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Introducing Semi-programmable Hardware to a
Real High-Level Synthesis Tool

Akira Yamawaki *

Abstract— The semi-programmable hardware is a
design-level hardware architecture residing on the
pass where C program with memory access is con-
verted to hardware. The SPHW realizes the mem-
ory access controller and buffer by writing the soft-
ware program and parameters respectively. Com-
pared with the cases that use only HDL, the SPHW
which can design the efficient memory controllers at
C-level abstraction reduces the development time sig-
nificantly. In addition, the SPHW shows the compa-
rable performance compared to the HDL hardware
containing the custom memory controller even if it
is written at high-abstraction in the SPHW. In gen-
eral, the high-level synthesis tool whose design entry
is C program is often used to reduce the burden de-
signing the data processing hardware. However, the
SPHW has not been introduced into any HLS tech-
nology yet. This paper develops the true C level-
design environment including the SPHW as the data
processing hardware on a real commercial HLS tool,
Handel-C. By using the SPHW providing the register-
based data interface to the data processing hardware,
we demonstrate that the HLS tool can easily write
the hardware accessing to the memory in C language.
This is because this interface hides the detail of the
memory devices and the memory access patterns, by
providing the data processing hardware with the sim-
ple stream data. For hiding memory access latency,
the simple software-pipelining can be applyed to the
memory access program and parameters of the buffer.
Consequently, the designer can realize the data pro-
cessing hardware with data-prefetching mechanism at
the complete C-level design entry.

Keywords: high-level synthesis, hardware design, mem-
ory latency hiding, system-on-chip, hardware architec-
ture

1 Introduction

For the design of the system-on-chips, the high-level syn-
thesis (HLS) technologies generating the hardware from
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C program have been researched and developed [1-7].
The HLS tool can reduce the design burden significantly
due to the high design abstraction. Generally, the HLS
technologies are good at generating an efficient data pro-
cessing hardware assuming simple and typical data access
patterns like the stream data. For example, some com-
pilers of the HLS support only the dedicated memory
access pattern [4,6,7]. Across the users, the application
programs and the buffering methods, the memory access
patterns are different. Thus, the memory accesses are
hard to be treated systematically by an algorithmic way.
In addition, the memory access latency cannot be hidden
by the data prefetching [8] implicitly [1-7]. To hide the
memory latency, the hardware has to be written skill-
fully in the C description with the deep knowledge of the
used HLS tool and target device. As a result, the HLS
tool might generate the hardware including an efficient
memory access controller. Even if the HLS tool is used,
such burden may be comparable to designing a custom
memory access controller from scratch in a hardware de-
scription language (HDL).

To tackle the problems mentioned above, we have
proposed a design-level hardware architecture (semi-
programmable hardware: SPHW) which is inserted onto
the pass converting the C program to the hardware [9].
The SPHW realizes the memory access controller and
the buffer by writing the software program and param-
eters respectively. Compared with the design cases that
use the HDL, the SPHW which can design the efficient
memory controllers at C-level abstraction reduces the de-
velopment time significantly [9]. In addition, the SPHW
shows the comparable performance compared to the HDL
hardware containing the custom memory controller even
if it is written at high-level abstraction [9].

However, the SPHW has not been introduced into any
HLS technology yet. This paper attempts to realize
the complete C level-design environment including the
SPHW on a real commercial HLS tool, Handel-C. By us-
ing the SPHW providing the register-based data access-
ing interface, we demonstrate that the HLS tool can easily
write the hardware accessing to the memory in C. This is
because this interface hides the detail of the memory de-
vices and the memory access patterns, by providing the
data processing hardware with the simple stream data.
By introducing the SPHW into the HLS tool, the simple
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Load line

LLS(B/Be/BE/E/Eb/EB, mem addr, str width, num of trans, sync)
Load word

LWS(B/BE/E/EB, mem addr, str width, num of trans, sync)
Store line

SLS(B/Be/BE/E/Eb/EB, mem addr, str width, num of trans, sync)
Store word

SWS(B/BE/E/EB, mem addr, str width, num of trans, sync)

B : Increment the bank pointer per each word transfer.

Be: Increment the bank pointer per each word transfer.
Increment the entry pointer per each line transfer.

BE: Increment the bank pointer per each word transfer.
Increment the entry pointer when all of transfers finish.

E i Increment the entry pointer per each word transfer.

Eb: Increment the entry pointer per each word transfer.
Increment the entry pointer per each line transfer.

EB: Increment the bank pointer per each word transfer.
Increment the entry pointer when all of transfers finish.

Figure 1: Block Diagram of SPHW

software-pipelining with double buffering to hide mem-
ory access latency is easily implemented into the data
processing hardware at high-level abstraction.

The rest of the paper is organized as follows. Section 2
describes the overview of the SPHW. Section 3 shows the
design flow using the SPHW. Section 4 demonstrates the
SPHW mapping by using an example of the color con-
version from RGB to YCrCb. Section 5 performs some
preliminary experiments and shows the experimental re-
sults. Finally, Section 6 concludes the paper.

