
A Survey of Performance Evaluation Models for
Distributed Software System Architecture

Olabiyisi S.O, Omidiora E.O, Uzoka F.M.E, Victor Mbarika and Akinnuwesi B.A

Abstract - Over the years, several models were proposed to
analyze the performance of distributed software system
architecture (DSSA) with the view of avoiding the pitfalls of
poor Quality of Service (QoS). In this paper we present a
review of research done in this domain for a decade (1999 –
2009) with the view of discovering similarities, differences,
merits, implementation and limitations of the performance
evaluation models. Based on the analysis, we discovered that
these models are machine and software process oriented.
The parameters for evaluation are drawn from the software
components and processes vis-à-vis the computer machine
parameters, for example, the number of processes the CPU
has to execute within the limited processor speed. None of
the models draws parameters from the contributions of the
client organization and end users. Thus this study proposes
research direction that focuses on development of models
that will have both objective and subjective variables of the
client and end users as input parameters to evaluate the
performance of software architecture. 

Keywords: Distributed software system, Performance,
Performance evaluation model, Software system architecture

1. Introduction

Distributed software systems (DSS) are today one of the
complex artifact simultaneously used by many people in
the real time operations such as electronic commerce,
electronic banking, online payment, and lots of others
[49]. Distributed computing is becoming increasingly
used as enabling technology for modern enterprise
applications, therefore in the face of globalization and
ever increasing competition, Quality of Service (QoS)
requirements like performance, security, reliability, and
robustness are of crucial importance [50]. Organizations
must ensure that the DSS they operate does not only
provide all relevant functional services, but also meet the
performance expectation of their customers. Thus it is
important to analyze and predict the expected
performance of distributed software systems in order to
avoid the pitfalls of poor QoS.

 S.O. Olabiyisi and E.O Omidiora are with Department of Computer
Science and Engineering, LAUTECH, Ogbomosho, Nigeria.(e-
mail:tundeolabiyisi@hotmail.com, omidiorasayo@yahoo.co.uk)

F.M.E. Uzoka is with Department of Computer Science, Mount Royal
University, Calgary, Canada (e-mail: uzokafm@yahoo.com)

Victor Mbarika is a Professor of Management Information System and
the Director of ICITD in Southern University, Baton Rouge, Louisiana,
U.S.A. (e-mail: victor@mbarika.com)

B.A. Akinnuwesi is with Department of Information Technology, Bells
University of Technology, Ota, Ogun State, Nigeria and a PhD student
with Department of Computer Science and Engineering, LAUTECH,
Ogbomoso, Nigeria. (e-mail: akinboluade@yahoo.com)

This research is supported by Bells University of Technology, Ota,
Ogun State, Nigeria and the International Centre for Information
Technology and Development (ICITD), Southern University, Baton
Rouge, Louisiana, U.S.A.

Software architecture (SA) describes how a system is
decomposed into components, how these components are
interconnected and how they communicate and interact
with each other. These aspects of software design are
major sources of errors; therefore they have to be well
understood. The architecture of a software system is
composed of the following [2]:

i. Conceptual architecture: describes the system
in terms of its major design elements and the
relationships among them.

ii. Module interconnection architecture:
encompasses two orthogonal structures –
functional decomposition and layers.

iii. Execution architecture: describes the dynamic
structure of the system.

iv. Code architecture: describes how the source
code, binaries, and libraries are organized in the
development environment.

There are two parts to SA; the macro-architecture which
focuses on the environment of the software system, and
the micro-architecture which covers the internal structure
of the software system [1]. SA is an important phase in
software life cycle as it allows taking early decisions
about a system. Moreover it is the earliest point and
highest level of abstraction whereupon useful analysis of
software system is possible [18]. Hence performance
analysis at this level can be useful for assessing whether a
proposed architecture satisfies the end users’
requirements, meets the desired performance
specifications and helps in making architectural decisions.
It also helps to identify potential risks and verify that the
quality requirements have been addressed in the design
and thus saving major potential modifications later in the
software development life cycle or tuning the system after
deployment. The architecture of software system is
analyzed with the aim of establishing the principal effects
of the architecture and thus predicts the quality of the
system before it is built. SA is considered the first product
in an architecture-based development process and from
this point of view, the evaluation at this level should
reveal requirement conflicts and incomplete design
descriptions from a particular stakeholder’s perspective
[1].

Performance is a quality attribute that describe the system
throughput, responsiveness, resource utilization,
turnaround time, latency, failure rate and fault tolerance.
Thus assessing and optimizing system performance is
essential for the smooth and efficient operation of the
software system. There are several approaches for
evaluating the performance of system architecture. One of
the earliest approaches is the fix-it-later approach [51]
which advocates software correctness, and deferring
performance considerations to the integration testing
phase. If performance problems are detected then,
additional hardware may be procured or the software will

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

be tuned to correct the problems. This approach has some
limitations such as: it takes time to procure and install
hardware and to tune software. Tuning may distort the
original software design, testing must be repeated after
code changes and interim period of poor performance
leaves a negative impression with users long after it is
corrected. Though the rational for fix-it-later approach is
to save development time and cost but this will not be
realized, however, if initial performance is unsatisfactory
because of additional time and cost of tuning and
maintenance. Also [51] in cooperation with J.C. Browne
at University of Texas, proposed ADEPT (A Design-
Based Evaluation and Prediction Technique), an analysis
technique used in conjunction with the performance
engineering discipline. ADEPT was the strategy used to
combat the fix-it-later principle and supported the
performance engineering process. ADEPT evaluate
performance of information system early in the life cycle
using specifications for both expected resources
requirement and upper bounds. If the performance goal is
satisfied for the upper bound, the system design is likely
to be stable. ADEPT had the following challenges: lack
of automatic feedback component, not robust to evaluate
large and complex systems (additional sophisticated
analysis tools are required in the case), inability to
eliminate unwanted argument in the course of evaluation
and inability to work in concurrent processing
environment.

