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Abstract: The basic principle is “A function is easy to 

evaluate but its invert is infeasible unless a secret key is 
known”. 

It is mathematically proved that security of cryptographic 
does not imply its implementation security of system against 
Side-channel Attacks. The security of system lies in the 
difficulty of extracting k from P and Q. It is essential to secure 
the implementation of cryptosystems in embedded devices 
against side-channel attacks. These attacks monitor the power 
consumption or the Electromagnetic emanations of a device Ex 
smart cards or mobile devices.  The attacker’s goal is to 
retrieve partial or full information about a long-term key that 
is employed in several ECSM executions. 

 We are implementing a secret key  avoid to retrieving 
the valuable information by the attacker through Simple  
Power Analysis Attacks.  
 

Key words: Elliptic curve cryptography, Simple power 
Analysis, Differential Power analysis 

I. INTRODUCTION 

Elliptic curve cryptosystems (ECCs) are suitable for 
implementation on devices with limited memory and 
computational capability such as smart cards and also with 
limited power such as wireless handheld devices. This is due 
to the fact that elliptic curves over large finite fields provide 
the same security level as other cryptosystems such as RSA 
for much smaller key sizes. 

Considering power analysis attacks, there are two main 
types that were presented by Kocher et al. These are simple 
and differential power analysis attacks (referred to as SPA 
and DPA respectively).  

Both of them are based on monitoring the power 
consumption of a cryptographic token while executing an 
algorithm that manipulates the secret key. 

The traces of the measured power are then analyzed to 
obtain significant information about the key. In some cases 
the key can be totally compromised and in others the search 
space of the key can be reduced to a computationally 
affordable size. In SPA, a single power trace can reveal 
large features of the algorithm being executed such as the 
iterations of the loop. Moreover, cryptosystem-specific 
operations such as point doubling and adding in ECCs can 
be identified [3]. In order to resist this SPA attack, the steps 
of the algorithm need to be uniform across different 
executions. 
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Hence, DPA attacks are, in general, more powerful than 
the SPA attack. Randomization of the data processed at 
some instant is essential in resisting this type of attacks. 

Electromagnetic emanations present another powerful 
side channel since the information is leaked from the device 
via more than one channel and is a function of space as well 
as of time. In [2], Agrawal et al. presented both simple  and 
differential electromagnetic analysis attacks on smart cards 
and on a Palm pilot . In these attacks they conclude that 
software countermeasures rely on signal information 
reduction, which is achieved by “randomization and/or 
frequent key refreshing within the computation”, which 
agrees with the concept of resisting DPA attacks.  

The point addition operation consists of finite field 
operations carried in the underlying field K. We denote the 
field inversion by I, the multiplication by M, the squaring by 
S. The point addition is denoted by A. When the two 
operands of the addition are the same point, the operation is 
referred to as point doubling and is denoted by D. 

II. WINDOW METHODS 

This method is sometimes referred to as m−ary method. 
There are different versions of window methods . What is 
common among them is that, if the window width is w, 

some multiples of the point P up to (2 w  − 1)P are  
precomputed and stored and k is processed w bits at a time. 

k is recoded to the  radix 2 w . k can be recoded in a way so 
that the average density of the nonzero digits in the recoding 
is 1/(w +  ), where   0    2 depends on the algorithm. 

Let the number of precomputed points be t, in the 
Precomputation stage, each point requires either a doubling 
or an addition to be computed also depending on the 
algorithm.  

This ECSM method is suitable for unknown or fixed 

point P. The cost is Storage: t points, where 2 2w   ≤ t ≤2 1w   
depending on the algorithm. 

Precomputation: t point operations (A or D). 
Expected running time:  

(n − 1) D + n
w

n  A, 

where 0≤ 2  depending on the algorithm. Note that 

the number of doubling is between n − w and n − 1. 

