

Security through Elliptic Curves for Wireless
Network in Mobile Devices

E.KESAVULU REDDY P.GOVINDA RAJULU

Abstract: The basic principle is “A function is easy to

evaluate but its invert is infeasible unless a secret key is
known”.

It is mathematically proved that security of cryptographic
does not imply its implementation security of system against
Side-channel Attacks. The security of system lies in the
difficulty of extracting k from P and Q. It is essential to secure
the implementation of cryptosystems in embedded devices
against side-channel attacks. These attacks monitor the power
consumption or the Electromagnetic emanations of a device Ex
smart cards or mobile devices. The attacker’s goal is to
retrieve partial or full information about a long-term key that
is employed in several ECSM executions.

 We are implementing a secret key avoid to retrieving
the valuable information by the attacker through Simple
Power Analysis Attacks.

Key words: Elliptic curve cryptography, Simple power
Analysis, Differential Power analysis

I. INTRODUCTION

Elliptic curve cryptosystems (ECCs) are suitable for
implementation on devices with limited memory and
computational capability such as smart cards and also with
limited power such as wireless handheld devices. This is due
to the fact that elliptic curves over large finite fields provide
the same security level as other cryptosystems such as RSA
for much smaller key sizes.

Considering power analysis attacks, there are two main
types that were presented by Kocher et al. These are simple
and differential power analysis attacks (referred to as SPA
and DPA respectively).

Both of them are based on monitoring the power
consumption of a cryptographic token while executing an
algorithm that manipulates the secret key.

The traces of the measured power are then analyzed to
obtain significant information about the key. In some cases
the key can be totally compromised and in others the search
space of the key can be reduced to a computationally
affordable size. In SPA, a single power trace can reveal
large features of the algorithm being executed such as the
iterations of the loop. Moreover, cryptosystem-specific
operations such as point doubling and adding in ECCs can
be identified [3]. In order to resist this SPA attack, the steps
of the algorithm need to be uniform across different
executions.

Asst Prof. E.KESAVULU REDDY, Assistant Professor, Dept.of

Computer Science, S.V.University College of CM & CS, Tirupati,
A P-India-517502, Mobile:+91 9866430097
 (e-mail: ekreddysvu2008@gmail.com)
 Prof. P.GOVINDA RAJULU, Professor, Dept.of Computer
Science, S.V.university College of CM & CS,Tirupati, AP-India-
517502,Phone:0877-2249916,Mobile:+919912349770
(e-mail: pgovindarajulu@yahoo.com)

Hence, DPA attacks are, in general, more powerful than
the SPA attack. Randomization of the data processed at
some instant is essential in resisting this type of attacks.

Electromagnetic emanations present another powerful
side channel since the information is leaked from the device
via more than one channel and is a function of space as well
as of time. In [2], Agrawal et al. presented both simple and
differential electromagnetic analysis attacks on smart cards
and on a Palm pilot . In these attacks they conclude that
software countermeasures rely on signal information
reduction, which is achieved by “randomization and/or
frequent key refreshing within the computation”, which
agrees with the concept of resisting DPA attacks.

The point addition operation consists of finite field
operations carried in the underlying field K. We denote the
field inversion by I, the multiplication by M, the squaring by
S. The point addition is denoted by A. When the two
operands of the addition are the same point, the operation is
referred to as point doubling and is denoted by D.

II. WINDOW METHODS

This method is sometimes referred to as m−ary method.
There are different versions of window methods . What is
common among them is that, if the window width is w,

some multiples of the point P up to (2 w − 1)P are
precomputed and stored and k is processed w bits at a time.

k is recoded to the radix 2 w . k can be recoded in a way so
that the average density of the nonzero digits in the recoding
is 1/(w + ), where 0   2 depends on the algorithm.

Let the number of precomputed points be t, in the
Precomputation stage, each point requires either a doubling
or an addition to be computed also depending on the
algorithm.

This ECSM method is suitable for unknown or fixed

point P. The cost is Storage: t points, where 2 2w ≤ t ≤2 1w
depending on the algorithm.

Precomputation: t point operations (A or D).
Expected running time:

(n − 1) D + n
w

n A,

where 0≤ 2 depending on the algorithm. Note that

the number of doubling is between n − w and n − 1.