In the recent times several models have been developed to
constantly evaluate the performance of DSSA; thus this
survey puts the developments in a decade (1999 – 2009)
in the same perspective by reviewing the state of the
models and therefore discovering the following:
similarities, differences, merits, implementation,
parameters for evaluation and limitations. The study
proposes research directions based on this analysis.

2. Software Life Cycle Processes

When building a product or system, it is important to go
through a series of predictable steps — a road map that
helps to create a timely, high-quality result. The road map
is called a software process. Technically a software
process is a framework or model for the tasks that are
required to build high-quality software. It defines the
approach that is taken as software is engineered [3]. The
software process model is chosen based on the nature of
the project and application, the methods and tools to be
used and the controls and deliverables that are required.

All software development can be characterized as a
problem solving loop (Figure 1) in which four distinct
stages are encountered: status quo, problem definition,
technical development, and solution integration [5].
Status quo represents the current state of affairs; problem
definition identifies the specific problem to be solved;
technical development solves the problem through the
application of some technology, and solution integration
delivers the results (for example, documents, programs,
data, new business function, new product) to those who
requested the solution in the first place. This problem
solving loop applies to software engineering work at
many different levels of resolution. It can be used at the
macro level when the entire application is considered, at a
mid-level when program components are being

engineered, and even at the line of code level. Therefore,
a fractal representation can be used to provide an
idealized view of process.

Figure 2 presents system life cycle processes as defined in
ISO/IEC 12207. The processes are grouped into three
broad classes: primary; supporting; and organizational
[7]. Primary processes are the prime movers in the life
cycle. Supporting processes support another process in
performing a specialized function. An organization
employs an organizational process to establish, control,
and improve a life cycle process. Each process is further
designed in terms of its own constituent activities, each of
which is further designed in terms of its constituent tasks.
An activity under a process is a set of cohesive tasks.

Figure 1 The phases of a problem solving loop [5]

Figure 2 System Life Cycle Processes [7]

3. Related Works

A number of works have been carried out on the survey
of system performance evaluation models with the
ultimate goal of providing recommendations for future
research activities that could significantly improve the
performance evaluation and prediction of software system
architecture. [8] did a survey of the approaches to

Technical
development

Problem
definition

Solution
integration

Status
quo

ORGANIZATIONAL

 MAINTENANCE
 OPERATIONS
 DEVELOPMENT
 SUPPLY
 ACQUISITION

 DOCUMENTATION
 CONFIGURATION

MANAGEMENT
 QUALITY

ASSURANCE
 VERIFICATION
 VALIDATION
 JOINT REVIEW
 AUDIT
 PROBLEM

DEFINITION

 MANAGEMENT
 INFRASTRUCTURE
 IMPROVEMENT
 TRAINING

PRIMARY

SUPPORTING LIFE
CYCLE

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

software performance from 1960’s to 1986. It pointed out
the breakthroughs leading to the software performance
engineering approach (SPE) and a comprehensive
methodology for constructing software to meet
performance goals. The concepts, methods, models, tools
and use of SPE were summarized and future trend in each
areas were suggested. [17] highlighted three indications
that concerns software design specifications, performance
models and analysis process. The following
recommendations were made in the paper: the use of
standard software artifacts like UML diagrams for
software design specifications; the existence of strong
semantic mapping between software artifacts and the
performance models as strategy to reduce the
performance model complexity and still maintaining a
meaningful semantic correspondence; use of simulation
besides analytical ones to also address performance
model complexity; provision of feedback which is a key
success factor for a widespread use of performance
analysis models. [52] reviewed performance prediction
techniques for component-based software systems and
thus made the following recommendations: integration of
quantitative prediction techniques in software
development process; design of component models
allowing quality prediction and building of component
technologies supporting quality prediction; inclusion of
quality attributes such as reliability, safety or security in
the software development process; study of
interdependencies among the different quality attributes
to determine, for example, how the introduction of
performance predictability can affect other attributes such
as reliability or maintainability. [1] reviewed eight of the
most representative architecture analysis methods at that
moment with the view of discovering similarities and
differences between these methods by making
classifications, comparisons and appropriateness studies.
The eight methods considered are: SAAM (Scenario-
Based Architecture Analysis Method), SAAMCS (SAAM
Founded on Complex Scenarios), ESAAMI (Extended
SAAM by Integration in the Domain), SAAMER
(Software Architecture Analysis Method for Evolution
and Reusability), ATAM (Architecture Trade-Off
Analysis Method), SBAR (Scenario-Based Architecture
Reengineering), ALPSM (Architecture Level Prediction
of Software Maintenance), SAEM (Software Architecture
Evaluation Model). The authors discovered at that
moment that SAAM has been used for different quality
attributes like modifiability, performance, availability and
security and it has also been applied in several domains
unlike other methods. The other methods were still young
and were undergoing refinement and improvement at that
moment, thus future work was proposed to evaluate the
effects of their various usages and create a repeatable
method based on repositories of scenarios, screening and
elicitation questions. [53] presented an overview of
research in performance modeling, focusing on efforts
underway in the Performance Evaluation Research Centre
(PERC) and using some new techniques, the authors were
able to construct performance models that can be used to
project the sustained performance of large-scale scientific
programs on different systems, over a range of job and
system sizes. Also the model can be used by vendors in
system designs, by computing centres in system
acquisitions and by application scientists to improve the