A. Simultaneous multiple point multiplication 

This method is used to compute kP +lS where P may be a 
known point. This algorithm was referred to as Shamir’s 
trick in [10]. If k and l are n-bit integers, then their binary 
representations are written in a 2 × n matrix called the 
exponent array. Given width w, the values iP +jS are 
calculated for w2j,i0  . Now the algorithm performs d = 

 w/n iterations. In every iteration, the accumulator point is 
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doubled w times and the current 2 × w window over the 
exponent array determines the precomputed point that is to 
be added to the   accumulator. 
Algorithm A. Simultaneous multiple point multiplication 
(Shamir-Strauss method) 

Input: Window width w, d =  w/n , 

 k = (K 1d , . . . ,K 1 ,K 0 ) w2
  l= (L 1d , ..,L 1 ,L 0 ) w2

,   and P, S 

  E(F q ). 3Also according to [Ber01], it is originally due to 

Straus [Str64]. 
Output: kP + lS. 
1. Precomputation. Compute iP + jS for     all    

i, j  [0, 2
w

 − 1]. 

2. Q  K 1d P + L 1d S. 

3. for i from d − 2 down to 0 do 

3.1 Q   2
w

Q. 

3.2 Q   Q + (K i P + L i S). 

4. Return(Q). 

Storage: 2 w2  − 1 points. For w = 1, 3 points.  
For w = 2, 15 points. 
Precomputation:  

(2
)1(2 w
 − 2

1w
) D + (3 · 2

)1(2 w
− 2

1w
− 1) A. 

For w = 1, 1 A. 
For w = 2, 1 D + 11 A. 
 
Expected running time:  

(d − 1)w D + 
w2

w2

2

12( 
d − 1) A. 

For w = 1, (n − 1) D +(
4

3
n − 1) A. 

For w = 2, (n − 1) D +( 
32

15
n -1) A.  

Using sliding windows can save about 1 4 of the 
precomputed points and decrease the number of additions to 

)3/1(w

n


, which is about 9% saving for w  {2, 3}. 

 
B. Interleaving method 

 
This method is also a multiple point multiplication 

method, and we want to compute  j
j Pk  for points P j  

and integers jK . In the comb and simultaneous  
multiplication methods, each of the precomputed values is a 
sum of the multiples of the input points. In the interleaving 
method, each precomputed value is simply a multiple of one 
of the input points. Hence, the required storage and the 
number of point additions at the precomputation phase is 
decreased at the expense of the number of point additions in 

the main loop. This method is flexible in that each k j  can 

have a different representation, e.g., different window size, 
as if a separate execution of a window method is performed 

for each k j  P j  with the doubling step performed jointly 

on a common accumulator, as shown in [12]. As an 
illustration, we provide the following algorithm that 

computes kP + lS where both k and l are represented to the 

same base 2 w . 
 
Algorithm B. Interleaving method 
Input: width w, d =  w/n , 

 
k = (K 1d , . . . ,K 1 ,K 0 ) w2

  l= (L 1d , . . . ,L 1 ,L 0 ) w2
, and  P, 

S   E(F q ). 

Output: kP + lS. 

1. Precomputation. Compute iP and iS for all i   [0, 2
w

 − 1]. 

2. Q   K 1d P. 

3. Q   Q L 1d S. 

4. for i from d − 2 down to 0 do 

4.1 Q   2
w

Q. 

4.2 Q   Q + K i P. 

4.3 Q   Q + L i S. 

5. Return(Q). 

Storage: 2
1w

 − 2 points. 

Precomputation: 2(w-1) D + 2(2
w

 − w − 1) A. 

Expected running time: w(d − 1) D + (2d − 1). 
w2

w2

2

)12( 
A 

In general, if different basis and/or representations are 
used for k and l, we have 

Storage: 2t points, where 2 2w   ≤ t ≤2 1w   depending on 
the particular window algorithm used as discussed in 
Section  B 

Precomputation: 2t point operations   (A or D). 