A. Simultaneous multiple point multiplication

This method is used to compute kP +lS where P may be a
known point. This algorithm was referred to as Shamir’s
trick in [10]. If k and l are n-bit integers, then their binary
representations are written in a 2 × n matrix called the
exponent array. Given width w, the values iP +jS are
calculated for w2j,i0  . Now the algorithm performs d =

 w/n iterations. In every iteration, the accumulator point is

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

doubled w times and the current 2 × w window over the
exponent array determines the precomputed point that is to
be added to the accumulator.
Algorithm A. Simultaneous multiple point multiplication
(Shamir-Strauss method)

Input: Window width w, d =  w/n ,

 k = (K 1d , . . . ,K 1 ,K 0) w2
 l= (L 1d , ..,L 1 ,L 0) w2

, and P, S

 E(F q). 3Also according to [Ber01], it is originally due to

Straus [Str64].
Output: kP + lS.
1. Precomputation. Compute iP + jS for all

i, j  [0, 2
w

 − 1].

2. Q K 1d P + L 1d S.

3. for i from d − 2 down to 0 do

3.1 Q  2
w

Q.

3.2 Q  Q + (K i P + L i S).

4. Return(Q).

Storage: 2 w2 − 1 points. For w = 1, 3 points.
For w = 2, 15 points.
Precomputation:

(2
)1(2 w
 − 2

1w
) D + (3 · 2

)1(2 w
− 2

1w
− 1) A.

For w = 1, 1 A.
For w = 2, 1 D + 11 A.

Expected running time:

(d − 1)w D +
w2

w2

2

12(
d − 1) A.

For w = 1, (n − 1) D +(
4

3
n − 1) A.

For w = 2, (n − 1) D +(
32

15
n -1) A.

Using sliding windows can save about 1 4 of the
precomputed points and decrease the number of additions to

)3/1(w

n


, which is about 9% saving for w  {2, 3}.

B. Interleaving method

This method is also a multiple point multiplication

method, and we want to compute  j
j Pk for points P j

and integers jK . In the comb and simultaneous
multiplication methods, each of the precomputed values is a
sum of the multiples of the input points. In the interleaving
method, each precomputed value is simply a multiple of one
of the input points. Hence, the required storage and the
number of point additions at the precomputation phase is
decreased at the expense of the number of point additions in

the main loop. This method is flexible in that each k j can

have a different representation, e.g., different window size,
as if a separate execution of a window method is performed

for each k j P j with the doubling step performed jointly

on a common accumulator, as shown in [12]. As an
illustration, we provide the following algorithm that

computes kP + lS where both k and l are represented to the

same base 2 w .

Algorithm B. Interleaving method
Input: width w, d =  w/n ,

k = (K 1d , . . . ,K 1 ,K 0) w2

 l= (L 1d , . . . ,L 1 ,L 0) w2
, and P,

S  E(F q).

Output: kP + lS.

1. Precomputation. Compute iP and iS for all i  [0, 2
w

 − 1].

2. Q  K 1d P.

3. Q  Q L 1d S.

4. for i from d − 2 down to 0 do

4.1 Q  2
w

Q.

4.2 Q  Q + K i P.

4.3 Q  Q + L i S.

5. Return(Q).

Storage: 2
1w

 − 2 points.

Precomputation: 2(w-1) D + 2(2
w

 − w − 1) A.

Expected running time: w(d − 1) D + (2d − 1).
w2

w2

2

)12(
A

In general, if different basis and/or representations are
used for k and l, we have

Storage: 2t points, where 2 2w ≤ t ≤2 1w depending on
the particular window algorithm used as discussed in
Section B

Precomputation: 2t point operations (A or D).

Expected running time: (n − 1) D + 2
iw

n


 A, where 1

2 i depending on the algorithm

C. SPA Attack on ECCs and its Countermeasures

Coron [3] has transferred the power analysis attacks to

ECCs and has shown that an unaware implementation of EC
operations can easily be exploited to mount an SPA attack.
Moreover, it may also enable to recognize the exact
instruction that has been executed. For example, if the
difference in power consumption between point doubling
(D) and point addition (A) is obvious in their respective
power traces, then, by investigating one power trace of a
complete execution of a double-and-add algorithm, the bits
of the scalar k are revealed. That is, whenever a D is

followed by A, the corresponding bit is k i = 1, otherwise if

D is followed by another D, then k i = 0. This sequence of

point operations is referred to as the DA sequence.
Window methods process the key on a digit (window)

level. The basic version of this method, that is where = 0 in
Section A, is inherently uniform since in most iterations, w
D operations are followed by 1 A, except for possibly when
the digit is 0. Therefore, fixed-sequence window methods
were proposed in order to recode the digits of the key such
that the digit set does not include 0.

