of integration do not involve  x or y , the 
product can be expressed as the double integral  
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Thus  
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That is  
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Consider the integral on the right-hand side of (17) 
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x
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In this integral make the substitution x = 
z
1

 dx = 
2z
dz−  

The integral becomes     
 
 
 
 
That is  
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This is equivalent to  
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If we replace the dummy variable z by the dummy variable x, 
the integral takes the form 

dxdyxybyy
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Rewrite this integral in the equivalent form 

dxdyxybyy
x
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Write (24) in the form  
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]1[22{(
−
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Let p >0 be an arbitrary small positive number.we consider the 
following regions in the x –y plane. 
The region of integration I = [0,∞  ) ×[0,∞  )  (26) 
The large region I1 =[ p,∞  ) × [ p,∞  )   (27) 
The narrow strip  I 2 =[ p,∞  ) × [0,p ]   (28) 
The narrow strip I 3 = [0,p]× [ 0,∞  )   (29) 
Note that  
I = I1 U I 2 U I 3      (30) 

 
Denote the integrand in the left hand side of (25) by F (x,y) = 

ax +− 2 )logcos()]([1 xybyyay −−−

x

ax
x

ax
22
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−
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Let us find the limit of F (x,y) as x ∞→  and y ∞→  . This 
limit is given by  

Lim ax− ay −−1 [ - (( y)) ] cos (blog xy ) [ - (( 
x
1

 )) + 

((x)) 22 −ax  ]    (32) 
The above limit vanishes ,since all the functions [ - ((y)) ] , 

cos (blog xy ), - ((
x
1

)), and ((x)) remain bounded as x ∞→  

and y ∞→  
Note that the function F (x,y) is defined and bounded in the 
region I 1.  We can prove that the integral  

∫∫ F(x,y) dx dy is bounded as follows  (33) 

  I1 

∫∫ F(x,y) dx dy = ∫∫ ax− ay −−1 [ - (( y)) ] cos (blog  

 I1            I1 

xy ) [ - (( 
x
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 )) + ((x)) 22 −ax  ] dx dy  (34) 
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x
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            I1 
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∞

p
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x
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(15) 

(17) 

(18) 

(19) 

(20) 

(21)

(22)

(23)

(24)

(25)
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where t is a very small arbitrary positive. 
number.Since the integral 
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is bounded, it remains to  
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Hence the boundedness of the integral ∫∫ F(x,y) dx dy is 

proved.                                                    I1 
Consider the region      
I4=I2 U I3     (35) 
We know that  

0 = ∫∫ F(x,y) dx dy = ∫∫ F(x,y) dx dy + ∫∫ F(x,y) dx dy  (36) 

       I                          I1                        I4    
and that  

∫∫ F(x,y) dx dy is bounded   (37) 

 I1 
From which we deduce that the integral 
 

∫∫ F(x,y) dx dy is bounded   (38) 

 I4    
Remember that  

∫∫ F(x,y) dx dy = ∫∫ F(x,y) dx dy + ∫∫ F(x,y) dx dy   (39) 

 I4                        I2                        I3                             
Consider the integral 

∫∫ F(x,y) dx dy ≤ ∫∫ F(x,y) dx dy             (40)  
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∫
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0
ay

1
 dy 

(This is because in this region ((y)) = y). It is evident that the 

integral ∫
∞

Ρ

 ax− { (( 
x
1

 ))- ((x)) 22 −ax  } dx is 

bounded,this was proved in the course of proving that the 
integral ∫∫ F(x,y) dx dy is bounded .Also it is evident that 

the integral I1 

∫
Ρ

0
ay

1
 dy 

is bounded. Thus we deduce that the integral (40) ∫∫ F(x,y) 

dx dy is bounded                                                          I2 
Hence ,according to (39),the integral ∫∫ F(x,y) dx dy is 

bounded.                                             I3  
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Now we consider the integral 

∫∫ F(x,y) dx dy    (41) 

 I3 
and write it in the form 

∫∫ F(x,y) dx dy = ∫ ∫
∞p

0 0

(  y a−−1  ((y)) cos (b logxy) dy)  

 I3 

a

a

x

x }))
x
1{(( 12 −−

dx     (42) 
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Now we consider the integral with respect to y  

∫
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y a−−1  ((y)) dy     (43) 

= (lim t 0→ ) ∫
−t1
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 y a−−1 × y dy+ (lim t 0→ ) 

∫
∞

+t1
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 ( where t is a very small arbitrary positive number) .( Note 
that ((y))=y whenever 0≤ y<1). 