performance of their codes. [54] defined formal software
analyses as having several important properties that
distinguish them from other forms of software analysis.
Three foundational formal software analyses were
described and thus focus on the adaptation of model
checking to reason about software. In view of this the
authors reviewed emerging trends in software model
checking and identifies future directions that promise to
significantly improve its cost-effectiveness. [9] did a
review on the future of software performance engineering
with the view of describing the current progress and
future trends within two distinct approaches for predicting
and improving software performance: an early-cycle
predictive model-based approach and a late-cycle
measurement-based approach. The authors recommended
convergence of approaches in order to cover the entire
development cycle.

4. Classification of Models

This paper surveys and classifies the performance models
using the following categories: Factor Analysis, Queuing
Network, Petri net, Pattern-Based, UML Based,
Hierarchical Modeling, PACE (Performance Analysis and
Characterization Environment) Based, Component-Based
Modelling, Scenario-Based, Relational Approach,
Software Architecture Analysis Methods (SAAM),
Aspectual Software Architecture Analysis Methods
(ASAAM), Hybrid Approaches such as UML-Petri net,
UML-Stochastic Petri net, Queue Petri Nets Approach
and Soft Computing Approach.

4.1 Factor Analysis (FA) Based Approach
Factor analysis is a collection of methods used to examine
how underlying constructs influence the responses on a
number of measured variables. There are basically two
types of FA: exploratory and confirmatory. Exploratory
factor analysis (EFA) attempts to discover the nature of
the constructs influencing a set of responses.
Confirmatory factor analysis (CFA) tests whether a
specified set of constructs is influencing responses in a
predicted way. Both types of FA are based on the
Common Factor Model. FA is used mostly for data
reduction purposes: to get a small set of variables
(preferably uncorrelated) from a large set of variables
(most of which are correlated to each other); to create
indexes with variables that measure similar things
(conceptually) [10]. [55] used FA approach to formulated
a model for analysing IT software projects with the view
of establishing the success or failure of the project before
it takes off. FA as contained in SPSS and Statview
software was used. Fifty performance indices of IT
projects planning, execution, management and control
were formulated. Eleven factors were extracted and
subjected to further analysis with a view to estimating and
ranking their contribution to the success of IT projects.
The model was tested using sample life data gotten from
questionnaires that were administered to the principal
actors of the popular IT software projects in Nigeria. The
significant contribution of the research is the provision of
a working model that utilized both quantitative and
qualitative decision variables in assessing the success or
failure of IT projects. This serves as template for
evaluating IT projects prior to its take off.

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

4.2 Queuing Networks

This is a conventional modelling paradigm which consists
of a set of interconnected queues [11]. Each queue
represents a service station, which serves requests sent by
customers. A service station consists of one or more
servers and a waiting area which holds requests waiting to
be served. When a request arrives at a service station, its
service begins immediately if a free server is available.
Otherwise, the request is forced to wait in the waiting
area (buffer) or the service of another request is pre-
empted in case the arriving request has a higher priority.
The time between successive request arrivals is called
ineterarrival time. Each request demands a certain amount

Table 1 Queuing Network Based Performance Models
Description of Model Parameters Considered

[16] designed and
implemented object-oriented
queuing network model – a
reusable performance
models for software
artifacts.

Buffer size, processor speed of
server, queue size, number of
incoming request, request arrival
time, request departure time.

 [17] integrated performance
and specification model to
provide a tool for
quantitative evaluation of
software architecture at the
design phase.

Number of service centres,
service rate of service centre,
arrival rate of requests at service
centre, number of servers in
service centres, routing
procedure of requests, Number
of request circulating in the
system, physical resources
available system workloads,
network topology

 [18] modelled layered
software system as a closed
Product Form Queuing
Network (PFQN) and solve
it for finding performance
attributes of the system

Range of number of clients
accessing the system, average
think time of each client, number
of layers in the software system,
relationship between the
machines and software
components, number of CPUs
and disks on each of the machine
and thread limitation (if any),
uplink and downlink capacities
of the connectors connecting
machines running adjacent layers
of the system, size of packets of
the links, service time required
to service one request by a
software layer, forward
transition probability, rating
factors of the CPU and the disks
of each machines in the system

[19] proposed an approach
based on queuing networks
models for performance
prediction of software
systems at the software
architecture level, specified
by UML.

Same as above [18]

 [20] developed Software
Architecture and Model
Extraction (SAME)
technique that extract
communication patterns
from executable designs or
prototype that use message
passing, to develop a
Layered Queuing Network
Performance Model in an
automated fashion.

Same as [18]

of service, which is specified by the length of time a
server is occupied serving it, that is, the service time. The
queuing delay is the amount of time the request waits in
the waiting area before its service begins. The response
time is the total amount of time the request spends at the
service station, that is, the sum of the queuing delay and
the service time. The models based on Queuing Networks
are categorized in Table 1.