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

D. DPA Attack on ECCs and its Countermeasures

As for the SPA attack, Kocher et al. were first to

introduce the DPA attack on a smart card implementation of
DES. Techniques to strengthen the attack and a theoretical
basis for it were presented by Messerges et al. in [3]. Coron
applied the DPA attack to ECCs [3].

In order to resist DPA attacks, it is important to
randomize the value of the long-term key involved in the
ECSM across the different executions. Some of the
countermeasures that were based on randomizing the key
representation were proven to be inadequate since the
intermediate point computed in the accumulator Q at certain
iteration remained one of two possible values. The
constancy of the value of this intermediate point is an
integral part in the success of first-order DPA attacks.

A potential DPA countermeasure is known as key
splitting. It is based on randomly splitting the key into two
parts such that each part is different in every ECSM
execution. An additive splitting using subtraction is
attributed to Clavier and Joye. It is based on computing

 kP = (k − r)P + rP, (I)

The authors mention that the idea of splitting the data was
abstracted in [5]. where r is a n-bit random integer, that is, of the
same bit length as k. Alternatively, Ciet and Joye [8] suggest the
following additive splitting using division, that is, k is written as

 k =  r/k + (k mod r). (1)

Hence, if we let k 1 = (k mod r), k 2 2 =  r/k and

S = rP, we can compute KP = k 1 p + k 2 P (2)

where the bit length of r is n/2. They also suggest that (2)
should be evaluated with Shamir-Strauss method as in
Algorithm C. However, they did not mention whether the
same algorithm should be used to evaluate (1). The
following multiplicative splitting was proposed by Trichina
and Bellezza [0] where r is a random integer invertible
modulo u, the order of P. The scalar multiplication kP is
then evaluated as

 kP = [kr 1 (mod u)] (rp) (3)
To evaluate (3), two scalar multiplications are needed;

first R = rP is computed, then kr 1 R is computed.

III. KEY SPLITTING METHODS

A. Introduction

We discuss different the forms of key splitting along with
their strengths and weaknesses. We also discuss the
candidate SPA-resistant algorithms and compare the
resulting performance when combined with each form of
key splitting. At the end of the chapter, we present
countermeasures to DPA attacks on the ECDSA and the
ECMQV algorithms.

This approach was suggested by Clavier and Joye in [5]
and revisited by Ciet [6] as follows. In order to compute the
point kP, the n-bit key k is written as

 k = k 1 + k 2 ,

such that k 1 = k − r and k 2 = r, where r is a random

integer of length n bits. Then kP is computed as

 kP = k 1 P + k 2 P. (1)

It is important to note that each of the terms of should be
evaluated separately and their results combined at the end

using point addition. That is the multiple-point
multiplication methods that use a common accumulator to
save doubling operations. Whether at the bit level (w ≡ 1) or
window level (w > 1)-should not be used, even when a
countermeasure against SPA is employed. This observation
is based on the following lemma. Let

ab denote  a1b 2)2(modk  or, simply, the bits of k from bit

position b down to bit position a, with b ≥ a.

 Lemma 3.2 Let splitting scheme I at the end of some

iteration j, 0 < j ≤ n − 1, there are only two possible values

for Q, those are [k jIn ] P or [k jIn  − 1] P.

Proof. Algorithm C—and similarly computes the required
point by scanning

 k 1 = (k 1 1n , . . . , k 1 0)2 and

k 2 = (k 2 1n , . . . , k 2 0) 2 from the most significant end

down to the least significant end. Hence, at the end of
iteration j, the accumulator Q contains the value

Q = k jIn 1 P + k jIn 2 P (2)

 = [k jIn 1 + k jIn 2] P.

