


Abstract—In a mobile database environment, multiple

mobile hosts may access the shared data item at the same time.
This may lead to inconsistency of data items. The traditional
pessimistic protocols are not suitable in mobile environments
because of disconnections of mobile hosts for invariant time.
The timeout based protocols solves the problem of starvation of
resources, but with an increase in number of rollback
operations. The Analytical approach is a variation of Timeout
based commit protocols where a transaction is executed only if
the expected time for execution is within the current timer
value. Experimental results show better throughput, and less
waiting time for individual transactions

Index Terms—Execution Time, Fixed Host, Mobile Host,
Timer.

I. INTRODUCTION

 The general characteristics of mobile environments like
mobility and frequent disconnections makes the traditional
locking mechanism unsuitable for achieving concurrency
control. In a mobile computing environment, the
characteristics of mobile environment make data accessibility
a challenging issue

 One of the key challenges in mobile database
environment is the ability to simultaneously access the data
items irrespective of the physical locations of mobile users.
To handle the concurrency control issue, various
concurrency control techniques have been proposed in
literature which is usually based on three mechanisms viz.,
locking, timestamps and optimistic concurrency control.
Though these techniques are well suited for the traditional
database applications they may not work effectively in
mobile database environments.

 A Mobile Host may lock the data items needed for
executing a transaction and may be disconnected for
indefinite amount of time leading to starvation. To solve this
problem various timeout mechanisms are proposed [1] [2].
However in these mechanisms the transaction is executed
even when the time for execution of a transaction is higher.
In this paper we propose a strategy which increases the
throughput of the system at the same time the waiting time of
a transaction may decrease. The idea behind this technique is

Salman Abdul Moiz is a Research Scientist at Centre for Development of

Advanced Computing, Bangalore, India (phone: +091-080-28523300;
e-mail: salman@cdacbangalore.in).

Dr. Lakshmi Rajamani is a Professor & Head, CSE Department,
University College of Engineering, Osmania, University, Hyderabad, India
(e-mail: drlakshmiraja@gmail.com).

that if the transaction is expected to take more time then the
current timer value, it is rolled back by updating the current
timer value. The rolled back transaction may be successfully
executed in future.

 The remaining part of this paper is organized as
follows: Section 2 summarizes the survey of existing
techniques, section 3 describes the architecture of mobile
environment, section 4 specifies the proposed concurrency
control strategy, section 5 specifies the performance metrics
and section 6 concludes the paper

II. RELATED WORK

 Multiple mobile hosts may access the same data items
leading to inconsistency. Several valuable attempts to
efficiently implement the concurrency control mechanisms
have been proposed. Concurrency control strategies
proposed in the literature considers only a subset of
performance issues.

 The two phase locking protocol in not suitable for mobile
environments as it requires clients to continuously
communicate with server to obtain locks and detect the
conflicts [3]. A Timeout based Mobile Transaction
Commitment Protocol is a non-blocking protocol, however it
faces the problem of time lag between local and global
commit. The Mobile 2PC protocol preserves 2PC principle;
however it assumes that all communicating partners are
stationary with permanent available bandwidth [4]. In [5]
Mobile speculative locking protocol is introduced to reduce
the blocking of transaction if two phase locking is employed.
This approach requires extra resources at the mobile host to
carry out speculative execution. An optimistic concurrency
control technique detects and resolves data conflicts in the
phase of transaction validation. In a mobile environment if
the transaction validation is done on the server, it may lead to
delayed response causing overhead at the server [6]. An
Optimistic Concurrency Control with Dynamic Time stamp
Adjustment Protocol requires client side write operations.
However because of the delay in execution of a transaction, it
may never be executed [1]. In [7] [8], the authors propose an
enhanced conventional optimistic concurrency control
algorithm which terminates a particular transaction whenever
a conflict is detected. However because of early termination a
transaction need to be initiated again and again. This
increases the uplink bandwidth.
 In timer based strategies, if the timer value is small
compared to the expected time for execution of a transaction,
it will still continue the execution and later rolled back due to
the expiry of timer value. This reduces the throughput of the

An Analytical Approach for Guaranteeing
Concurrency in Mobile Environments

Salman Abdul Moiz, and Lakshmi Rajamani

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

system. In the proposed strategy a transaction is executed
with an aim of increasing the throughput of the system.
However the time for execution of a transaction is evaluated
based on the history state i.e. the time taken for execution of a
successful transaction.