Expected running time: (n − 1) D + 2 
iw

n


 A, where 1 

2 i  depending on the algorithm 
 

C. SPA Attack on ECCs and its Countermeasures 
 
Coron [3] has transferred the power analysis attacks to 

ECCs and has shown that an unaware implementation of EC 
operations can easily be exploited to mount an SPA attack. 
Moreover, it may also enable to recognize the exact 
instruction that has been executed. For example, if the 
difference in power consumption between point doubling 
(D) and point addition (A) is obvious in their respective 
power traces, then, by investigating one power trace of a 
complete execution of a double-and-add algorithm, the bits 
of the scalar k are revealed. That is, whenever a D is 

followed by A, the corresponding bit is k i  = 1, otherwise if 

D is followed by another D, then k i  = 0. This sequence of 

point operations is referred to as the DA sequence. 
Window methods process the key on a digit (window) 

level. The basic version of this method, that is where = 0 in 
Section A, is inherently uniform since in most iterations, w 
D operations are followed by 1 A, except for possibly when 
the digit is 0. Therefore, fixed-sequence window methods 
were proposed  in order to recode the digits of the key such 
that the digit set does not include 0.  
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D. DPA Attack on ECCs and its Countermeasures 
 
As for the SPA attack, Kocher et al. were first to 

introduce the DPA attack on a smart card implementation of 
DES. Techniques to strengthen the attack and a theoretical 
basis for it were presented by Messerges et al. in [3]. Coron 
applied the DPA attack to ECCs [3].  

In order to resist DPA attacks, it is important to 
randomize the value of the long-term key involved in the 
ECSM across the different executions. Some of the 
countermeasures that were based on randomizing the key 
representation were proven to be inadequate since the 
intermediate point computed in the accumulator Q at certain 
iteration remained one of two possible values. The 
constancy of the value of this intermediate point is an 
integral part in the success of first-order DPA attacks.  

A potential DPA countermeasure is known as key 
splitting. It is based on randomly splitting the key into two 
parts such that each part is different in every ECSM 
execution. An additive splitting using subtraction is 
attributed to Clavier and Joye. It is based on computing  

         
  kP = (k − r)P + rP, (I)  

The authors mention that the idea of splitting the data was 
abstracted in [5].   where r is a n-bit random integer, that is, of the 
same bit length as k. Alternatively, Ciet and Joye [8] suggest the 
following additive splitting using division, that is, k is written as 

    k =   r/k   + (k mod r).               (1) 

Hence, if we let k 1  = (k mod r), k 2 2 =  r/k  and  

S = rP, we can compute    KP = k 1 p + k 2 P   (2) 

where the bit length of r is n/2. They also suggest that (2) 
should be evaluated with Shamir-Strauss method as in 
Algorithm C. However, they did not mention whether the 
same algorithm should be used to evaluate (1). The 
following multiplicative splitting was proposed by Trichina 
and Bellezza [0] where r is a random integer invertible 
modulo u, the order of P. The scalar multiplication kP is 
then evaluated as     

 kP = [kr 1  (mod u)] (rp)     (3)  
To evaluate (3), two scalar   multiplications are needed; 

first R = rP is computed, then kr 1 R is computed.  

III. KEY SPLITTING METHODS 

A. Introduction 

We discuss different the forms of key splitting along with 
their strengths and weaknesses. We also discuss the 
candidate SPA-resistant algorithms and compare the 
resulting performance when combined with each form of 
key splitting. At the end of the chapter, we present 
countermeasures to DPA attacks on the ECDSA and the 
ECMQV algorithms.  

This approach was suggested by Clavier and Joye in [5] 
and revisited by Ciet [6] as follows. In order to compute the 
point kP, the n-bit key k is written as 

        k = k 1  + k 2 , 

such that k 1 = k − r and k 2  = r, where r is a random 

integer of length n bits. Then kP is computed as 

        kP = k 1 P + k 2 P.             (1) 

It is important to note that each of the terms of  should be 
evaluated separately and their results combined at the end 

using point addition. That is the multiple-point 
multiplication methods that use a common accumulator to 
save doubling operations. Whether at the bit level (w ≡ 1) or 
window level (w > 1)-should not be used, even when a 
countermeasure against SPA is employed. This observation 
is based on the following lemma. Let 

ab denote  a1b 2)2(modk  or, simply, the bits of k from bit 

position b down to bit position a, with   b ≥ a. 
 