2 SPHW Architecture

2.1 Organization

Fig. 1 shows the organization of the SPHW. The
load/store unit (LSU) transfers the data between mem-
ory and reconfigurable register file (RRF). The programs
to be executed by the LSU are stored in the LSU memory
(LSUMEM). The execution unit (EXU) is data process-
ing hardware. The synchronization mechanism (SM) per-
forms the producer-consumer synchronization between
the LSU and the EXU. The producer performs the re-
lease synchronization to invoke the consumer waiting for
the data on the RRF by the wait synchronization.

The reconfigurable register file (RRF) consists of the
input/output data buffer registers (DBRI and DBRO).
They have one or more banks which contain one or more
entries. The number of the banks and entries are con-
figurable by the parameters. Thus, the suitable buffer
for the data processing hardware on the EXU can be
implemented by parameters. The mailbox (MB) is con-
trol/status registers for the SPHW. The external modules
can check the statuses of the SPHW via mailboxes. The
parameters required for the SPHW execution can be set
via the mailboxes. The general purpose register (GPR)
is used by the LSU and the EXU.

The EXU has the finite state machine (FSM), the working
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Figure 2: Load/Store instructions of LSU

registers (WR) and the data path. The FSM has the
states ((EXE;)) to control the data path. In addition, the
states ((SYNC;)) to synchronize the LSU are inserted.

2.2 Memory Access

The LSU has the load/store instructions per the word and
the line containing continuous words as shown in Fig. 2.
Each of instructions can specify the number of transfers
and the stride width per each word/line transfer. That
is, the LSU can perform the gather/scatter operations by
one instruction. Since the load/store instructions have
the synchronization field, the synchronization can be also
performed simultaneously with the memory access. The
pointers to the bank and entry can be incremented au-
tomatically according to the notation in the instruction.
The LSU converts the distributed data in the memory
to the streamed data in the RRF, executing the sophis-
ticated load/store instructions.

Fig. 3 (a) shows the examples implementing a double
buffer for the streaming data. We assume that the line
contains 4 words, the number of banks of the DBRI is 8
and each bank contains 2 entries. Fig. 3 (b) shows an
example loading the 4 x 4 window. In this example, the
DBRI has 4 banks containing 4 entries. As shown in these
examples, the LSU can easily realize the sophisticated
memory accesses.

3 SPHW Design Flow

Fig. 4 shows the framework of the design flow which
employs the SPHW. In this case, we employ the Handel-
C [1] as the HLS tool for the EXU.

For the SPHW, the memory accesses are implemented by
the software programming to the load/store unit (LSU).
The reconfigurable register file (RRF) is configured by the
parameters to implement the optimum buffer. The data
processing unit (EXU) streamly processes the sequential
data on the RRF. The memory data which shows the
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(a) Double buffering for stream data

LLS(Be, img, width*sizeof(pixel), 4, RLS);
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(b) 4 x 4 Window Loading

Figure 3: Example of Load Instruction

sophisticated access patterns are put into the RRF as
the stream data by the LSU.

The Handel-C is based on the concept of the commu-
nicating sequential processes (CSP) model [10] whose
input/output are the streaming interface. Thus, the
Handel-C hardware is a good candidate as the EXU to
be connected to the RRF !.

Since the LSU and the EXU are executing individually
across the RRF, the memory access by the LSU can over-
lap onto the data process by the EXU. By using the
SPHW, the designer can design the hardware with the
data prefetching mechanism [8] easily in the high-level
description using the program and parameters.

4 Mapping Example

Fig. 5 and Fig. 6 show an example of mapping the color
conversion from RGB to YCrCb into the SPHW. The
former writes the hardware behavior in Handel-C. The
latter writes the LSU program in C-like language. We
have developed the tool converting the LSU program to
the machine code by perl.

Now, we assume that the pixel of the image data is 32bit
containing each of 8bit-R, G and B data. In this version,
the SPHW supports the following features.

IMost HLS tool is good at converting the stream processing to
the hardware [1-7].
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Figure 4: SPHW Design Flow When Using Handel-C

(1) The number of words in the line is 4. The word
width is 32bit.

(2) The width of each bank of the DBRI/O is 32bit.

(3) The LSU supports the burst transfer containing 4
words.

(4) The LSU is the pipelined scalar processor with 3
stages.

Fig. 5 shows an overview of mapping to the SPHW. The
RGB data in the memory is loaded by the LSU into the
DBRI. The EXU waits until the RGB data needed is
stored into the DBRI. When the LSU loads the RGB
data and releases the EXU, the EXU starts to process
the RGB data in the DBRI and stores YCrCb data into
the DBRO. Then the EXU releases the LSU waiting the
YCrCb data. After this, the LSU stores the YCrCb data
into the memory.

Fig. 6 shows the LSU programming. In this case, the
mailbox #0 (MBO) is used as the start flag invoking the
SPHW. The read address of the RGB data and write
address of the YCrCb data are set to the MB1 and MB2.
The stride width per line transfer that is 16byte is set to
the MB3. The number of the transferred lines to fill all
banks is set to MB4, which divides the number of banks
by 4. The number of total lines over the image data is
set to the MB5, which divides the number of total pixels
by the number of banks. The MB6 is the flag indicating
that the SPHW finishes.
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Figure 5: Mapping Image from RGB2YCrCb to EXU.