III. MOBILE DATABASE ARCHITECTURE

The following figure specifies the reference model for
mobile computing environments. It consists of two entities
Fixed Host (FH) and Mobile Host (MH) respectively.
Terminals, desktops, servers are the Fixed Host which are
interconnected by means of a fixed network. Large databases
can run on servers that guarantee efficient processing and
reliable storage of database.

Fig. 1 Mobile Database Architecture

Mobile Hosts (MH) like Palmtops, Laptops, PDA’s or

Cellular phones is not always connected to the fixed network.
In the offline transactions, the transactions are executed on
the mobile hosts. The request for a transaction is initiated at
the mobile host then the required data items needed to
execute the transaction are read by the mobile host. After
reading the data items, the mobile host may be disconnected
to save battery consumption. When the transaction is
successfully executed at the mobile host, the results are
integrated with DBS at fixed host.
A Mobile unit connects to a fixed host through a wireless link
A Base station connects to a mobile unit and is equipped with
a wireless interface. It is also known as a Mobile Support
Station. During execution of a transaction, a Mobile Hosts
(MH) may move from once cell to another (handoff). It might
also be disconnected intentionally to save the power
consumption or bandwidth.

Mobile users are more likely to face with more
disconnection because of the properties of the mobile
environment. The interface between the mobile clients and
fixed hosts is realized by the base stations. Base stations act
as an interface between the mobile computers and fixed
hosts. The base station acts as the coordinator, the mobile
host and the Database Systems (DBS) acts as the participants.

The coordinator will be responsible to make the final commit
decision.

IV. ANALYTICAL APPROACH FOR CONCURRENCY

CONTROL

In the timeout based mechanisms the rollback or abort
decision is made when the timer expires. In the proposed
strategy the decision regarding the state of the transaction is
made at the beginning. This is possible if the expected time
for execution is known.

A. Execution Time or Deadline

 Transactions are associated with timing constraints in
form of deadlines, independent of whether they originate
from the mobile clients or the static hosts over wired or
wireless networks. For instance, it may be a financial or
opportunity loss if a stock-trading transaction cannot be
completed with a certain timing constraint, disregarding
whether the stock trader is submitting the transaction
(purchasing or read-only) in his office (wired) or on a ride to
somewhere (wireless)[9].
In addition, the temporal validity of some data objects such as
stock prices or sensor data poses another type of timing
constraints to the database systems. Transaction correctness
is then defined as meeting its timing constraints and using
data that is absolutely and relatively timing consistent
[10][11]. As such every transaction has to be associated with
Execution time or deadline. In [12], the problems of
disconnection and fault recovery are tackled using time-out
management strategy
The time needed to complete a task is give by

T Execution = T Processing + T Transfer
T Processing is the actual time taken to execute the transaction at
mobile host
T Transfer represents time taken to send lock/unlock request to
the fixed host, which varies depending on terminal
connectivity.

B. Concurrency Control Strategy

When multiple mobile hosts requests for the same shared
data item for execution of a transaction, the base station
which acts as the coordinator locks the data items requested
by one of the mobile host. As the mobile hosts are prone to
disconnections, the other mobile host which requires the
same shared data item has to wait indefinitely. To overcome
this problem each and every transaction is set a timer within
which it is expected to complete its execution. Otherwise it
may be rolled back.

A transaction which was not executed within certain time
period “t” by a particular mobile host may not be executed
within the stipulated time in future due to the connectivity or
computing power of a mobile host as such for each rolled
back transaction the timer t is to be increased by a small
factor “∂”. The step factor may vary from one mobile
application to another. This may be maintained at the fixed
host. If the timer “t” reaches a threshold value “T” due to
consecutive roll back operations of a particular transaction,

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

then the transaction may be aborted.
In the proposed strategy for each transaction its time for

execution is maintained at the fixed host. The coordinator
evaluates the time for execution with the current timer value,
to determine whether the transaction can proceed for
execution. Fig. 2 describes the behavior of the proposed
concurrency control strategy.