 Lemma 3.2 Let splitting scheme I at the end of some 

iteration j, 0 < j ≤ n − 1, there are only two possible values 

for Q, those are [k jIn  ] P or [k jIn   − 1] P.  

Proof. Algorithm C—and similarly computes the required 
point by scanning 

 k 1  = (k 1 1n  , . . . , k 1 0 )2 and  

k 2  = (k 2 1n , . . . , k 2 0 ) 2  from the most significant end 

down to the least significant end. Hence, at the end of 
iteration j, the accumulator Q contains the value 

Q = k jIn 1  P  + k jIn 2  P           (2) 

   = [k jIn 1  +  k jIn 2  ] P. 

We can write k, k 1  and k 2  as 

   k = k jjIn 
2 j  + k 01j    

k i = k i jjIn 
2 j  + k i 01j           (3) 

          Since k = k 1  + k 2  we have 

k 1 0Ij  + k 2 0Ij j = k 0Ij  + b 2 j where b{0, 1}              

      (4)  
and 

k 1 jIn   + k 2 jIn   = k jIn  -b 

The DPA attack would proceed in the same way, whether 
the algorithm processes a single bit or a digit per iteration, 
though it would be more involved in the latter case 
depending on the digit size. The attacker can double the 
number of traces gathered and compute the necessary 
intermediate points as if there was no countermeasure in 
place. 

B.Modular division: 

In the following algorithm, a and b are integers internally 
represented each by an array of w-bit digits. The length of 
each array is d =  w/n  digits. Note that for the modular   

inversion, as mentioned by Savas and Koc , b needs not be 

less than the modulus u, but be in [1, 2 m −1], where m = dw. 

Also note that the values R 2  mod u, where R = 2 m , and u’ 
are computed once per modulus, i.e., per curve. 

Algorithm B. Modular division  

Input: u: a n-bit prime, d =  w/n , m = dw, R 2  (mod u) 

= (2m) 2  (mod u), u’ = u 1  mod 2 w , a    [1, p − 1] and b 

  [1, 2 m  − 1]. 

Output: ab 1 (mod u). 

1. Compute b 1 R (mod u). 

2. Compute x = a(b 1 R)R 1  (mod u)  
3. Return(x). 
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Algorithm C Montgomery multiplication  

Input: u: a n-bit prime, d =  w/n , m = dw, u’ = u 1  

mod 2 w , x = (x 1d . . . , x0)2 w  and  

y = (y 1d . . . y0)2 w . 

Output: xy2 m  (mod u). 

1. A   0.          // A = (ad, a 1d , . . . , a0)2w 

2. for i from 0 to d − 1 do 

2.1 ui   (a 0  + x i y 0 ) mod 2 w  

2.2 A    (A + x i y 0  + u i m)/ 2 w  

3. if (A > u) then 
A   A  u. 
4. Return(A). 
The following algorithm was presented by Savas and 

Ko¸c  as the modified  Kaliski-Montgomery Inverse. 
Algorithm D. Montgomery inversion 

Input: u: a n-bit prime, d =  w/n  , m = dw, R 2  (mod u)   

 = (2 m ) 2 (mod u), u '  = u 1  mod 2 w  and  

                                                  b   [1, 2 m  − 1]. 

Output: b 1 R (mod u). 

1. Compute f and x = b 1 2f  Where  n ≤ f ≤ m + n. 
2. if (f ≤ m) then 

2.1 x   xR 2 R 1 (mod u)                        

x = b 1 2 fm (mod u) 
2.2 f   f + m. // f > m, x = b−12f (mod u) 

3. x   x2 fm2 R 1  (mod u)      using Algorithm 6.5. 