4.3 Petri Net Approach

Petri nets were introduced in 1962 by Dr. Carl Adam
Petri [24]. A Petri net is a graphical and mathematical
modelling tool [12]. It is a directed bipartite graph with an
initial state called the initial marking. Petri Nets consist
of four basic elements: places, transitions, tokens and
arcs. Places represent a condition in the process.
Transitions represent the stochastic or time-based nature
of changes in the model. Transitions can be immediate,
deterministically time-delayed, or time-delayed based on
a probability distribution defined by the user. Tokens
represent objects in the model. When too many tokens
appear in one place, most applications revert to placing a
number inside the place. Transitions are active
components. They model activities which can occur, thus
changing the state of the system. Transitions are only
allowed to fire if they are enabled, which means that all
the preconditions for the activity must be fulfilled (that is
there are enough tokens available in the input places).
When the transition fires, it removes tokens from its input
places and adds some at all of its output places. The
number of tokens removed / added depends on the
cardinality of each arc. The interactive firing of
transitions in subsequent markings is called token game.
Lastly, arcs determine the path that tokens take
throughout the model. Arcs can either enable or inhibit
movement in the model, depending on their use. System
performance models based on Petri net approach are
categorized in Table 2.

Table 2 Petri Net Based Performance Models
Description of model Parameters Considered

 [21] developed performance
evaluation model for Agent-
based system using petri net
approach

System load, system
delays, system routing
rate, latency of process,
CPU time.

 [22] Performance analysis of
Internet based software
retrieval systems using petri
nets

Network time.

 [23] developed stochastic
petri nets model from UML
activity diagrams

Routing rate, action
duration, system response
time.

[25] translated UML activity
diagram into stochastic Petri
net model that allows to
compute performance indices.

Routing rate, action
duration, system response
time.

[26] derived performance
parameters from Generalized
Stochastic Petri Net (GSPN)
using Markov chain theory.

Routing rate, action
duration, system response
time.

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

4.4 Queuing Petri Net (QPN)

The hybrid of Petri Net and Queuing Networks is
Queuing Petri Nets (QPNs) which facilitates the
integration of hardware and software aspects of system
behavior into the same model. In addition to hardware
contention and scheduling strategies, using QPNs one can
easily model simultaneous resource possession,
synchronization, blocking and contention for software
resources. Thus QPNs combines Queuing Networks and
Petri Nets into a single formalism with the view of
eliminating their disadvantages. QPNs allow queues to be
integrated into places of Petri Nets and this enables the
modeler to easily represent scheduling strategies and
bring the benefits of Queuing Networks into the world of
Petri Nets [11]. System performance models based on
Queuing Petri net approach are categorized in Table 3.

Table 3 Queuing Petri Net Based Performance
Models

Description of Model Parameters Considered
[11] apply QPN
formalism to analyse the
performance of
distributed e-business
system.

Service demand of queue,
service rate of queue, token
population of queue, queue
size, buffer size, processor
speed of server, routing rate.

[27] presented a novel
case study of a realistic
state-of-the-art distributed
component-based system,
showing how the QPN
modelling formalism can
be exploited as software
system performance
prediction tool.

Same as [11]

4.5 PACE (Performance Analysis and
Characterization Environment) Based Approach

The motivation to develop PACE in [13] was to provide
quantitative data concerning the performance of
sophisticated applications running on high performance
systems. The framework of PACE is a methodology
based on a layered approach that separates out the
software and hardware system components through the
use of a parallelization template. This is a modular
approach that leads to readily reusable models, which can
be interchanged for experimental analysis. Each of the
modules in PACE can be described at multiple levels of
detail and thus providing a range of result accuracies but
at varying costs in terms of prediction evaluation time.
PACE is aimed to be used for pre-implementation
analysis, such as design or code porting activities as well
as for on-the-fly use in scheduling systems. The core
component of PACE is a performance specification
language, CHIP3S (Characterization Instrumentation for
Performance Prediction of Parallel Systems). CHIP3S
provides a syntax that allows the description of the
performance aspects of an application and its
parallelization, to be expressed. This includes control
flow information, resource usage information (for
example number of operations), communication
structures and mapping information for a parallel or
distributed system. The software object in the PACE
system were created using the Application
Characterization Tool (ACT). ACT aids the conversion of
sequential or parallel source code into the CHIP3S

language via the Stanford Intermediate Format (SUIF).
ACT performs a static analysis of the code to produce the
control flow of the application, operation count in terms
of high-level language operations and also the
communication structure. The hardware objects of the
model are created using a Hardware Model Configuration
Language (HMCL) by specifying system-dependent
parameters. On evaluation, the relevant sets of parameters
are used and supplied to the evaluation methods for each
of the component models.

4.6 Hierarchical Performance Modeling Approach

In [14] a hierarchical performance modeling (HPM)
technique for distributed systems which incorporated
different level of modeling abstraction was presented.
HPM is a technique to model performance for different
layers of abstraction. It includes several layers of
organization from primitive operation to software
architecture, providing a degree of accuracy that cannot
be achieved with single layer models. The application is
developed in a top-down fashion from general to more
specific, but performance information is generated in
bottom-up method, thus linking the different levels of
analytic models into a composite model. This approach
support specification and performance model generation
that incorporates computation and communication delays
along with hardware profile characteristics to assist in the
evaluation of performance alternatives. HPM models
provide a quantitative performance assessment of an
entire system comprising of hardware, software and
communication. The HPM provided a well defined
methodology to allow system designers to evaluate the
application based on the system requirements of his/her
application and fine tune the values of performance
parameters.

