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Abstract— Orthogonal frequency division multi-
plexing (OFDM) is superior in spectral efficiency
and is widely used in today’s digital communication.
One of the drawbacks of OFDM is that the peak-to-
average power ratio (PAPR) of the transmitted signal
tends to be high. In order to overcome this problem,
peak power reduction methods based on tone injec-
tion have been proposed. The peak power reduction
problem solved with tone injection is a combinatorial
problem. In this paper, we apply genetic algorithm
(GA) to the reduction method based on tone injec-
tion. The proposed method utilizes a tree-structured
fitness table to reduce the computation time. The ef-
fectiveness of the GA method is demonstrated by nu-
merical simulations in terms of PAPR, bit error rate
(BER) and computaiton time. We also investigate ef-
fective fitness functions and crossover operators. It
is shown that a uniform crossover operation is most
effective. Further, it is shown that our GA method
is superior in terms of computation time compared
to a conventional GA method and a random search
method.

Keywords: OFDM, PAPR, tone injection, genetic al-

gorithm, tree-structured table

1 Introduction

Recent advance in digital signal processing technology
demands faster wireless communication. Orthogonal fre-
quency division multiplexing (OFDM) [1] is superior in
spectral efficiency and is widely used in today’s digital
communication. One of the drawbacks of OFDM is that
the peak-to-average power ratio (PAPR) of the trans-
mitted signal tends to be high. In order to overcome
this problem, various peak power reduction methods have
been proposed[2, 3, 4, 5, 6, 7]. Tone injection is an effec-
tive technique to overcome the PAPR problem[6, 7]. The
peak power reduction problem solved with tone injection
is a combinatorial problem. In [6], a greedy searching
algorithm has been proposed. Its main drawbak is to
easily get a stack shallow local minimum. In [7], the so-
lution space is reasonably reduced by introducing some
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Figure 1: Flow of OFDM from a transmitting end to a
receiving end.

constraints into the tone injection technique, and a peak
power reduction method based on neural network (NN).
However, the reduction performance is high.

In this paper, we apply genetic algorithm (GA) to the
reduction method based on tone injection. The pro-
posed GA method utilizes a tree-structured fitness table
to reduce the computation time. The effectiveness of the
GA method is demonstrated by numerical simulations in
terms of PAPR and bit error rate (BER). We also inves-
tigate effective fitness functions and crossover operators.
It is shown that a uniform crossover operation is most
effective. Further, it is shown that our GA method is
superior in terms of computation time compared to the
conventional GA method and a random search method.

2 OFDM and Tone Injection

2.1 OFDM

OFDM uses multiple subcarriers that are orthogonal to
each other. Let T be the OFDM symbol time. The sub-
carriers are spaced 1/T Hz apart from each other. The
flow of OFDM from a transmitting end to a receiving end
is shown in Fig.1.

At the transmitter side, a bit sequence bL−1, bL−2, · · · ,
b0 to be transmitted is converted into a sequence of com-
plex symbols X0, X1, · · · , XN−1 by mapper. In this
conversion, each M -bit subsequence in L-bit sequence
is mapped to a complex number according to the used
digital modulation scheme such as phase-shift keying
(PSK) and quadrature amplitude modulation (QAM).
When using M -QAM, Xn represents log2 M -bit sub-
sequence bL−m·n−1, bL−m·n−2, · · · , bL−m·n−M , where
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L = M log2 M and m = log2 M . Samples of OFDM
signal Y0, Y1, · · · , YN−1 are generated by IDFT (Inverse
Discrete Fourier Transform) as follows:

Yn =
1

N

N−1∑
k=0

Xke
j 2π

N nk. (1)

The IDFT operation can be performed by IFFT (Inverse
Fast Fourier Transformation) in O(N logN) steps. The
samples are converted to an analog signal, and then the
signal is amplified and is fed to the transmission channel.

The demodulation process is performed in reverse order
of transmitter’s operations. From the received OFDM
signal, N samples Ỹ0, Ỹ1, · · · , ỸN−1 are extracted with

T/N sampling interval. Symbols X̃0, X̃1, · · · , X̃N−1 are
restored by DFT (Discrete Fourier Transform) as follows:

X̃n =

N−1∑
k=0

Ỹke
−j 2π

N nk. (2)

The restored symbol sequence X̃0, X̃1, · · · , X̃N−1 is con-

verted to a bit sequence b̃L−1, b̃L−2, · · · , b̃0. If X̃n = Xn

for all n ∈ {0, 1, · · · , N − 1}, the receiver retrieves the
transmitted bit sequence bL−1, bL−2, · · · , b0 with no er-
ror, that is, for all l ∈ {0, 1, · · · , L− 1}, b̃l = bl.