Fig.2 Behavior of Analytical approach for concurrency

control in mobile environments

 Let E(Ti) represents expected time for execution of
transaction Ti . The time for execution is set based on the type
of transaction or it might be evaluated based on the History
state of successful transactions. Each time a transaction
request is submitted to the coordinator, it evaluates the
expected time for execution based on varied parameters such
as history state, processing speed or the time set by the
service provider.
 “t’ represents the time period within which the transaction is
expected to complete its execution. “∂” represents the step
factor with which the timer is increased for every rollback
operation. “T” represents threshold value of timer within
which a transaction has to complete its execution, otherwise
it may be aborted.
 The following scenarios are realized for the
implementation of proposed analytical approach for
concurrency control:
Case (i): Execution time of a transaction [E (Ti)] less than or
equal to timer “t”

 A transaction request initiated by mobile host is submitted
to the coordinator (base station). The coordinator checks the
availability of data items needed for execution of a
transaction. If the required data items are not locked by any
other mobile host, the expected time for execution of
transaction Ti is compared with current timer “t”. If E(Ti) ≤ t,
the data needed for execution of transaction is read by mobile
host and the execution continues offline. After successful
completion of the transaction, the results are returned to the
coordinator which makes the final decision by informing
about the final commit decision to DBS and mobile host
respectively and the data items are unlocked. If the timer
value is increased as a result of successive rollback
operations, it must not cross the threshold value “T”. If timer
“t” crosses the threshold T, it will be aborted. A transaction
proceeds for execution only if it can be executed within time
period “t”. This helps in increase of throughput of the system.

Case (ii): [E (Ti)] >“t” and no other transaction is requesting
for same data items

 If the execution time of transaction Ti is greater than timer
“t”, but there doesn’t exist any transaction in job queue
waiting for the same shared data item as requested by Ti, the
transaction may continue execution after updating the timer
value with required time for execution i.e. t = E (Ti), provided
the timer t is less than the threshold “T”. However if t>T for
transactions initiated by several mobile hosts respectively,
then the value of t & T has to be updated. This is done as a
process of resetting the timer after analyzing the success rate
of the transactions.

Case (iii): [E (Ti)] >“t” and other transaction say Tj is waiting
for the data items requested by Ti.

 If (E (Ti)] >“t”) and another transaction say Tj is waiting
for the shared data items as requested by Ti , the transaction Ti
may be rolled back. However if E (Ti) is slightly more than t,
then it is better that Ti may be allowed to continue its
execution. In this scenario the remaining time of execution of
Ti is evaluated (R= E (Ti) - t). If R is less than 25% of
execution time of Tj , Ti is allowed to continue its execution
by updating the timer value (t= E (Ti)). Otherwise Ti may be
rolled back by increasing the timer value by “∂” factor and Tj
is allowed to continue its execution. Increasing timer value t
by a small factor may help the subsequent waiting transaction
whose time for execution is slightly greater than t, to get
executed directly. This is because the timer t is increased by
“∂” factor as a result of rollback operation of previous
transaction.
 The advantage with this strategy is if the time for
execution is slightly more than “t”, it may be allowed to
continue its execution; this reduces the waiting time of the
transaction. Further the uplink bandwidth is also reduced
because the re-execution requests for a transaction by mobile
host are minimized.

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

C. State Transition Representation

 A transaction is said to be in Ready state if the request for
its execution is initiated and it is placed in the queue. The
decision regarding the execution of transaction is done in this
state. A transaction enters into an Active state if the time for
execution is less than or equal to the timer value or remaining
time for execution of current transaction is not more than
25% of the execution time of waiting transaction. Otherwise
it enters into a Pending state as a result of rollback operation.
It may enter into Abort state if the timer value exceeds the
threshold limit. It is assumed that the transaction is executed
successfully after entering into Active state. From the Active
state a transaction can enter into commit state upon its
successful completion.

Fig.3 Transaction State diagram of Analytical approach

for Concurrency Control in Mobile Environments

 The state machine M for Analytical approach is
represented as a pentuple

M = (Q, ∑, δ, q0, F)

Where Q represents set of states
 ∑ represents the set of inputs needed for transition
 δ represents the transition function
 q0 represents the initial state and
 F represents the final state.