4.7 Pattern Based Approach

Design patterns are defined as description of
communicating objects and classes that are customized to
solve a general design problem in a particular context.
The components of design pattern are: Pattern name,
Intent, Motivation, Applicability, Structure, Participants,
Collaborations, Consequences, Implementation, Sample
code, Known uses, Related pattern.

Performance models based on pattern based approach are
presented in Table 4.

4.8 Soft Computing Approach

Soft computing is an approach to computing which
parallels the remarkable ability of the human mind to
reason and learn in an environment of uncertainty and
imprecision [15]. It is a consortium of methodologies
centering in fuzzy logic (FL), artificial neural networks
(ANN) and evolutionary computation (EC). These
methodologies are complementary and synergistic, rather
than competitive. They provide in one form or another
flexible information processing capability for handling
real life ambiguous situations. Soft computing aims to
exploit the tolerance for imprecision, uncertainty,
approximate reasoning and partial truth in order to
achieve tractability, robustness and low-cost solutions.
The attributes of these models are often measured in
terms linguistic values, such as very low, low, high and
very high. The imprecise nature of the attributes

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

constitutes uncertainty and vagueness in their
(subsequent) interpretation. Thus software performance
evaluation models should be able to deal with imprecision
and uncertainty associated with such (the) linguistic
values. Performance models based on soft computing
approach are presented in Table 5. The advantage of

Table 4 Pattern Based Performance Models
Description of Model Parameters Considered

[28] presented an
approach based on
patterns to develop
performance models for
object oriented software
system in the early stages
of the software
development process.
This complement the
approach given in [21]

Event load, time to perform
an action, request arrival
time, request service time,
number of concurrent users

[29] presented a pattern-
based approach to model
the performance of
software system and used
it to evaluate the
performance of mobile
agent system

Same as [28]

[31] presented a pattern-
based performance
completion for message-
oriented middleware

System configuration
(hardware & network
components), message size
(incoming & outgoing),
delivery time for message,
number of message sent, size
of message sent, number of
message delivered, size of
message delivered,
transaction/request size,
buffer/pool size

Table 5 Performance Models Based Soft Computing
Approach

Description of Models Parameters Considered
[32] applied fuzzy logic to
measure similarity of
software projects when their
attributes are described by
categorical values
(linguistic values in fuzzy
logic)

Seventeen parameters:-
software size, project
mode plus 15 cost
drivers.

[33] presented a new
technique based on fuzzy
logic, linguistic
quantifiers and analogy-
based reasoning to
estimate the cost of or
effort of software projects
when they are described
by either numerical data
or linguistic values.

Same as in [32]

[34] showed how fuzzy
logic can be applied to
computer performance
work to simplify and
speed analysis and
reporting.

CPU Queue length,
memory (RAM)
available, pages input per
second, read time, write
time, I/Os per second.

[35] Developed a fuzzy
model for evaluating
information system
projects based on their
present value using fuzzy
modelling technique.

Three parameters
representing three
possible values of project
costs, benefits, evaluation
periods and discount rate.

softcomputing models particularly fuzzy logic and ANN
are [32]: they are more general, they mimic the way in
which humans interpret linguistic values and the
transition from one linguistic value to a contiguous
linguistic value is gradual rather than abrupt.

4.9 Other Performance Models

In [36] Multivariate Adaptive Regression Splines
(MARS) was used for software performance analysis.
The parameters considered are the. A resource function
was designed and automated, having the following
parameters - size of data objects, number of disk blocks to
be read, size of messages to be processed, memory and
cache size, processor speed, bus and network bandwidth.

In [37] PASA a method for performance assessment of
software architectures was developed and it was scenario-
based. It uses the principles and techniques of SPE
(software performance engineering) to identify potential
areas of risk within the architecture with respect to
performance and other quality objectives. It identifies
strategies for reducing or eliminating the risks if a
problem is found. Scenario for important workloads are
identified and documented. The scenarios provide means
of reasoning about the performance of the software as
well as other qualities and they serve as starting point for
constructing performance models of the architecture.

ASAAM (Aspectual Software Architecture Analysis
Method) was proposed in [38] to identify and specify the
concerns at the architecture design level which inherently
crosscut multiple architectural components, which cannot
be localized in one architectural component and which, as
such, cannot be easily managed by using conventional
abstraction mechanism. It makes these transparent early
in the software development life cycle. ASAAM is
scenario-based. It introduces a set of heuristic rules that
help to derive architectural aspects and the corresponding
tangled architectural components from scenarios. It takes
as input the architecture design and measure the impact of
predefined scenarios on it in order to identify the potential
risks and the sensitive points of the architecture. This
helps to predict the quality of the system before it is built,
thereby reducing unnecessary maintenance costs.

[39] presented performance analysis based on
requirements traceability. Requirement traceability is
critical to providing a complete approach which will lead
to an executable model for performance evaluation. This
paper investigated the software architectures that are
extended based on the performance requirements
traceability to represent performance property. The
extended architecture are then transformed into a
simulation model colored GSPN and the simulation
results are used to validate performance requirements and
evaluate system design. The parameters considered are
queue length, number of request to be serviced, server
response time, server execution time, processor speed.