The OFDM signal often has a very high peak power com-
pared to its average power, because the signal is produced
as a synthetic signal of a number of subcarriers. The de-
gree of the peak power is evaluated by peak-to-average
power ratio (PAPR) defined as follows:

PAPR =
max0≤k<N |Yk|2

E {|Yn|2}
, (3)

where E{|Yn|2} is the average power of the OFDM signal.

2.2 Tone Injection

Tone injection suppresses the peak power by relocating
some complex symbols from their original position to
other position[6, 7]. Assume that the used digital mod-
ulation scheme is M -QAM with an

√
M ×

√
M constel-

lation grid, and the minimum distance between constel-
lation points is d. The original position of a complex
symbol, which will be referred as original symbol, is lo-
cated at a grid point of the

√
M ×

√
M grid, and the

destination of relocation is located outside of the grid. In
Fig.2, the original symbols for 16-QAM are shown as 16
black circles. Let the original position of a complex sym-
bol representing a bit sequence bn = (bL−1, bL−2, · · · , b0)
beXn. In [6], the set of complex symbols X̂n representing
bn is given by the following equation:

X̂n = Xn + pnD + jqnD, (4)

where D = ρdM , ρ ≥ 1 and pn and qn are any integer
numbers. For pn = qn = 0, X̂n is the original symbol

Figure 2: Symbol relocation of tone injection for 16-QAM
and ρ = 1.
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Figure 3: The used constellation map of 64-QAM.

Xn. For pn ̸= 0 and/or qn ̸= 0, X̂n is a relocated symbol,
which is located outside of the

√
M ×

√
M grid. In Fig.2,

the relocated symbols from Xn = −d
2 + j 3d

2 for ρ = 1,
|pn| ≤ 1 and |qn| ≤ 1 are shown as 9 white circles.

The PAPR reduction task based on tone injection is to
determine pn and qn, for all n, so as to minimize PAPR.
That is, the task is a combinatorial optimization problem.
However, the number of solutions are enormous even if
the range of pn and qn are limited. Therefore, A greedy
algorithm proposed in [6] is as follows:
(Step 1) Find the complex symbol Xn or X̂n that most
contributes to the peak power.
(Step 2) Find the most effective pn and qn for PAPR
reduction by evaluating all the combinations. Move the
symbol Xn or X̂n according to the found pn and qn.
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(Step 3) Repeat steps 1 and 2 until obtaining a sufficient
PAPR reduction.

The following drawbacks of this method have been
noted[6, 7]: (1) any average power increases results in
a reduction in SNR margin, (2) unnecessary power in-
creases can lead to higher secondary peaks, and (3) the
greedy searching algorithm tends to get a stack shallow
local minimum, which will result in a poor PAPR reduc-
tion performance.

In [7], two constraints, which are effective to relax the
above drawbacks (1) and (2), have been introduced in
peak power reduction based on tone injection. The con-
straints are as follows: (a) movable symbols are limited to
the symbols located along the outer circumference of the
original constellation, and (b) for a movable symbol the
destination of relocation is limited to one place, which
is an almost symmetrical position of the original posi-
tion with respect to the origin. The constraints (a) and
(b) will reduce the peak powers of subcarriers compared
with the without the constraints, because the magnitude
of any complex symbol with the constraints is not larger
than the one without the constraints. Further, the con-
straint (a) is validated by the observation that the outer
circumferential symbols will contribute more to the peak
power than the inner symbols.

In this paper, we also introduce the above constraints
and use the constellation map of 64-QAM as shown in
Fig.3. In Fig.3, the original symbols are shown as 64
black circles and the relocated symbols are shown as 28
white circles. In the figure, the black circle with a number
m ∈ {0, 1, · · · , 63} is the original symbol X(m), and the
white circle with a number m′ is the replacement of the
original symbol X(m).

Although the above constraints reduce the solution
spaces, the number of solutions is still enormousness. As-
suming that N symbols to be transmitted randomly oc-
cur, the average number of solutions is 2

7
16N , which is

approximately 5.2× 1033 and 2.7× 1067 for N = 256 and
512, respectively. As a solution against the drawback (3),
we will present a searching algorithm based on GA in the
next section.

3 Proposed Method

We apply genetic algorithm (GA) to the peak power re-
duction method based on tone injection. The GA, which
is a search heuristic based on the process of natural evo-
lution, can find a good solution for optimization problems
by evolving the population of solutions with genetic op-
erators such as selection, mutation and crossover[8]. GAs
have been employed for solving many combinatorial op-
timization problems in various fields[9, 10, 11, 12], and it
has been shown that GAs can find a near-optimal solu-
tion in a much shorter time compared to the conventional

Figure 4: An example of chromosome for N = 8 and
S = 3.

methods such as random search and exhaustive one, espe-
cially in large solution spaces. The proposed method uses
GA to find an effective combination of moved symbols for
PAPR reduction.