We can write k, k 1 and k 2 as

 k = k jjIn 
2 j + k 01j

k i = k i jjIn 
2 j + k i 01j (3)

 Since k = k 1 + k 2 we have

k 1 0Ij + k 2 0Ij j = k 0Ij + b 2 j where b{0, 1}

 (4)
and

k 1 jIn  + k 2 jIn  = k jIn  -b

The DPA attack would proceed in the same way, whether
the algorithm processes a single bit or a digit per iteration,
though it would be more involved in the latter case
depending on the digit size. The attacker can double the
number of traces gathered and compute the necessary
intermediate points as if there was no countermeasure in
place.

B.Modular division:

In the following algorithm, a and b are integers internally
represented each by an array of w-bit digits. The length of
each array is d =  w/n digits. Note that for the modular

inversion, as mentioned by Savas and Koc , b needs not be

less than the modulus u, but be in [1, 2 m −1], where m = dw.

Also note that the values R 2 mod u, where R = 2 m , and u’
are computed once per modulus, i.e., per curve.

Algorithm B. Modular division

Input: u: a n-bit prime, d =  w/n , m = dw, R 2 (mod u)

= (2m) 2 (mod u), u’ = u 1 mod 2 w , a  [1, p − 1] and b

 [1, 2 m − 1].

Output: ab 1 (mod u).

1. Compute b 1 R (mod u).

2. Compute x = a(b 1 R)R 1 (mod u)
3. Return(x).

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

Algorithm C Montgomery multiplication

Input: u: a n-bit prime, d =  w/n , m = dw, u’ = u 1

mod 2 w , x = (x 1d . . . , x0)2 w and

y = (y 1d . . . y0)2 w .

Output: xy2 m (mod u).

1. A  0. // A = (ad, a 1d , . . . , a0)2w

2. for i from 0 to d − 1 do

2.1 ui  (a 0 + x i y 0) mod 2 w

2.2 A  (A + x i y 0 + u i m)/ 2 w

3. if (A > u) then
A A  u.
4. Return(A).
The following algorithm was presented by Savas and

Ko¸c as the modified Kaliski-Montgomery Inverse.
Algorithm D. Montgomery inversion

Input: u: a n-bit prime, d =  w/n , m = dw, R 2 (mod u)

 = (2 m) 2 (mod u), u ' = u 1 mod 2 w and

 b  [1, 2 m − 1].

Output: b 1 R (mod u).

1. Compute f and x = b 1 2f Where n ≤ f ≤ m + n.
2. if (f ≤ m) then

2.1 x  xR 2 R 1 (mod u)

x = b 1 2 fm (mod u)
2.2 f f + m. // f > m, x = b−12f (mod u)

3. x  x2 fm2 R 1 (mod u) using Algorithm 6.5.

// x = b 1 2 f 2 fm2 2 m = b 1 2 m (mod u)
4. Return(x).

IV. EXISTING SYSTEM

Nevine Maurice Ebied’s modified Almost Montgomery
inverse algorithm to be resistant to SPA attacks. In the
following algorithm. Swap Address(c, d) denotes
interchanging the memory addresses of the integer’s c and d.
This is an inexpensive operation, hence its usage as a
dummy operation to balance the branches of the main loop.
We implemented the “if” statement in steps 3.4 and 3.5 such
that the number of conditions checked per loop iteration is
always three. In assembly language, this can be easily
ensured. Written in Java, step 3.4 is implemented as

if((xLSb = = 0) && (xLSb = = 0) && (xLSb = = 0)).
If the condition is false, due to short-circuit evaluation,

the flow control will move to the following “if” after the
first check, otherwise, it will perform the check three times.
The following “if”—step 3.5—is similar but with the
condition checked only two times

if((yLSb = = 0) && (yLSb = = 0)).
Algorithm 3.7. Almost Montgomery inverse :Input: u: a

n-bit prime,

d =  w/n , m = dw and b  [1, 2 m − 1].

Output: f and b 1 2 f (mod u), where n ≤ f ≤ m + n.
1. x u; y  b; r  0; s  1.
2. f  0.
3. while (v > 0) do
3.1 U  x − y; V −U.
3.2 T  r + s.

