
 
 

 

  
Abstract—The foremost objective of the present research 

project consists developing an Intelligent Robotic System (SIR 
for its name in Spanish, Sistema Inteligente Robótico) that 
solves an unknown jigsaw puzzle in a reduced amount of time. 
To fulfill the objective, SIR applies pattern recognition 
techniques as edge and feature detection in conjunction with 
Genetic Algorithms. Many authors have addressed the jigsaw 
puzzle problem. By comparing their work, the NP-Complete 
nature of the problem appeared as a common denominator on 
them. SIR relies on those experiences, results, conclusions and 
observations as a working base for a new approach to the 
problem. This approach involves a conversion of the puzzle 
model to a Graph Theory model. The study of this model plus 
the inclusion of a different analogy and solution approach is 
the main contribution of this work. It describes the theoretical 
and practical frameworks, current state of the project and 
future work. 
 

Index Terms—graph, jigsaw, puzzle, genetic, algorithm.  
 

I. INTRODUCTION 
According to the American Jigsaw Puzzle Society, in 

1760 John Spilsbury, a London engraver and mapmaker, 
produced the first jigsaw puzzle [10]. Since then, several 
different manufacturers around the world are manufacturing 
jigsaw puzzles in a variety of shapes, sizes and piece types.  
Despite all the different types of jigsaw puzzles that can be 
found, there is a lack of common classifying terminology 
that identifies uniquely each type of jigsaw puzzle. The 
background research for this project came across this issue. 
Certain common definitions aroused from different authors 
about the topic. Some of the classification terms are adopted 
by the present project and briefly described here. The term 
Standard jigsaw puzzle (see a sample figure 1.1) is used in 
[2] to describe puzzles made by cutting pictures printed on 
firm substrates into interlocking patterns of pieces. It should 
be noted that standard class only denotes the interlocking 
nature of the puzzle along with the basic manufacturing 
process; it does not refer to the size or shape of the piece or 
the puzzle itself. 
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The term square jigsaw puzzle (Figure 1.2) refers to 
puzzles having square pieces featuring straight borders and 
uniform size which conform a grid that completes the 
solution image, as they lack of a curvilinear shape, it is 
possible (depending on the image) that this kind of jigsaw 
puzzles have multiple solutions to the same picture.  

 
There is jigsaw puzzle superset called canonical puzzles, 

defined by [11]. It includes all puzzles having four edge 
pieces that can be rotated to four different orientations. The 
outcome of placing the pieces contiguously constitutes a 
rectangular grid conforming the resultant picture. The latter 
definition makes no distinction whether the border is curved 
or straight. Other approaches were found as well, 
conforming apictorial puzzles (figure 1.3 and 1.4) [9]. These 
particular puzzles have no picture or distinguishable 
chromatic features that could lead to their assembly; 
therefore their solution relies purely on piece's boundary 
shape. 

 
The present paper describes a new approach to solve 

square jigsaw puzzles, developed as part of the SIR 
prototype, a project of the AIGroup research lab.  
 

Many authors have tackled the jigsaw puzzle problem 
over the last four decades. In 1968, Freeman and Garder [9] 
addressed the assembly of apictorial jigsaw puzzles as they 
recognized the technical limitations at that time to gather 
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Figure 1.1 – Standard Jigsaw Puzzle (top left corner) 
Figure 1.2 – Square Jigsaw Puzzle (bottom left corner) 

Figure 1.3 – Apictorial Canonical Puzzle (top right Corner) 
Figure 1.4 – Apictorial puzzle (bottom right corner) 
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other useful information than the shape of the pieces. Their 
work conform a common ground for several other works 
[1][2][3][5][7][8][11][12], including this research project. 
 

Capturing a jigsaw puzzle into a computerized model 
involves computer vision techniques such as shape 
description, partial boundary matching, pattern recognition, 
feature extraction, and heuristic matching. In addition, the 
problem complexity is made apparent by its characteristics: 
compatible to Wang's tiling problem [6] and NP-complete 
type  [2][13][7]. 

 
It becomes an interesting field of study for areas such as 
non-linear optimization [4], constraint programming [2] and 
dynamic programming [12]. It has also a diverse set of 
application domains. Additionally to solving jigsaw puzzles, 
the task of reassembling complex objects has great 
importance in the fields of archeology, forensics, art 
restoration and engineering. Reconstruction of broken 
documents, archeological restoration and reconstruction of 
disassembled machines are complex and time consuming 
tasks that makes evident the need of an automatic solution to 
that issue [12][20]. 