3.1 Genetic Representation

In GA, a solution is coded as a string, called chromo-
some. Let A = {X(0), X(1), · · · , X(M−1)} be the set of
all the original complex symbols. Let M be the set of
the movable original complex symbols. That is, for Fig.3,
M = {X(0), X(1), X(2), X(4), X(5), X(8), X(10), X(16),
X(17), X(18), X(20), X(21), X(24), X(26), X(32), X(33),
X(34) X(36), X(37), X(40), X(42), X(48), X(49), X(50),
X(52), X(53), X(56), X(58)}.

Let X = (X0, X1, · · · , XN−1) be the vector of original
complex symbols to be transmitted. Let S = {Xn ∈
M|0 ≤ n ≤ N − 1} and S = |S| be the set of movable
symbols in X and the size of S, respectively. Let n(s)
be the function of integer s ∈ {1, 2, · · · , S} such that
|{Xi ∈M|0 ≤ i ≤ n(s)}| = s and Xn(s) ∈ M. That is,
the function n(s) returns the s-th smallest index number
n of Xn among {Xn ∈M|0 ≤ n ≤ N − 1}.

A solution (chromosome) for X is coded as an S-
dimensional binary vector

l = (l1, l2, · · · , lS), (5)

where ls ∈ {0, 1}, and ls = 1 and ls = 0 mean that the
symbol Xn(s) is moved and is not moved, respectively.
Fig.4 shows an example of the chromosome coding. Note
that the length of a chromosome depends on X. When
the symbols to be transmitted randomly occur, the aver-
age length is 7

16N .

3.2 Fitness Function

When PAPR by Eq.(3) is used as evaluation function,
a smaller PAPR value means a better solution. In order
that a better solution has a larger evaluation value, we use
the following evaluation function as GA’s fitness function:

f =

(
1

PAPR

)α

, (6)

where PAPR is calculated by Eq.(3) and α > 0 is a con-
stant value that controls the degree of convergence. A
larger α makes the convergence faster. An effective value
for α is given by simulation in the next section.
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3.3 Mutation and Crossover Operators

The used mutation operator operates on each locus of
chromosomes. Given a chromosome l = (l1, l2, · · · , lS),
each locus l ∈ {l1, l2, · · · , lS} is updated as follows:

l←−
{

(l + 1) mod 2 with probability Pm

l with probability 1− Pm.
(7)

Another approach is to perform the mutation for each
chromosome. However, according to our preliminary sim-
ulation, this approach is not good.

We consider four types of crossover operator: one-point,
two-point, three-point and uniform. For every types, the
crossover points are randomly selected.

3.4 The Algorithm

The evaluation of a solution involves IFFT operation,
which requires O(N logN) steps. In order to reduce the
computation time, the proposed algorithm utilizes a tree-
structured fitness table. Once a solution is evaluated, its
fitness value is registered in the table. When thereafter
the same solution appears, its fitness value is obtained by
referring to the table instead of by calculation.

If the search time is much smaller than the one of IFFT,
a significant reduction of the computation time will be
achieved. The fitness table also should be efficient in
terms of memory. Therefore, we use a binary tree as the
fitness table. The binary tree is as follows: (1) the height
is S, (2) an edge between levels s− 1 and s (1 ≤ s ≤ S)
is associated with ls, (3) for each node at level s− 1, the
left and right edges are associated with ls = 0 and ls = 1,
respectively, (4) the existence of the path corresponding
to a solution l = (l1, l2, · · · , lS) means that the fitness
value of l is already registered, and (5) the fitness value
of a solution l is memorized in the leaf node of the path
corresponding to l. An example of the tree-structured
table is shown in Fig.5. Since the search and the regis-
tration of the fitness value of a solution l trace from the
root node to the corresponding leaf node, they completes
in at most S steps. As mentioned before, the average of
S is 7

16N . Therefore, the search and the registration of a
fitness value completes in O(N) steps.

The algorithm of the proposed GA is shown below.

Algorithm

Step 1: Set the current generation g ← 1. Set the best
fitness fbest ← 0.

Step 2: Randomly generate K individuals l1, l2, · · · , lK
in the form of Eq.(5).

Step 3: For each k ∈ {1, 2, · · · ,K}, search for the fitness
fk in the tree-structured fitness table. If fk is not found,
calculate fk according to Eq.(6), and register fk into the
fitness table.

Let fmax = maxk∈{1,2,··· ,K} fk. Let kmax ∈ {1, 2, · · · ,K}
such that fkmax = fmax. If fmax > fbest, then fbest ←
fmax and lbest ← lkmax .

Step 4: If g > G, then go to Step 10.

Step 5: For each k ∈ {1, 2, · · · ,K}, calculate the selec-
tion probability

Pk =
fk∑

i∈{1,2,··· ,K} fi
.