Fig. 6 (a) is the straight-forward programming. The
LSU waits by spin-lock on the MBO until it is set to 1.
Then, the LSU resets the MBO as the start flag and re-
sets the MB1 as the end flag. The LSU loads the lines
into all banks and performs the release synchronization
(RLS). Then, the LSU performs the wait synchronization
(WAIT) and stores the processed lines in the DBRO into
the memory. This program is very simple and intuitive
but suffers from the memory access latency.

Fig. 6 (b) is the LSU program of which the software
pipelining [8] is applied to hide the memory access la-
tency. In the software pipelining, the load instruction
(LLS) and the store instruction (SLS) in the main loop
are copied to the front of the main loop and the back of
it respectively. In the main loop, the data used at the
next iteration is loaded at the current iteration. Thus,
the memory accesses of the LSU are overlapped with the
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-- MBO : Start flag

-- MB1 : Read address

-- MB2 : Write address

-- MB3 : Stride width (16)

-- MB4 : Number of burst trans.

-- = (num. of banks) / 4

-- MB5 : Number of total trans.

-- = (num. of pixels) / banks
-- MB6 : End flag

do{

while( MB® == RO );

MBO=0; MB6=0;

do{
LLS(B, MB1, MB3, MB4, RLS );
SLS(B, MB2, MB3, MB4, WAIT);
R2 = R2 + R1;

}while( MB5 > R2 )

MB6 = 1;

}while(1);

(a) Straight-forward LSU program

do{
while(MB@ == R@);
MBO=0; MB6=0;
LLS(BE, MB1, MB3, MB4,RLS);

R2++; o
do{ Py

LLS(BE, MB1, MB3, MB4, RLS );
SLS(BE, MB2, MB3, MB4, WAIT);

R2++; cspy
}while( MB5 > R2 );

SLS(BE, MB2, MB3, MB4, WAIT);
MB6 = 1;
}while(1);

(b) Software-pipelined LSU program

Figure 6: LSU Programming of RGB2YCrCb.

data processing of the EXU. For the EXU, as shown in
Fig. 6 (a), the number of entries of the DBRI/O becomes
two by denoting the SP as 1. In each iteration in the main
loop, the entry pointer (BLK) is toggled. As mentioned
above, the double buffering can be implemented easily.

5 Experiment and Discussion

Varying the number of banks, we implement the SPHW
shown in Fig. 5 into the Virtex5 FPGA of which the speed
grade is 10. We used the ISE12.1 in implementation.

Fig. 7 shows the number of LUTs and FFs. The NoSP
means the straight-forward mapping and the SP means
the software-pipelined mapping to overlap the memory
access with the data processing. The result shows that
the SP does not affect the circuit size despite fact the
number of the bank entries is doubled compared to the
NoSP. This is because each LUT used to the bank of the
DBRI and DBRO can contain 32 entries. Thus, until the
number of entries exceeds 32, the circuit sizes of the SP
and NoSP are same. In contrast, as the number of the
banks (LUTSs) increases, the circuit size also increases.
For the EXU, the increase of the banks increases the tem-
poral registers (FFs) used as shown in Fig. 5. Since the
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Figure 7: Implementation Result (Circuit Size).

LSU is the fixed processor, the LUTs and FFs of it are
constant.

Fig. 8 shows the clock frequency reported by the ISE12.1.
The SPHW shows the worst clock frequency. This is be-
cause the critical pass resides on the pass from the DBRI
to the multipliers in the EXU. The EXU hardware is gen-
erated by the handel-C. Thus, this critical pass is depen-
dent on the C program to be compiled by the handel-C.
The LSU does not affect the clock frequency.

Fig. 9 shows the performance result when the line trans-
fer from the memory to the LSU consumes 6 clocks. The
image size is 256 x 256. By hiding memory access la-
tency, the SP can improve the performance of 1.67 to
1.72 times compared with the NoSP.

We were able to perform such tradeoff among the num-
ber of banks, the circuit size, the clock frequency, and the
performance easily and quickly by only changing param-
eters.

6 Conclusion

The semi-programmable hardware is a design-level hard-
ware architecture residing on the pass of which C pro-
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gram with memory accesses is converted to hardware.
The SPHW realizes the memory access controller and the
buffer by writing the software program and parameters
respectively.

In this paper, we have introduced the SPHW as the data
processing hardware into a real commercial HLS tool,
Handel-C. By using the SPHW providing the register-
based data access interface, we have demonstrated that
the HLS tool can easily write the hardware accessing to
the memory in C. This is because this interface hides the
detail of the memory devices and the memory access pat-
terns, by providing the data processing hardware with the
simple stream data. For hiding memory access latency,
the simple software-pipelining is able to be applyed to
the memory access program and the parameters of the
buffer. Consequently, we can realize the data processing
hardware with data-prefetching mechanism at the com-
plete C-level design entry, with lower burden.

As future work, we will introduce the SPHW into more
HLS tools and evaluate using more application programs.
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