3.3 f  f + 1.
3.4 if (((lsb(x) = 0))) then // This “if” is special
SwapAddress(x, U); SwapAddress
(x, U) // dummy
SHR(x); SHL(s).
3.5 else if ((lsb(y) = 0)) then // This “if” is special
SwapAddress(y, V); SwapAddress
(y, V) // dummy
SHR(y); SHL(r).
3.6 else if (V >= 0) then
SwapAddress(y, V);
SwapAddress(s, T)
SHR(y); SHL(r).
3.7 else
SwapAddress(x, U);
SwapAddress(r, T)
SHR(x); SHL(s).
4. T  u − r; V u + T .
5. if (T > 0) then
Return(f, T)
else
Return (f, V).
The drawback of this algorithm is that an SPA of the

number of iterations of the main loop directly leaks the
value of f. If f is uniformly distributed, the search space of b

s reduced from 2 w to 2
mm 2log , which is not a significant

reduction. It is interesting to study how f is actually
distributed.

A. Proposed system

We modified the Nevine Maurice Ebied’s Almost
Montgomery inverse and A SECRET KEY of [Savas and
Koc] to be resistant to SPA attacks as in the following
algorithm.

Algorithm A. EKR Modified Montgomery Inversion

Input: u: a n-bit prime, d =  wn / ,

m = dw, R 2 (mod u) = (2 m) 2 (mod u), u ' = u 1 mod

2 w and b  [1, 2 m − 1], t is Secret key.
t: No of precomputed points 1≤ t ≤n
W: Window width least significant of bit

2 zw 12  wt

Output: b 1 R (mod u).

1. Select a number b such that   12, mb

2. Compute b 1 such that bb 1  1(mod 2 m)

3. If f > m then x = b 1 2 f (mod u)

  x = b 1 2 f (mod u)
4. If f ≤ m then

5. x  R)(mod12 uR   R = 2 m

6. x=b 1 2 fm (mod u) f  m+f
7. Return(x)

In EKR modified Montgomery Inverse Algorithm

of Savas and Koc , we select f such that gcd   12,b m  , m ≤

f ≤ m +n . So b is not reduced from 2 m to 2
mm 2log .

Therefore this is significant reduction and hence f is not
uniformly distributed and it can’t leaks the value

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

B. Source Code:

package javaapplication1;
import java.util.ArrayList;
import java.util.Scanner;
public class Main {
public static void main(String[] args)
 {
Scanner s=new Scanner(System.in);
System.out.println("Enter a Prime Integer(U):");
int u=s.nextInt();
String binU=Integer.toBinaryString(u);
int n=binU.length();
System.out.println("Enter a secrete Key(t):");
int t=s.nextInt();
double w=0;
for(int wi=1;wi<=t;wi++)
{
 int i1=(int)Math.pow(2,wi-2);
 int i2=(int)Math.pow(2,wi)-1;
 if(i1<=t && t<=i2)
 {
 w=wi;
 break;
 }
}

System.out.println("Window width (W): "+w);
int d=(int)Math.ceil(n/w);
System.out.println("Length of Each Array (d) :"+d);
int m=(int)(d*w);
System.out.println("....(m) :"+m);
int on1=(int)Math.floor(Math.pow(2,m-1));
int n2=(int)Math.pow(2,m);
for(int i=m;i<on1;i++)
{int n1=i;
while(n1!=n2)
 {
 if(n1>n2)
 n1=n1-n2;
 else
 n2=n2-n1;
 }

 //System.out.println("GCD of two number is "+n1+"and i

is "+i);
if(n1==1){on1=i;break;}
}
System.out.println("B="+on1);
int b=on1;

int b_inverse=0;
for(int i=1;i<b;i++)
{
int t2m=(int)Math.pow(2,m);
int temp=t2m*i;

temp=temp+1;
b_inverse=temp/b;
if((temp%b)==0)
{
break;
}
}

System.out.println("B inverse: "+b_inverse);

ArrayList<Integer> af=new ArrayList<Integer>();
for(int i=n;i<=(m+n);i++)
{ af.add(i);
}
int x=0;
for(int f=n;f<=(n+m);f++)
{
if(f>m)
{
 x=(int)(b_inverse*Math.pow(2, f))/u;
System.out.println("f="+f+"\nx="+x);
}
else if (f<m)
{
 x=(int)(b_inverse*(Math.pow(2,m+f)))/u;

System.out.println("f="+af.get(f)+"\nx="+x);
}

}

 }

}

C. Input and output

Enter a Prime Integer(U):
111
Enter a secrete Key(t):
117
Window width (W): 7.0
Length of Each Array (d) :1
....(m) :7
B=7
B inverse: 55
f=8
x=126
f=9
x=253
f=10
x=507
f=11
x=1014
f=12
x=2029
f=13
x=4059
f=14
x=8118
BUILD SUCCESSFUL (total time: 29 seconds)