Q= {Ready, Active, Pending, Commit, Abort}
∑ = {Begin Transaction (BT), Successful Execution (SE),
 Timer Exceeds Threshold (tET), Rollback (RB),
 Transaction Request (TR)}
q0= {Ready}
F= {Commit}
The transitions of the state machines are defined as

a. δ (Ready, BT) = Active
b. δ (Active, SE) = Commit
c. δ (Ready, RB) = Pending
d. δ (Ready, tET) = Abort
e. δ (Pending, TR) = Ready

Let Ti represents the transaction initiated by the mobile host.
Let “t” represents the current timer value and E (Ti)
represents the expected time for execution of transaction Ti.
If E(Ti) is less than t or no other transaction is requesting for
data items requested by Ti or (E(Ti) – t) ≤ 0.25 * Tj (i.e.
remaining time of execution of Ti is less than 25% of the
expected time for execution of Tj), then the transaction may
enter into an active state and thereby commit successfully

(irrespective of failures). If E(Ti)> T (i.e. the expected time
for execution of a transaction is greater than threshold value),
then the transaction is aborted. Otherwise the transaction is
entered into Pending state as a result of rollback operation by
updating timer t to t + ∂. From the Pending state it moves into
a Ready state.

The following cases describe the correctness of the
protocol.

(i) Expected time for execution of the transaction (te) is
less than timer t or marginally more than the timer t

 δ (Ready, BT) = Active

 δ (Active, SE) = Commit F, Hence accepted

The transaction Ti changes its state from Ready to Active
(Begin Transaction). If the transaction is successfully
executed (SE), it enters into a commit state which is the
accepted final state in the state machine M.

(ii) The expected time of execution is larger than t

 [i.e. (E(Ti)– t) >0.25 * Tj]. However E(Ti) ≤ T
 δ (Ready, RB) = Pending

 δ (Pending, TR) = Ready

If the expected time of execution of current transaction is
quiet higher than the timer t, it moves into Pending state as a
result of rollback operation. The timer value is increased by
t + ∂ (where t + ∂ ≤T). Later it moves into ready state and
may commit or abort or rollback.

(iii) The expected time for execution of the transaction is

greater than the threshold value.
 δ (Ready, tET) = Abort

If the time for execution of the current transaction is greater
than the threshold value then the transaction enters into an
Aborted state.

D. Mobility Management

 A mobile host may move from once cell (C1) to another
(C2) after initiating the transaction in C1. The coordinator of
the transaction remains the base station in C1 where the
mobile host was registered before starting the execution.
 Assume that the mobile host is registered with Base
station B1, which acts as the coordinator. The mobile hosts
requests for a transaction T1 and starts the execution. When
mobile host moves from cell C1 to cell C2, it is registered
with a base station (say B2) in cell C2. The information
regarding the coordinator and the transaction (Mobile host,
Transaction, Coordinator) is registered with base station B2.
When the transaction is successfully completed, the results
are returned to the base station in cell C2. The base station B2
returns the results of the transaction to Base station B1 in cell
C1, which performs the final update. Similarly when the
mobile host is moved to another cell and the offline
transaction is to be rolled back, the coordinator sends a
message to the base station to which a mobile host is

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

currently registered in foreign cell to roll back the
transaction.

V. PERFORMANCE METRICS

 The Analytical approach for achieving concurrency
control in mobile environments is simulated using, postgress
as the database. The front-end differs from application to
application. A front-end for mobile banking with basic
transactions is designed. The simulator follows MVC
(Model-View- Controller) architecture. The functionality of
the coordinator i.e the Base station is implemented using
J2EE at fixed host. The system is finally tested using 10
different types of transactions involving concurrent requests
for execution of a transaction.

The proposed strategy is suitable for M-Banking
applications when the time for execution of a transaction by a
particular mobile host is known in advance. The expected
time for execution can be evaluated either by using the
history state or based on the type of transaction. If the time
for execution and the timer value is known, the decision
regarding executing a transaction can be made. This helps in
increasing the throughput and reducing the waiting time of a
transaction in a job queue.