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

5. Discussions and Limitations of Existing
Models

5.1 Discussion

From this literature review we establish the following:
i. The models are algorithmic using hard computing

principles.
ii. Parameters for evaluation are mostly machine

centered and they are objective. For example,
processor speed, bandwidth size, RAM size, message
size.

iii. The models are implemented at the early stage of the
software life cycle.

iv. Though the authors acknowledged the contributions of
the client company/end users during software
development process but none of the models considers
the contributions of the management of the client
company or the end users as factors that can influence
the decisions of the software developer as per system
architectural style and pattern.

v. The models are developed using object programming
methodology and thus they are re-useable and
scalable.

vi. Performance metrics considered are mostly the
following: throughput, response time and resource
utilization.

5.2 Limitations of the Models

Efficient and effective software architecture is a product
of a good collaborative effort of the end users and the
software developers which form the software
development team. Thus the success of an enterprise
software system is a collaborative effort of the users and
software developers [40, 41, 42, 43, 44, 45, 46, 47, 48]. If
any of the parties is unable to make meaningful and
useful contribution, the software performance may not be
guaranteed. Moreover, performance is subjective and thus
can be interpreted differently by different people.
Therefore while evaluating the performance of a software
system; the factors contributed by each party have to be
put into consideration to ascertain the performance of the
system. In these models, the end users’ subjective
decision variables that could influence the choice of the
software architectural style and design pattern made by
the software developers are not built in as some of the
input parameters for evaluation. Moreover, the models are
limited by their inability to cope with uncertainties and
imprecision of data or information surrounding software
projects early in the development life cycle. In addition,
the conceptual structures of some approaches (for
example, probabilistic models) that can represent vague
information are inadequate for dealing with problems in
which information is perception-based and is expressed in
a natural language. Also they do not address the problem
of semantics of human natural languages describing
system performance which in many situations are fuzzy.
In addition, the models are computationally intensive [32]
and are intolerant of noise and of irrelevant features. They
cannot handle categorical data other than binary valued
variables. However in measuring software metrics, some
users driven factors (that is linguistic variables in fuzzy
logic), such as the experience of programmer,
involvement of the client/end users in software
development process, the complexity of modules; are
measured on an ordinal scale composed of qualifications

such as very low’, ‘low’, ‘nominal’, ‘high’, ‘very high’,
and ‘extra-high’ (that is linguistic values in fuzzy logic);
are important.

6. Conclusion and Future Work

6.1 Conclusion

Software performance is a pervasive quality of software
systems and it is affected by the software itself and all
underlying layers, such as operating system, middleware,
hardware, communication networks, client and end users
involvement in software life cycle process. Thus in this
paper we have reviewed research on performance
evaluation models from 1999 to 2009 with the view of
establishing the trend of the models within this period,
their underlying principles of design and implementation
and their limitations. We were able to establish that the
parameters for the performance models in this period
were machine centered/driven and we therefore propose
that future models should have as input parameters, the
linguistic decision variables of users that affect the choice
of software architectural style and pattern.

6.2 Future Work

Client organization and the end users are key players in
software development process. Therefore decision
variables such as commitment of the staff of the client
company; IT literacy level of operations staff of the client
company; adequacy of user requirement specification and
representation; communication between users and
software developers; fund availability; technical know-
how of operations staff and lots of more should not be
underestimated while establishing the variables to
evaluate software architecture. In view of this we propose
that future works should identify both objective and
subjective decision variables peculiar to the users of
software systems (that is management staff of the client
organization, the operational staff and other end users)
that influence the choice of architectural style and design
pattern made by the software developer. Developing a
performance model that can capture these users’ decision
variables will help making system performance
evaluation to be more users driven and thus complement
the existing models that are mostly driven by machine
parameters.

Reference

[1] Dobrica L. and Niemela E (2002). A Survey on Software
Architecture Analysis Methods. IEEE Transactions on
Software Engineering, Vol. 28, No. 7, July 2002

[2] Soni, D., Nord, R., and Hofmeister, C. (1995). Software
Architecture in Industial Applications. In Proceedings
17th International Conference on Software Engineering
(ICSE17), pages 196--207. IEEE.

[3] Pressman Roger S. (2001). Software Engineering. Fifth
edition. Published by McGraw-Hill, a division of The
McGraw-Hill Companies, Inc. 1221 Avenue of the
Americas, New York, NY, 10020

[4] ISO/IEC 15288, The System Life Cycle Process Standar
for the 21st Century. Available @
http://syseng.omg.org/_ISOIEC15288.pdf

[5] Raccoon, L.B.S., “The Chaos Model and the Chaos Life
Cycle,” ACM Software Engineering Notes, vol. 20., no. 1,
January, 1995, pp. 55–66.

[6] Raghu Singh (1995). An introduction to ISO/IEC 12207
(Tutorial), August 1995.

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

[7] Raghu Singh. International Standard ISO/IEC 12207
Software Life Cycle Processes. URL:
http://www.abelia.com/docs/12207cpt.pdf

[8] Connie U. S., (1986). The Evolution of Software
Performance Engineering: A Survey. In proceedings of
1986 ACM Fall Joint Computer Conference. Pp 778 –
783.

[9] Woodside M., Franks G., Petriu D.C (2007). The Future
of Software Performance Engineering. In IEEE
Proceeding of Future of Software Performance
Engineering (FOSE’07)

[10] DeCoster Jamie (1998). Overview of Factor Analysis.
Available @ http://www.stat-help.com/notes.html

[11] Samuel Kounev and Alejandro Buchmann (2003).
Performance Modeling of Distributed E-Business
Applications Using Queuing Petri Nets. In proceedings of
IEEE International Symposium on Performance Analysis
of Systems and Software, March. 145 – 153

[12] Peterson, James Lyle (1981). Petri Net Theory and the
Modeling of Systems. Prentice Hall, ISBN 0-13-661983-
5.

