
 
 

 

  
Abstract—Consumer product global positioning system 

(GPS) receivers use inexpensive clocks that introduce a 
significant error in the location process. While only three 
satellites are adequate for high quality, synchronized clocks, 
four or more satellites are typically necessary for reasonable 
accuracy when inexpensive, low quality, unsychronized clocks 
are in the receiver. We present an inexpensive, fast algorithm to 
improve the location procedure for consumer level products 
with low quality, unsynchronized clocks. 
 

Index Terms—Global positioning system, GPS, multiple 
satellite resolution, nonlinear algorithms.  
 

I. INTRODUCTION 
Global positioning systems (GPS) consist of three 

components (called GPS segments), namely, (1) satellites 
with highly accurate atomic clocks in planar zones (there are 
currently 6 zones), (2) an almost unlimited number of 
receivers on or near the surface of Earth, and (3) satellite 
monitoring base stations on Earth. The primary goal is to 
accurately trilocate receivers using the center of the Earth as 
the origin in a three dimensional axis. Assuming a direct 
radio frequency connection between the set of GPS satellites 
and the receiver, at least 6 satellites can provide data for 
trilocation [1]. 

To solve the trilocation problem, we must 
• define a model, and 
• choose a nonlinear or linearized algorithm.to solve the 

discrete problem arising from the model. 
When high quality, synchronized (with the satellites) clocks 
are in receivers, only 3 satellites are needed to provide 
accurate trilocation. 

The pseudo ranging four-point problem (P4P) [2] has been 
used extensively and produces a system of unknowns 
consisting of three spatial locations and a clock basis [1]. 
Inexpensive clocks on the receivers are assumed in the P4P 
model. 

The differential GPS (DGPS) [3] adds either clock 
dependent errors or satellite errors. Four satellites must 
provide positioning data for this method to be accurate. 

Direct and iterative methods exist for solving the 
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trilocation problem.  Direct methods provide closed form 
solutions that are fast, but are intolerant to errors in location 
caused by clock inconsistencies between the satellites and the 
receiver. Most direct methods assume that the P4P model is 
deterministic, which is a completely false assumption in 
practice [4]. 

Iterative methods are usually based on solving the 
nonlinear problem using a Newton-Raphson (NR) algorithm 
[5]. Errors in the initial guess do not cause the same harm as 
in a direct method and lead to a better trilocation when an 
inexpensive clock is in the receiver. 

In Section II we define a model and the solution algorithm. 
In Section III, we demonstrate the effectiveness of the model 
and algorithm. In Section IV, we draw some conclusions. 

II. THE MODEL AND SOLUTION ALGORITHM 
Assume there are 1 i m≤ ≤ satellites iS whose exact 

location is defined as ( , , )i i ix y z with exact distances to the 

receiver (squared) of 2
iρ , respectively. Assume that the 

estimated location of the receiver is given by 
 

( , , )e e e ex y zρ = . 
 
Then for 1 i m≤ ≤ , 

  
 2 2 2( ) ( ) ( )e e e

i i i ix x y y z zρ = − + − + −  (1) 
 
Assuming that we know { } 3

1
, ( , , ) m

i i i i i
x y zρ =

=
, then we can 

solve for eρ  exactly. We can approximate each iρ  using the 
speed of light c  and the exact time is  the data was sent by 
satellite iS and the exact time it  when it is received: 
 

 ( )i i it s cρ = − . (2) 
 
In reality, (2) is more precisely written using the average 
speed of transmission a

ic , 
 

 ( ) a
i i i it s cρ = − . (3) 

 
Unlike is , both a

ic and it are difficult to measure accurately 
enough. 

A much more realistic model for estimating the distance 
between the receiver and each iS  is given by 

 
 e R S

i i iρ ρ ε ε= + + , (4) 
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where Rε and S
iε  are the errors dependent on the receiver 

and on each iS , respectively. Let the errors in the receiver’s 
clock and average transmission speed be defined by 
 

  and ce a
i i i i it t t c c= + ∆ = + ∆ , (5) 

 
respectively. Then 
 

  and ( )R S
i i i i ic t t s cε ε= ∆ = − ∆ . (6) 

 
If we substitute (4) directly into (1), then we have a system 

of equations with 3 equations and 7 unknowns. We could 
require the use of 7 satellites, but we cannot guarantee 
receiving transmissions from more than 6 satellites at a time. 
Clearly this is unsatisfactory. 

We can reduce the number of required satellites to just 4 if 
we can compensate for either clock or satellite dependent 
errors (but not both at the same time). Using the DGPS 
methodology [3] gives us a problem similar to (1) for 
1 4i m≤ ≤ = : 

 

 2 2 2( ) ( ) ( )e e e e
i i i ix x y y z zρ ε= − + − + − + . (7) 

 
We solve (7) to get ( , , )e e ex y z  and ε , where ε  is either Rε  

or S
iε .  