The relations that are maintained at the base station
(coordinator) are Transaction_Info, Timer,
Current_Transaction relation & Base station relation. The
Transaction_Info relation describes the list of banking
transactions that can be executed on a mobile.

 The Timer relation specifies the time within which a
mobile host is expected to return the result to the coordinator
after completing the operation. Current_Transaction relation
describes the list of transactions which are active and
non-conflicting. The time for execution can depend on the
mobile host or the type of transaction. If the time for
execution is dependent on a transaction, it is maintained in
Transaction_Info relation.

Table I. List of Banking Transactions

Transaction
Id

Name
Relatio

n
Data

Item(s)
T1 Deposit Account Amount
T2 Withdrawal Account Amount

T3 Transfer Account
Accountno
, Amount

Table I lists the possible bank transactions. Two mobile
hosts may execute the same transaction Ti if their account
numbers are different. A row locking mechanism is simulated
to implement the M-Banking scenario. The fixed host also
maintains a Timer relation (Table II) that specifies the time(t)
within which the transaction is to expected to be completed
and maximum threshold value (T).

Table II. List of Transactions along with the Timer values

TransactionId
Timer

Value(t)
Threshold
Value(T)

T1 3msec 6msec
T2 4msec 6msec
T3 3msec 5msec

Table III lists the transaction requests by mobile hosts in

order of arrival. It contains the Accountno and expected
execution time which is known in advance. If the time for
execution is slightly more than the timer value and no other
transaction is requesting for same data items or remaining
time of execution of current transaction is less than 25% of
execution time of the transaction requesting for similar data
items and waiting in a queue, then the transaction may
proceed for execution, otherwise it is rolled back.

Table III. Job queue (M-Banking)

SiteId
Transactio
n request

Accountn
o

Executio
n Time

M1 T1 101 3
M2 T2 102 6
M3 T1 103 2
M4 T1 101 4
M5 T2 102 5

 Transactions initiated by mobile host M1, M2 and M3 can
be executed in parallel. Though M1 and M3 have requested
for same transaction request but their account numbers are
different. However M4 has to wait till the completion of
transaction by M1. Similarly M5 has to wait for the
completion of transaction M2. M2, M5 and M1, M4 might
represent the scenario of joint account holders. The
simulation of Analytical approach is depicted in the Table IV.
The current transactions relation is maintained at the base
station (coordinator) which is responsible for scheduling of
the transactions.

Table IV. Current Transactions relation

Mobile
Host

t RT Decision
t=

t+δ
CT* Status

M1 3 Nil √ 3 3 Commit

M2 4 2 × 5 - Pending

M3 3 Nil √ 3 5 Commit

M4 3 1 √ 4 9 Commit

M5 5 Nil √ 5 5 Commit

M2 5 1 √ 5 11 Commit

RT: Remaining Time
CT: Completion time

M1 needs 3 msec for execution of transaction T1 and the
timer t is also set to 3 msecs as such the transaction moves
into active state and executes successfully. M2 requires 6
msec for execution of transaction T2. However the timer
value set (Table II) for execution of transaction T2 is 4 msec.
The remaining time for execution is 2msec. M5 has also
requested for transaction T2 with execution time 5 msec.
Since 25% of 5 is 1.25 which is less than remaining time (2)
of transaction initiated by M2, M2 has to be rolled back and it
enters into pending state by updating the timer t.

M3 requires 2 msec for execution of transaction T1 and the
timer value is 3 msec. It moves into an active state and

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

commits. M4 has to execute the transaction T1 only after M1
completes the transaction. M4 needs 4 msec to execute the
transaction T1. The timer value is 3msec, however there is no
other mobile host requesting for transaction T1.

Hence M4 moves into active state, and the completion time
is 9 msec because M4 may start its execution only after
completion of M1 (at 5 msec). Similarly M5 commits then
again M2 gets a chance and there is no waiting transaction for
T2. Hence M2 also executes successfully. The advantage
with this approach is the system throughput is high because
the transaction enters into an active state only if sufficient
time for execution exists. Otherwise the waiting transaction
is executed. Further the average waiting time in the
transaction job queue also decreases as compared to the
strategies proposed in the literature.