[13] Junwei Cao, Darren J. Kerbyson, Efstathios
Papaefstathiou and Graham R. Nudd (2000). Performance
Modeling of Parallel and Distributed Computing Using
PACE. In proceedings of IEEE International Performance
Computing and Communications Conference, IPCCC-
2000, Phoenix, February. 485 – 492.

[14] Smarkusky D., Ammar I. Antonios and Sholi H. (2000)
Hierarchical Performance Modeling for Distributed
System Architecture. Available @
 http://www.cs.sfu.ca/~mhefeeda/papers/ISC2000-
HPM.pdf

[15] Gary R. George P. E. and Frank Cardullo (1999).
Application of Neuro-Fuzzy Systems to Behavioral
Representation in Computer Generated Forces. In
proceedings of 8th Conference on Computer Generated
Forces and Behavioural Representation (Orlando FL, May
11-13, 1999)

[16] Savino-Vazquez Nunzio-Nicolo and Puigjaner Ramon
(2001). A Component Model for Object-Oriented Queuing
Networks and its Integration in a Design Technique for
Performance Models. In Proceedings of the 2001
Symposium on Performance Evaluation of Computer and
Telecommunication System (SPECTS 2001) in Orlando,
Florida, July 15 – 19.

[17] Simonetta Balsamo, Roberto Mamprin and Moreno
Marzolla (2004). Performance Evaluation of Software
Architecture with Queuing Networking Model. In
proceedings of ESMc’04, Paris France, October 25 – 27.

[18] Vibhu Shanjanya Sharma, Pankaj Jalote, Kishor S.
Trivedi, (2005). “Evaluating Performance Attribute of
Layered Software Architecture”. Paper published in CBSE
2005: Refer LNCS 3489, pp 66-81.

[19] Simonetta Balsamo and Moreno Marzolla, 2005.
Performance Evaluation of UML Software Architectures
with Multiclass Queueing Network Models. WOSP’05
July 12 – 14, Palma de Mallorca, Spain. Copyright 2005
ACM 1-59593-087-6/05/0007.

[20] Israr A. Tauseef, Lau H. Danny, Franks Greg and
Woodside Murray (2005). “Automatic Generation of
Layered Queuing Software Performance Models from
Commonly Available Traces”. WOSP’05 July 12 – 14,
Palma de Mallorca, Spain. Copyright 2005 ACM 1-
59593-087-6/05/0007

[21] Merseguer Jose, Javier Campose and Eduardo Mena
(2000). Performance Evaluation for the Design of Agent-
Based Systems: A Petri Net Approach. In proceedings of
the workshop on Software Engineering and Petri Nets
within the 21st International Conference on Application
and Theory of Petri Nets, University of Aarhus. 1 – 20.

[22] Merseguer Jose, Campos Javier and Mena Eduardo, 2001.
Performance Analysis of Internet Based Software
Retrieval Systems Using Petri Nets. In proceedings of 4th
ACM International Workshop on Modeling, Analysis and
Simulation of Wireless and Mobile System 2001, Rome
Italy

[23] Juan Pablo Lopez-Grao, Jose Merseguer and Javier
Campos, 2004. From UML Activity Diagrams to
Stochastic Petri Nets: Application to Software
Performance Engineering. WOSP’04 January 14-16,
2004, Redwood City, California. Copyright 2004 ACM 1-
58113-673-0/04/0001.

[24] Petri C.A. 1962. Kommunikation mit Automaten. English
Translation, 1966: Communication with Automata.
Technical Report RADC-TR-65-377, Rome Air Dev.
Centre, New York.

[25] Juan Pablo Lopez-Grao, Jose Merseguer and Javier
Campos, 2008. On the use of Formal Models in Software
Performance Evaluation. News in the Petri Nets World,
Dec. 27. URL:
http://webdiis.univzar.es.crpetri/paper/jcampos/02_LGMC
_JJCC.pdf

[26] Motameni H., Movaghar A., Siasifar M., Montazeri H.
and Rezaei A. (2008). Analytic Evaluation on Petri Net by
Using Markov Chain Theory to Achieve Optimal Models.
World Applied Sciences Journal Vol. 3, No. 3, pp 504 –
513.

[27] Samuel Kounev (2006). Performance Modeling and
Evaluation of Distributed Component-Based System
Using Queuing Petri Nets. IEEE Transactions on Software
Engineering. 32, No. 7, 487 – 502.

[28] Merseguer Jose, Javier Campose and Eduardo Mena
(2000a). A Pattern-Based Approach to Model Software
Performance. In proceedings of the 2nd International
Workshop on Software and Performance, Ottawa, Ontario,
Canada. 137 – 142.

[29] Merseguer Jose, Javier Campose and Eduardo Mena
(2003). A Pattern-based Approach to Model Software
Performance Using UML and Petri Nets: Application to
Agent-based Systems. Proceedings of 7th World
Multiconference on Systemic Cybernetics and
Informatics, Orlando, Florida, USA. Vol. 9, pp 307 – 313

[30] Fanjiang Yong-Yi, Hsueh Nien-Lin and Lee Jonathan
(2005). A Pattern-based Model Transformation Approach
to Enhance Design Quality. Available @ www.atlantis-
press.com/php/download-paper.php?id=65

 [31] Happe Jens, Friedrich Holger, Becker Steffen and
Reussner H. Ralf, 2008. A Pattern-Based Performance
Completion for Message-Oriented Middleware.
WOSP’08, June 24-26, Princeton, New Jersey, USA.
Copyright 2008 ACM 978-1-59593-873-2/08/06.