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

V. CONCLUSION

We modified the Nevine Maurice Ebied’s Almost
Montgomery inverse and A New variant of [ScKK00] of
Montgomery Inversion i.e is EKR Modified Montgomery
Algorithm to be resistant to SPA attacks . In EKR Modified
Montgomery Inverse Algorithm to eliminate the number of
Iterations of the main loop directly leaks the value of f and
also it is mathematically proved that f is uniformly
distributed with a significant reduction

A function that is easy to evaluate but its inverse is
infeasible unless the secret key t is known. So the attacker
can not guess the key (t) to retrieve the valuable information
in smart cards and mobile devices.

REFERENCES
[1]. Nevine Maurice Ebied’s Key Randomization Counter Measures To

Power Analysis Attacks On Elliptic Curve Cryptosystems Ph.D.
thesis, University of Waterloo, Ontario, Canada, 2007

[2]. D. Agrawal, B. Archambeault, J. R. Rao & P. Rohatgi. The EM Side-
Channel(s): Attacks and Assessment Methodologies. Internet Security
Group, IBM Watson Research Center.ps. 2, 3

[3]. J.-S. Coron. “Resistance against differential power analysis for
elliptic curve cryptosystems”. In Cryptographic Hardware and
Embedded Systems –CHES ’99, LNCS, vol. 1717, pp. 292–302.
Springer-Verlag, 1999. 2, 22, 24, 158, 170, 180, 181, 186

[4]. S. Chari, C. S. Jutla, J. R. Rao & P. Rohatgi. “Towards sound
approaches to counteract power-analysis attacks.” In Advances in
Cryptology – CRYPTO ’99, LNCS, vol. 1666, pp. 398–412. Springer-
Verlag, 1999. 24

[5]. C. Clavier & M. Joye. “Universal exponentiation algorithm a first step
towards provable SPA-resistance”. In Cryptographic Hardware and
Embedded Systems – CHES ’01, LNCS, vol. 2162, pp. 300–308.
Springer-Verlag, 2001. 4, 24, 120

[6]. M. Ciet, J.-J. Quisquater & F. Sica. “Preventing differential analysis
in GLV elliptic curve scalar multiplication”. In Cryptographic
Hardware and Embedded Systems – CHES ’02, LNCS, vol. 2523, pp.
540–550. Springer- Verlag, 2003. 4, 25, 126, 173, 179

[7]. T. ElGamal. “A public key cryptosystem and a signature scheme
based on discrete logarithms”. IEEE Transactions on Information
Theory, 31(4):469– 472, 1985.

[8]. J. Ha & S. Moon. “Randomized signed-scalar multiplication of ECC
to resist power attacks”. In Cryptographic Hardware and Embedded
Systems – CHES ’02, LNCS, vol. 2523, pp. 551–563. Springer-
Verlag, 2002. 3, 24, 27, 31, 40, 58, 70, 75, 93, 101, 173

[9]. T. S. Messerges, E. A. Dabbish & R. H. Sloan. “Investigations of
power analysis attacks on smart cards”. In USENIX Workshop on
Smart- card Technology, pp. 151–161. May 1999. 2, 24, 172

[10]. B. M¨oller. “Securing elliptic curve point multiplication against
sidechannel attacks”. In International Security Conference – ISC ’01,
LNCS, vol. 2200, pp. 324–334. Springer-Verlag, 2001. Extended
version.pdf. 23, 164,196

[11]. 19:195–249, 2000. 4, 14, 15, 20, 37, 46, 50, 58, 70, 89, 90, 91, 92, 95,
110, 112

[12]. N. Th´eriault. “SPA resistant left-to-right integer recodings”. In
Selected Areas in Cryptography – SAC ’05, LNCS, vol. 3897, pp.
345–358. Springer- Verlag, 2006. 23, 128, 133, 164

E.kesavulu Reddy is working as Assistant Professor in
Dept. of. Computer Science (MCA) S V University.
Tirupati (AP)-India. He is perusing the PhD under the
guidance of Prof.P.Govind Rajulu Dept of Computer
Science, S .V . University, Tirupati.

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