The Analytical approach for guaranteeing concurrency
control in mobile environments is compared with the
traditional timeout mechanism and TCOT [2].

Fig. 4 specifies the comparison of commit rate of proposed
strategy with the static timeout based protocols.

Fig.4 Comparison of Static timeout protocols with
proposed strategy with respect to the commit rate.

Though the commit rate of the proposed strategy is similar

to the dynamic timer adjustment strategies [2], however in
the dynamic timer adjustment strategies this commit rate is
achieved after a series of rollback operations.

 Fig.5 depicts the comparison rate of rollback operations

of proposed strategy with Dynamic timer adjustment
strategy. The rollback operation not only increases the
waiting time for each transaction but it also decreases the
performance of the system.

 Further the expected time for execution of a transaction
may be updated from time to time. For example when most of
the transaction requests are not able to complete the
transaction within the specified time, it can be increased so
that the subsequent request may result in higher commit rate.
This also reduces the time taken for computation.

Fig.5 Comparison of dynamic timer adjustment

strategies with the proposed strategies

VI. CONCLUSION

A transaction throughput would increase if the possible
time of its execution is compared as against the current timer
value. If the current timer value is very small as compared to
the time of execution of a transaction it may be executed
later. This increases the throughput and increase the success
rate of the transaction because the transaction can proceed for
execution only if sufficient time is available. The average
waiting time for each transaction decreases because even if
the expected time for execution is slightly greater than the
timer value, it gets executed. In the Analytical approach for
most of the time the transaction is not aborted after executing
it for certain period of time. This forms a major factor for
mobile applications because a mobile user must know
instantly whether its request can be forwarded or the
transaction has to be initiated later.

REFERENCES
[1] Ho Chin Choi, Byeong-Soo Jeong, “A Time stamp Based optimistic

Concurrency Control for handling Mobile Transactions”, ICCSA
2006, LNCS Vol. 3981, PP. 796-805, Springer Heidelberg, 2006

[2] Kumar V., Nitin Prabhu, Maggie Dunham, Ayse Yasemin Seydim,
“TCOT, A Timeout based Mobile Transaction Commitment Protocol”,
In:IIS9979453(2004).

[3] Nadia Nouali, Anne Doucet, Habiba Drias, “A Two Phase Commit
Protocol for Mobile Wirelss Environment” 2005 , 16th Australasian
Database Conference Vol.39 (ADC 2005)

[4] Patrica Serran-Alvarado et Al, “A Survey of Mobile Transactions”
Distributed & Parallel Databases, Kluwer publishers, 16, 193-230,
2004.

[5] P. Krishna Reddy, Masaru Kitsuregawa, “Speculative Lock
Management to Increase Concurrency in Mobile Environments”,
MDA’99, LNCS 1748, pp. 82- 96, 1999.

[6] Victor C.S., Kwok wa Lam and Son, S.H., “Concurrency Control
Using Time-stamp Ordering in Broadcast Environments”,
theComputer Journal, Vol.45, No.4 PP.410-422, 2002

[7] Minsoo Lee, Sumi Helal, “HiCoMo: High Commit Mobile
Transactions”, Distributed and Parallel Databases, 11, 73-92, 2002,
Kluwer Academic Publishers

[8] Anand Yendluri, Wen-Chi Hou, and Chih-Fang Wang, “Improving
Concurrency Control in Mobile Databases”, Springer Verlag LNCS
2973, PP. 642-655, 2004.

[9] Victor C.S. Lee, Kwok Wa Lam, Tei-wei Kuo,”Efficient Validation of
Mobile Transactions in Wireless Environments”, The Journal of
Systems and Software 69(2004), 183-193.

[10] Stankovic, J.A; Zhao, W, “On real time transactions”, SIGMOD
Record 17(1), pp. 14-18, 1988

[11] Stankovic, J.A; Son, S.H; Hansson, J; “Misconceptions about real time
Databases”, Computer 32(6), pp. 29-37, 1999.

[12] Marco Ballette, Antonio Liotta, Samir M. Ramzy, “Execution Time
 Time Prediction in DSM based Mobile Grids”, IEEE International
 Symposium on Cluster Computing & the Grid, pp. 881-888, 2005.

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