[32] Idris Ali and Abran Alain (2001). A Fuzzy Based Set of
Measures for Software Project Similarity: Validation and
Possible Improvements. Published in METRICS 2001,
London, England. Pp 85 – 96.

[33] Ali Idris, Alain Abran and Khoshgoftaar, 2004. Fuzzy
Case-Based Reasoning Models for Software Cost
Estimation. Published in Springer-Verlag 2004. Available
@ http://www.gelog.etsmtl.ca/publications/pdf/803.pdf

[34] Maddox Michael, 2005. Using Fuzzy Logic to Automate
Performance Analyses. In proceedings of the Computer
Measurement Group’s 2005 International Conference.
Copyright 2005 by The Computer Measurement Group
inc.

[35] Omitaomu A. Oluwafemi and Adedeji Badiru, 2007.
Fuzzy Present Value Analysis Model for Evaluating
Information System Projects. Published in the Engineering
Economist, Vol. 52, Issue 2, pp 157 – 178.

[36] Courtois Marc and Woodside Murray, 2000. Using
Regression Splines for Software Performance Analysis.

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

WOSP 2000, Ontario, Canada. Copyright ACM 2000 1-
58113-X/00/09

[37] Lloyd G. Williams and Connie U. Smith, 2002. PASASM:
An Architectural Approach to Fixing Software
Performance Problems. Copyright 2002, Software
Engineering Research and Performance Engineering
Services.

[38] Tekinerdogan Bedir, 2003. ASAAM: Aspectual Software
Architecture Analysis Method

[39] Wise Jeffrey C., Chang Carl K., Xia Jinchun and Cleland-
Huang Jane, 2005. Performance Analysis Based on
Requirements Traceability. Technical Report 05 – 04,
Dept of Computer Science, Iowa State University.

[40] Sari Kujala, Marjo Kauppinen and Sanna Rekola, 2001.
Bridging the Gap Between User Needs and User
Requirements. In proceedings of PC-HCI 2001
Conference Patras, Greece.

[41] Blake Ives, Margrethe H. Olson and Jack J. Baroudi,
1983. The Measurement of User Satisfaction.
Communications of the ACM, Vol. 26 No. 10. Pp 785 –
793

[42] Procaccino J. Drew and Verner M. June, 2009. Software
Developers’ Views of End-Users and Project Success.
Communications of the ACM, Vol. 52, No. 5. Pp 113 –
116.

[43] Muthitacharoen Achita and Saeed A. Khawa, 2009.
Examining User Involvement in Continuous Software
Development (A Case of Error Reporting System).
Communications of the ACM, Vol. 52, No. 9. Pp 113 –
117.

[44] Dodd James L and Carr Houston H.I, 1994. Systems
Development Led by End-Users: An Assessment of End-
User Involvement in Information Systems Development.
Journal of Systems Management.

[45] Daniel Robey and Dana Farrow, 1982. User Involvement
in Information System Development: A Conflict Model
and Empirical Test. Journal of Management Science, Vol.
28, No. 1

[46] Serkan CAK and Kursat Cagiltay, 2005. Bridging the Gap
Between Users and Developers in Software Intensive
Projects of Turkish Defense Industry. URL
http://www.metu.edu.tr/~kursat/Cak&Cagiltay.pdf

[47] Procaccino J. Drew, Verner M. June and Lorenzet J.
Steven, 2006. Defining and Contributing to Software
Development Success. Communications of the ACM, Vol.
49 No. 8

[48] Brian Withworth, Jerry Fjermestad and Edward Mahinda,
2006. The Web of System Performance. Communications
of the ACM, Vol. 49, No. 5. Pp 93 – 99

[49] Merseguer Jose and Javier Campos (2004). Software
Performance Modeling Using UML and Petri Nets,
LNCS2965, Springer Verlag. 265-289.

[50] Samuel Kounev (2006). Performance Modeling and
Evaluation of Distributed Component-Based System
Using Queuing Petri Nets. IEEE Transactions on Software
Engineering. 32, No. 7, 487 – 502.

[51] Connie U. Smith, 1981. Increasing Information System
Productivity. In proceedings of the Computer
Measurement Group’s 1981 International Conference.
Copyright 1981 by The Computer Measurement Group
Inc.

[52] Steffen Becker, Lars Grunske, Raffaela Mirandola, and
Sven Overhage, 2006. Performance Prediction of
Component-Based Systems: A Survey from an
Engineering Perspective. In Architecting Systems with
Trustworthy Components, volume 3938 of LNCS, pages
169–192. Springer.

[53] Bailey H. David and Snavely Allan, 2005. Performance
Modeling: Understanding the Present and Predicting the
Future. Proceedings of Euro-Par, Lisbon, Portugal.

[54] Dwyer B. Mathew, Hatcliff John, Pasareanu S. Corina and
Visser Willen, 2007. Formal Software Analysis: Emerging
Trends in Software Model Checking. Future of Software
Engineering (FOSE’07). Copyright IEEE.

[55] Chiemeke S. Chinye (2003). Computer Aided System for
Evaluating Information Technology Projects, PhD thesis
submitted to the School of Postgraduate Studies, Federal
University of Technology, Akure, Ondo State, Nigeria.

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