Thus we have (lim t 0→ ) ∫
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 y a−−1 ((y)) dy < 

(lim t 0→ ) ∫
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and (lim t 0→ ) ∫
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Hence the integral (43) ∫
∞

0

y a−−1  ((y)) dy is bounded. 

Since ∫
∞

0

 y a−−1  ((y)) cos (b logxy)dy  ≤  ∫
∞

0

y a−−1  

((y)) dy , we conclude that the integral 

∫
∞

0

 y a−−1  ((y)) cos (b logxy)dy is a bounded function of x 

. Let this function be H(x) . Thus we have  

∫
∞

0

 y a−−1  ((y)) cos (b logxy)dy = H (x) ≤K  (44) 

( K  is a positive number ) 
Now  (44) gives us  

– K ≤  ∫
∞

0

 y a−−1  ((y)) cos (b logxy)dy ≤  K  (45) 

According to (42) we have  

∫∫ F(x,y) dx dy = ∫ ∫
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0 0

(  y a−−1  ((y)) cos (b logxy) dy) 

         I3 
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dx 

= K ∫
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a

a

x

x }))
x
1{(( 12 −−
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Since ∫∫ F(x,y) dx dy is bounded, then  

∫
0

p
a

a

x

x }))
x
1{(( 12 −−

dx is also bounded. Therefore  

the integral  

G = ∫
p

0
a

a

x

x }))
x
1{(( 12 −−

dx is bounded   (47) 

We denote the integrand of (47) by  

F = ax
1

{ (( 
x
1

 ))- 12 −ax  }   (48) 

Let  δ G [F] be the variation of the integral G due to the 
variation of the integrand δ  F. 
Since  

G [F] = ∫ F dx (the integral (49) is indefinite ) (49) 

( here we do not consider a as a parameter, rather we treat it as a 
given exponent) 

We deduce that  
)(
][

xF
FG

δ
δ

= 1 

that is  
δ G [F] = δ F (x)     (50) 
But we have  
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δ G[F] = ∫ dx 
)(
][

xF
FG

δ
δ

 )(xFδ   (51) 

( the integral (51) is indefinite) 
Using (50) we deduce that  

δ G[F] = ∫ dx  )(xFδ    (52) 

( the integral (52) is indefinite) 
Since G[F] is bounded across the elementary interval [0,p],  
δ G[F] is bounded across this interval   (53) 
From (52) we conclude that 

Gδ = ∫
Ρ

0

dx  )(xFδ = ∫
Ρ

0

dx
dx
dF xδ = [ F xδ ] (at 

x = p)- [ F xδ ] (at x = 0)   
 (54) 
Since the value of [ F xδ ] (at x = p)is bounded, we 
deduce from (54) that  
lim (x 0→ ) F δ x  must remain bounded.  (55) 
Thus we must have that   

(lim x 0→ ) [ δ x  ax
1

{ (( 
x
1

 ))- 12 −ax  }]  (56) 

is bounded . 
First we compute  

 (lim x 0→ ) ax
xδ

    (57) 

Applying L 'Hospital ' rule we get 

 (lim x 0→ ) ax
xδ

 = (lim x 0→ ) ×
a
1 ax −1  

0)(
=×

dx
xd δ

    (58) 

We conclude from (56) that the product  

0 × (lim x 0→  ) { (( 
x
1

 ))- 12 −ax  }  (59) 

must remain bounded. 
Assume that a =0.5 .( remember that we are treating a as a 
given exponent )This value a =0.5 will guarantee that the 
quantity 

{ (( 
x
1

 ))- 12 −ax  } 

will remain bounded in the limit as (x 0→ ) .Therefore , in 
this case (a=0.5) (56) will approach zero as (x 0→ ) and 
hence remains bounded . 
Now suppose that a< 0.5 .In this case we consider a as a 
parameter.Hence we have  

(60) G a  [x]= ∫ dx x
x

axF ),(
   (60) 

(the integral (60) is indefinite ) 
Thus 

x
xG a

δ
δ ][

= 
x

axF ),(
   (61) 

But we have that  

][ xG aδ  = ∫ dx
x

xG a

δ
δ ][

xδ   (62) 

( the integral (62) is indefinite ) 
Substituting from (61) we get 

][ xG aδ  = ∫ dx  x
x

axF δ),(
  (63) 

( the integral (63) is indefinite ) 
We return to (49) and write  

G  = lim (t )0→ ∫
p

t

Fdx     (64) 