Draw K samples l′1, l
′
2, · · · , l

′
K with replacement from l1,

l2, · · · , lK with probabilities P1, P2, · · · , PK .

Step 6: For each pair l′2k+1 and l′2k+2 (0 ≤ k ≤ K
2 − 1),

perform the crossover operation with probability Pc.

Step 7: For each locus ls in l′1, l
′
2 · · · l

′
K , perform the

mutation operation with probability Pm.

Step 8: Copy l′1, l
′
2, · · · , l

′
K to l1, l2, · · · , lK , respec-

tively.

Step 9: g ← g + 1 and go to Step 3.

Step 10: Return lbest as the final solution. �

In GA, as the generation progresses, the large portion
of the population converges to particular solutions. This
property will make it possible for Step 3 to reduce the
computation time.

In Step 6, one of the four types of crossover operator is
used. The best type will be shown in the next section.

4 Numerical Simulations

The simulations assume an AWGN (Additive White
Gaussian Noise) channel, where a white noise with SNR
20dB is added to the signal from the amplifier. The used

Figure 5: An example of the tree-structured fitness table
for S = 3: the bold lines show the path of the solution l.
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Figure 6: PAPR for different crossover methods.

nonlinear power amplifier model has the following input-
output characteristic.

F [ρ] =
ρ

(1 + ρ6)1/6
, (8)

where F [ρ] is the gain of the amplifier and ρ is the ratio
of the mean input amplitude to the saturation amplitude.

The number of subcarriers is N = 128, the population
size is K = 30, the maximum generation number is G =
50, and the probabilities for crossover and mutation are
Pc = 0.9 and Pm = 0.01, respectively. Each result is
calculated from 100000 trials.

4.1 PAPR Reduction Performance

At first, for each crossover operator type, the effective
value of parameter α in the fitness function is investigated
in terms of PAPR. From the results, for 1-point, 2-point,
3-point and uniform crossovers, the best values for α are
α = 7, α = 7, α = 8 and α = 8, respectively.

The results with the best α are summarized in Fig.6.
PAPR0 at the horizontal axis is the upper limit of the lin-
ear amplification range, and Pr(PAPR>PAPR0) at the
vertical axis is the probability that PAPR exceeds the
limit PAPR0. This figure shows a tendency that the
PAPR reduction performance improves with the num-
ber of crossover points and the uniform crossover oper-
ator provides the best performance. Therefore, in the
following, the proposed method assumes to use uniform
crossover and α = 8.

Next, the proposed method is compared with a conven-
tional method based on neural network (NN)[7] and a
random search. The result is shown in Fig.7. In the fig-
ure, “NN”, “Random” and “Proposed” are the method
based on NN (NN method), a random search and the
proposed method, respectively. All the methods use the
same constellation map shown in Fig.3. The random

search randomly generates 1500 solutions and returns the
best solution as the final solution. According to the re-
sult, the proposed method achieves the best performance
among them.

We also measure the computation time for the random
search and two types of GA methods. The first type of
GA method is the proposed method. The other type of
GA method is the conventional one that does not use
the tree-structured fitness table and that calculates the
fitness for all the individuals. The computation time is
calculated in terms of CPU time. The random search, the
conventional GA method and the proposed GA method
take 35.16ms, 36.18ms and 22.78ms, respectively. Our
proposed method achieves about 1/3 reduction in the
computation time. The total number of unique individ-
uals occurring through all the generations of GA is ap-
proximately 1000. Since the total number of individuals
through all the generations is 1500, the amount of re-
duction in the computation time is proportional to the
amount of the duplicated individuals.

4.2 Bit Error Rate Performance

The proposed GA method is compared with the conven-
tional NN method and the random search in terms of bit
error rate (BER).

BER =
(Total number of error bits)

(Total number of transmitted bits)
(9)

The result is shown in Fig.8, where IBO (Input Back-Off)
defines the degree of nonlinearity of an amplifier and is
given by the following equation.

IBO =
(Saturation amplitude)

(Mean input power)
(10)

In Fig.8, “Original” is the case of no PAPR reduction.
The result shows that the proposed method achieves the
best BER performance.

5 Conclusions

In this paper, we applied GA to the peak power reduc-
tion method based on tone injection. The proposed GA
method utilized a tree-structured fitness table to reduce
the computation time. We tested four types of crossover
operators: one-point, two-point, three-point and uniform
crossovers. Our results showed that the PAPR reduc-
tion performance improves with the number of crossover
points and the uniform crossover operator provides the
best performance. Our proposed method was compared
with the conventional NN method and a random search
in terms of PAPR and BER. The results showed that our
GA method is superior compared to the conventional NN
method and the random search. Further, our GA method
is superior in terms of PAPR and BER compared to the
conventional GA method and the random search.
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