Per the DGPS methodology, we consider only ε  for either 
clock or satellite dependent errors introducing a new variable 

ut  of which ut cε = . In practice, ut  is computed by (a) 
acquiring accurate standard time from external time-keeping 
providers or (b) using the clock bias calculated by the NR 
method. In this paper, we obtain the value ut by (b). We 

define a new variable :E e
i i ut cρ ρ= − , then 

 

 2 2 2( ) ( ) ( ) .e e e E
i i i ix x y y z z ρ− + − + − =  (8) 

 
By squaring and expanding (8), we obtain the following 

equations:   
 

 ( ) ( ) ( ) ( )
2 2 2 2 2 2

2

2 2 2

e e e
i i i E

i
e e e

i i i

x y z x y z

x x y y z z
ρ

+ + + + +
=

− − −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (9) 

 
for 1, , .i m=  Since  ( , , )e e e ex y zρ =  is the common 
variable of the equations, the quadratic terms can be 
eliminated by subtraction. We subtract the first equation from 
the rest of equations and we have a system of ( 1)m −  linear 
equations: 

  

 
( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )( )2 22 2 2 2 2 2
1 1 1 1

1 1 1

1
2

,E E
j j j j

e e e
j j j

x x y y z z

x x x y y y z z z

ρ ρ− + − + − − −

− + − + −

=
 

 
for 2, , .j m=  The equations can be re-written using a 
matrix representation of the form, 

 
 =Ax d  (10) 

 
where 
 

 

2 1 2 1 2 1

3 1 3 1 3 1

1 1 1

, = ,  

e

e

e

m m m

x x y y z z
x

x x y y z z
y
z

x x y y z z

− − −⎡ ⎤
⎡ ⎤⎢ ⎥− − − ⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦− − −⎣ ⎦

A x  

 
and 
 

 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

2 22 2 2 2 2 2

2 1 2 1 2 1 2 1

2 22 2 2 2 2 2

3 1 3 1 3 1 3 1

2 22 2 2 2 2 2

1 1 1 1

1

2

E E

E E

E E

m m m m

x x y y z z

x x y y z z

x x y y z z

ρ ρ

ρ ρ

ρ ρ

− + − + − − −

− + − + − − −
=

− + − + − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

d  

 
If 4,m =  the equation is directly solvable when 1−A  

exists, and if 4,m > the problem is reduced to a linear 
optimization problem minimizing the norm of the residual. In 
the following subsections, we describe two different ways to 
solve the given optimization problem by changing the 
definition of the norm. 

A. Ordinary least squares method. 
If 4,m > the problem (10) leads an over-determined 

system and we need methods like least squares method. The 
ordinary least squares (OLS) method is the minimization of 
the residual on the 2l norm, i.e., 

 
 22min ,  where  .t− =x d x xx xA   
  

This minimization problem has a unique solution, provided 
that the 3 columns of the matrix A are linearly independent. 
The solution is given by the solution of the normal equation, 
 

 .t t=A x A dA   
 
The optimality of the solution, in the sense of the best linear 
unbiased estimator, is provided under the conditions of the 
Gauss-Markov theorem: 
 

 [ ] [ ] 2 ,  and cov0 V 0,, ,i i jiε ε σ ε εΕ = = ⎡ ⎤< ∞ =⎣ ⎦  (11) 
 
where ( )i i

ε = −d Ax .  

B. General least squares method. 
As described in [6], the condition (11) is not satisfied for 

the problem (10), and thus OLS method does not guarantee 
the optimality of the solution. Instead, the general least 
squares (GLS) method extends the Gauss-Markov theorem to 
the case where the error vector has a non-zero covariance 
matrix as the optimal. The GLS method minimizes the 
residual on the weighted norm based on the covariance 
matrix of d , 1−W . So the minimization problem is defined 
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as follows: 
 
 1 1

2 12min ,  where  .t
− −

−− =
WWx d v vx W vA   

 
The solution of the minimization problem is given by the 
solution of the normal equation, 

 
 1 1 .t t− −=A A WAx dW   
 
The covariance matrix 1−W  can be estimated from the set 

of previous observation data, namely, 
 

 
1

1 1 ( )( ,)
1

 
n

k k t

kn
µ µ

=

− = − −
− ∑ d dW   

 

where 
1

1 n
k

kn
µ

=

= ∑d  and 1, ,k n= denote different 

observation data at different times. To eliminate the 
computational cost for computing ut  for each data set k, we 
ignore the term ut  and use the approximation 

 

 
1

1
, 1 ( )( )

1

n k k

k

t

n
µ µ

−

=

= − −
− ∑W d d  (12) 

 
where 

 

 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

2 22 2 2 2 2 2

2 1 2 1 2 1 2 1

2 22 2 2 2 2 2

3 1 3 1 3 1 3 1

2 22 2 2 2 2 2

1 1 1 1

1

2

m m m m

k

x x y y z z

x x y y z z

x x y y z z

ρ ρ

ρ ρ

ρ ρ

− + − + − − −

− + − + − − −

− + − + − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

=d  

 

and 
1

1 n k

kn
µ

=

= ∑d . Since the magnitude of ut c  is negligible 

compared to E
iρ , the use of iρ is effective for the 

approximation. Numerical results confirm the validity of the 
approximation regardless of the number of samples for the 
estimation.  