// x = b 1 2 f  2 fm2  2 m  = b 1 2 m  (mod u) 
4. Return(x). 

IV. EXISTING SYSTEM 

Nevine Maurice Ebied’s modified  Almost Montgomery 
inverse algorithm to be resistant to SPA attacks. In the  
following algorithm. Swap Address(c, d) denotes 
interchanging the memory addresses of the integer’s c and d. 
This is an inexpensive operation, hence its usage as a 
dummy operation to balance the branches of the main loop. 
We implemented the “if” statement in steps 3.4 and 3.5 such 
that the number of conditions checked per loop iteration is 
always three. In assembly language, this can be easily 
ensured. Written in Java, step 3.4 is implemented as 

if( ( xLSb = = 0 ) && ( xLSb = = 0 ) && ( xLSb = = 0 ) ). 
If the condition is false, due to short-circuit evaluation, 

the flow control will move to the following “if” after the 
first check, otherwise, it will perform the check three times. 
The following “if”—step 3.5—is similar but with the 
condition checked only two times  

if( ( yLSb = = 0 ) && ( yLSb = = 0 ) ). 
Algorithm 3.7. Almost Montgomery inverse :Input: u: a 

n-bit prime,  

d =  w/n , m = dw and b   [1, 2 m  − 1]. 

Output: f and b 1 2 f  (mod u), where n ≤ f ≤ m + n. 
1. x    u; y    b; r    0; s    1. 
2. f     0. 
3. while (v > 0) do 
3.1 U     x − y;    V   −U. 
3.2 T     r + s. 

3.3 f       f + 1. 
3.4 if (((lsb(x) = 0))) then // This “if” is special 
SwapAddress(x, U); SwapAddress 
(x,   U)  // dummy 
SHR(x); SHL(s). 
3.5 else if ((lsb(y) = 0)) then // This “if” is special 
SwapAddress(y, V); SwapAddress 
(y, V)                    // dummy 
SHR(y); SHL(r). 
3.6 else if (V >= 0) then 
SwapAddress(y, V);  
SwapAddress(s, T ) 
SHR(y); SHL(r). 
3.7 else 
SwapAddress(x, U);  
SwapAddress(r, T ) 
SHR(x); SHL(s). 
4. T    u − r; V    u + T . 
5. if (T > 0) then 
Return(f, T ) 
else 
Return (f, V). 
The drawback of this algorithm is that an SPA of the 

number of iterations of the main loop directly leaks the 
value of f. If f is uniformly distributed, the search space of b 

s reduced from 2 w  to 2
mm 2log , which is not a significant 

reduction. It is interesting to study how f is actually 
distributed. 

A. Proposed system 

We modified the Nevine Maurice Ebied’s Almost 
Montgomery inverse and A SECRET KEY   of [  Savas and 
Koc] to be resistant to SPA attacks as in the following  
algorithm.  

Algorithm A. EKR Modified Montgomery Inversion 

Input: u: a n-bit prime, d =  wn /  ,  

m = dw, R 2  (mod u) = (2 m ) 2 (mod u), u '  = u 1  mod 

2 w  and b   [1, 2 m  − 1], t is Secret key. 
t: No of precomputed points     1≤ t ≤n 
W: Window width least significant of bit    

2 zw   12  wt  

Output: b 1 R (mod u). 

1. Select a number b such that    12, mb  

2. Compute b 1  such that     bb 1    1(mod 2 m ) 

3. If f > m then x = b 1 2 f (mod u)  

     x =   b 1 2 f (mod u) 
4. If f   ≤ m  then  

5. x     R )(mod12 uR     R =   2 m  

6. x=b 1 2 fm (mod u) f   m+f 
7. Return(x) 

In EKR modified Montgomery Inverse Algorithm 

of Savas and Koc , we select f such that gcd   12,b m  , m ≤ 

f   ≤  m +n . So b is not reduced from 2 m    to 2
mm 2log . 