( t is a very small positive number 0<t<p)  

= { F x(at p ) – lim (t )0→ Fx (at t) } - lim (t )0→  ∫
p

t

x dF  

Let us compute  
lim (t )0→  Fx (at t ) = lim (t )0→   

t a−1 ((
t
1)) – t a = 0     (65) 

Thus (64) reduces to  

G – Fx (at p ) = - lim (t )0→  ∫
p

t

x dF  (66) 

Note that the left – hand side of (66) is bounded. Equation (63) 
gives us 

δ G a =lim (t )0→ ∫
p

t

dx x
x
F δ   (67) 

(t is the same small positive number 0<t<p) 

We can easily prove that the two integrals ∫
p

t

x dF and 

∫
p

t

dx x
x
F δ  are absolutely convergent .Since the limits of 

integration do not involve any variable , we form the product of 
(66) and (67)  

K = lim(t 0→ ) ∫
p

t
∫
p

t

 xdF× dx x
x
F δ  

= lim(t 0→ ) ∫
p

t

FdF  ×  ∫
p

t

xdxδ   (68) 

( K is a bounded quantity )  
That is  

K = lim(t 0→ ) [ 
2

2F
( at p ) -

2

2F
(at t) ]   × [ δ x (at p) - δ x 

(at t) ]     (69) 
We conclude from (69) that  

{ [
2

2F
( at p) - lim(t 0→ ) 

2

2F
(at t) ]  ×[δ x  (at p) ] }(70)   

is bounded . 
( since lim(x 0→ )δ x = 0 , which is the same thing as 
 lim(t 0→ ) δ x = 0)  

Since 
2

2F
( at p) is bounded , we deduce at once that 

2

2F
 must 

remain bounded in the limit as (t 0→ ), which is the same thing 
as saying that F must remain bounded in the limit as (x )0→ . 
Therefore .  

lim (x 0→ ) a

a

x

x
x

12))1(( −−
   (71) 

must remain bounded  
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But 

lim(x 0→ ) a

a

x

x
x

12))1(( −−
= lim(x 0→ )  

×−

−

a

a

x
x

21

21

a

a

x

x
x

12))1(( −−
    

= lim(x 0→ ) a

a

x
x

x
−

− −
1

21 1))1((
  

= lim(x 0→ ) ax −

−
1

1    (72) 
It is evident that this last limit is unbounded. This contradicts 
our conclusion (71) that 

lim (x 0→ ) a

a

x

x
x

12))1(( −−
must remain bounded (for a< 0.5 

) 
Therefore the case a<0.5 is rejected .We verify here that ,for a = 
0.5 (71) remains bounded as (x 0→ ) . 
We have that 

12))1(( −− ax
x

 < 1- 12 −ax    (73) 

Therefore 

lim(a → 0.5) (x )0→ a

a

x

x
x

12))1(( −−
< lim(a → 0.5) 

(x )0→ a

a

x
x 121 −−

    (74) 

We consider the limit  

lim(a → 0.5) (x )0→ a

a

x
x 121 −−

   (75) 

We write  
a = (lim x 0→ ) ( 0.5 + x )    (76) 
Hence we get  

lim(a → 0.5) (x )0→  12 −ax  = lim (x )0→  x 1)5.0(2 −+x  

=lim (x )0→ x x2  = 1    (77) 

(Since lim(x )0→  x x = 1)  
Therefore we must apply  L 'Hospital ' rule with respect to x in the 
limiting process (75)  

lim(a → 0.5) (x )0→ a
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Now we write again  
a = (lim x 0→ ) ( 0.5 + x )    (79) 
Thus the limit (78) becomes  

lim(a → 0.5) (x )0→ ax
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)21(
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− −+
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( Since lim (x )0→ x x− = 1 )    (80) 
 
 
 
 
 
 
We must apply  L 'Hospital ' rule  

lim  (x )0→
5.0

1 2)5.0(
x

x −+ −

                 (81) 
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 Thus we have verified  here that ,for a = 0.5 (71) approaches 
zero as (x 0→ ) and hence remains bounded. 
We consider the case a >0.5 . This case is also rejected, since 
according to the functional equation, if ( )(sζ =0) (s = a+ bi) 
has a root with a>0.5 ,then it must have another root with another 
value of a < 0.5 . But we have already rejected the case with 
a<0.5  
Thus we are left with the only possible value of a which is a = 
0.5  
Therefore a = 0.5  
This proves the Riemann Hypothesis .    
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