C.  Algorithms 
We summarize the discussion in the following algorithms: 
 
Algorithm OLS 
Step 1. Calculate ut using the NR method. 
Step 2. Calculate A and d  in (10). 
Step 3. Solve the least squares method using the 

equation t t=A Ax A d . 

 
Algorithm OLS 
Step 1. Calculate ut using the NR method. 
Step 2. Calculate the approximation of the 

covariance matrix, 
1−

W  in (12). 
Step 3. Calculate A and d  in (10). 
Step 4. Solve the general least squares method 

using the equation, 
1 1t t− −

=A W Ax A W d . 
 

III. NUMERICAL EXPERIMENTS 
We downloaded four different data sets from land 

observation stations [7]. Table 3.1 provides the specifications 
of the data. The measurement of the pseudo ranges is based 
on the C/A-Code on L1. Since the positions of satellites are 
provided every 15 minutes, we need to interpolate the 
positions at every second. The method suggested in [8] is 
used for this purpose. 

The result of the GLS method depends on the number of 

samples for 
1−

W , which we denote as GLS(#), where GLS 
uses # number of samples. The samples are chosen from 
historical observation data sets (see Table 3.1) and from 
specified observation times to calculate the covariance. 

A.  Observations on accuracy 
The accuracy of each proposed method is compared with 

the standard NR method. Figure 3.1 depicts the Euclidean 
distance error versus the number of satellites for each method. 
From Figure 3.1, the errors of the NR and OLS methods are 
almost indistinguishable, but GLS shows superb results 
compared to the others. Although the accuracy of the OLS 
method is similar to the NR method, the linear property of the 
OLS method eliminates the iterations and makes the method 
favorable in the sense of computational cost.  

The GLS method shows very stable results with 6 or more 
satellites: there are small changes in errors from 6 satellites. 
Note that when using at least 6 satellites the errors of the GLS 
method are approximately half of the other methods.  

B.  Observations on the number of samples for 
1−

W  
Figure 3.2 shows the accuracy for different numbers of 

samples for the estimation of the covariance matrix. As 
shown in the (c) BJCO case of Figure 3.2, a too small number 
of samples (10 samples in this case) can cause an irregular 
result. The error with 30 samples is larger than with 15 
samples is caused by the accumulation of the errors inherited 
from the estimation of satellites positions. The numerical 
results show that 15 samples is a useful sample size for the 
estimation of the covariance.  

 

No. Site ID Coordinate (X,Y,Z) (m) Time of observation 
1 MSD1 (-1979518.886,  -5523223.079, 2493106.300) 7/6/2010 09:00 30.00 
2 ZNY1 (1406144.797, -4627343.637, 4144321.697) 7/6/2010 09:00 30.00 
3 BJCO (6333076.505, 270973.252, 704551.808) 7/6/2010 09:00 30.00 
4 YFB1 (1035381.682, -2634289.442, 5696539.054) 7/6/2010 09:00 30.00 

 
Table 3.1 The specification of the data. 
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(a) MSD1 

 

 
(b) ZNY1 

 

 
(c) BJCO 

 

 
(d) YFB1 

Figure 3.1 Accuracy comparisons: Euclidean distance errors versus number of satellites 

 
 

 
 
 
 
 
 

 
 

 
 
 
 
 
 

 
(a) MSD1 

 

 
(b) ZNY1 

 
(c) BJCO 

 

 
(d) YFB1 

Figure 3.2 Number of samples for estimating the covariance matrix based on Euclidean distance errors versus number of 
satellites. 
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In particular, if we use 1−W  instead of 
1−

W , the 
difference between results are less than 1m. Thus the use of 

1−
W is much more efficient than the exact covariance 
estimation. 

 

IV. CONCLUSIONS 
We introduced new algorithms for the trilocation problem 

based on variable satellite usage. Due to the linearization 
technique used in the algorithm, we eliminate an iteration 
required in the standard Newton-Raphson algorithm and thus 
the computational cost is significantly reduced. The accuracy 
is improved by applying the general least squares method. 
The numerical results show approximately half the error 
compared to the standard Newton-Raphson algorithm for 
practical problems.  
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