Therefore this is significant reduction and hence f is not 
uniformly distributed and it can’t leaks the value 
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B. Source Code:  
 
package javaapplication1; 
import java.util.ArrayList; 
import java.util.Scanner; 
public class Main { 
public static void main(String[] args) 
    { 
Scanner s=new Scanner(System.in); 
System.out.println("Enter a Prime Integer(U):"); 
int u=s.nextInt(); 
String binU=Integer.toBinaryString(u); 
int n=binU.length(); 
System.out.println("Enter a secrete Key(t):"); 
int t=s.nextInt(); 
double w=0; 
for(int wi=1;wi<=t;wi++) 
{ 
    int i1=(int)Math.pow(2,wi-2); 
    int i2=(int)Math.pow(2,wi)-1; 
    if(i1<=t && t<=i2) 
    { 
        w=wi; 
        break; 
    } 
} 
 
System.out.println("Window width (W): "+w); 
int d=(int)Math.ceil(n/w); 
System.out.println("Length of Each Array (d) :"+d); 
int m=(int)(d*w); 
System.out.println("....(m) :"+m); 
int on1=(int)Math.floor(Math.pow(2,m-1)); 
int n2=(int)Math.pow(2,m); 
for(int i=m;i<on1;i++) 
{int n1=i; 
while(n1!=n2) 
  { 
            if(n1>n2) 
                        n1=n1-n2; 
            else 
                        n2=n2-n1; 
  } 
 
 //System.out.println("GCD of two number is "+n1+"and i 

is "+i); 
if(n1==1){on1=i;break;} 
} 
System.out.println("B="+on1); 
int b=on1; 
 
int b_inverse=0; 
for(int i=1;i<b;i++) 
{ 
int t2m=(int)Math.pow(2,m); 
int temp=t2m*i; 
 
temp=temp+1; 
b_inverse=temp/b; 
if((temp%b)==0) 
{ 
break; 
} 
} 

System.out.println("B inverse: "+b_inverse); 
 
ArrayList<Integer> af=new ArrayList<Integer>(); 
for(int i=n;i<=(m+n);i++) 
{    af.add(i); 
} 
int x=0; 
for(int f=n;f<=(n+m);f++) 
{ 
if(f>m) 
{ 
 x=(int)(b_inverse*Math.pow(2, f))/u; 
System.out.println("f="+f+"\nx="+x); 
} 
else if (f<m) 
{ 
    x=(int)(b_inverse*(Math.pow(2,m+f)))/u; 
 
System.out.println("f="+af.get(f)+"\nx="+x); 
} 
 
} 
     
    } 
 
} 
 

C. Input and output 
 

Enter a Prime Integer(U): 
111 
Enter a secrete Key(t): 
117 
Window width (W): 7.0 
Length of Each Array (d) :1 
....(m) :7 
B=7 
B inverse: 55 
f=8 
x=126 
f=9 
x=253 
f=10 
x=507 
f=11 
x=1014 
f=12 
x=2029 
f=13 
x=4059 
f=14 
x=8118 
BUILD SUCCESSFUL (total time: 29 seconds) 
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V. CONCLUSION 

We modified the Nevine Maurice Ebied’s Almost 
Montgomery inverse and  A New variant   of  [ScKK00] of 
Montgomery Inversion  i.e   is EKR Modified Montgomery 
Algorithm  to be resistant to SPA attacks . In EKR Modified 
Montgomery Inverse Algorithm to  eliminate the number of 
Iterations  of the main loop directly leaks the value of f and 
also it is mathematically proved that f is uniformly 
distributed with a significant reduction 

A function that is easy to evaluate but its inverse is 
infeasible unless the secret key t is known. So the attacker 
can not guess the key (t) to retrieve the valuable information 
in smart cards and mobile devices. 
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