 
As a response for that necessity, SIR's main goal is to 

build a low-cost robotics system with the ability of building 
an unknown square jigsaw puzzle in a reduced amount of 
time. SIR's design consists of three independent modules 
that interact to fulfill its goals. The first one is the Capture 
Module, which applies computer vision techniques to 
extract the jigsaw puzzle pieces from the environment 
(called playground). The second is the Logical Module, 
which is in charge of receiving the extracted pieces and 
providing a solution for the puzzle and an execution 
algorithm. The third component is the Robotics Module that 
executes that algorithm and places the puzzle pieces in the 
correct order. The present paper describes the design and 
development of the Logical model using a new approach 
based on Graph Theory [25], its background and its 
contribution to the subject. The following paragraphs on this 
section cover the background of the jigsaw puzzle assembly 
problem and describe main scientific community 
contributions. 

 
Since [9], many other authors suggested and developed 

different approaches to reach the jigsaw puzzle solution. 
Apictorial puzzles [8] are used as a way of solving the part 
assembly problem. Its goal is to develop software that can 
reconstruct an object by comparing the physical features of 
its composing parts. There, Burdea and Wolfson make use 
of a robotics arm is used to assemble the white puzzle after 
the pieces are processed and the solution has been reached. 
The work introduced the concept of global solution to the 
scene. The solution algorithm implemented, called KBEST, 
recreates the assembly process done by human beings. As 
the first step it identifies the border pieces of the puzzles and 
assembles the exterior frame of the puzzle by the use of 
heuristics and a similar approach of the traveler salesman 
problem (TSP [4]), this process iterates over the inner 
frames of the puzzle using the k best solutions found in 
different iterations until a global solution is reached. This 

approach can solve puzzles up to 208 pieces. Iterative 
solution that also discards pictorial information is proposed 
in [14]. It addresses the boundary-matching problem by 
finding the Isthmus critical points of the borders and then 
iteratively tests all the possible matching borders. This 
approach is capable of assembling up to 24 pieces standard 
jigsaw puzzles. The KBEST approach shown in [8] is 
revisited in [5]. In that paper Chung proposes assembling 
standard jigsaw puzzles using both shape and color, 
claiming that relying on only one of the features, due to the 
similarity of the pieces would lead to incorrect solutions. 
The environment is captured by a 6mm camera using the 
CIE LAB Colorspace [28] and the puzzle pieces are 
extracted from the background color board they are placed 
on. They designed three algorithms: AP, that recreates the 
"human" approach by attempting to solve first the external 
frame and then moving to the inner part of the puzzle; 
TSP/AP that combines the AP approach with the strategy of 
dealing with the similarity of the jigs as if it is the distance 
in the TSP problem. The third algorithm combines the TSP 
approach with the KBEST algorithm. The performance of 
the last algorithm is the best of all three but it could only 
assemble certain puzzles with a limit of 54 pieces 
maximum. The main contribution is bringing the TSP issue 
to the problem. The TSP [4] approach in conjunction to the 
global solution [8] leads the way to the use of genetic 
algorithms [15][16]. 

 
This technique is used in [3] to solve a square jigsaw 

puzzle of m by n pieces using color information. The border 
color composition is the only information required in this 
approach. Each piece is captured in a 1-bit black and white 
palette, where each border is composed by the piece's 
external pixels. During this process the inner information is 
discarded, as it is not considered for the comparison. This 
approach could find the global solution of certain given set 
of segmented images up to an 8x8 dimension. Years later 
this technique is reused in [1] with a different perspective. 
The pieces are captured in RGB, containing more detailed 
information about each border. Also the assembly of the 
puzzle would be done not from individual pieces. Instead, 
pieces are first assembled in blocks with optimal distances, 
later those blocks are compared as if they were single 
pieces. The genetic algorithm (GA) optimizes distance 
between pieces to build optimal blocks that are compared 
with other blocks and stand-alone pieces. The main 
advantage of this method is that optimal blocks are not 
affected by further fortuitous operations on the 
chromosomes, reducing the random nature of the GA mating 
process. This approach is capable of assembling up to 16x12 
puzzles. Tybon's Thesis [2] presents an interesting survey of 
the "state of the art" and the different methods that could be 
used to solve square jigsaw puzzles.  It features a showcase 
of possible approaches to the puzzle problem solution that 
include Linear Programming [21], Evolutionary 
Programming and GA [15][16], Simulated Annealing (SA), 
Tabu search [18][19] and Constraint Driven Programming. 
Tybon implemented these different techniques and tested 
them using 2x2, 2x3, 2x4, 2x5, 3x4, 3x5 and 4x5 puzzles 
with unique solutions. The thesis concludes that the GA and 
the SA approaches are the most suitable ones. A recent 
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publication shows an alternative method for solving jigsaw 
puzzles by using dynamic programming and an optimal 
assignment procedure like the Hungarian procedure, 
showing better performance than the piece-by-piece. These 
techniques are used to solve an image-scrambling problem 
with tiles in a 10x10 layout [12] considering the texture of 
contiguous tiles.  

 
The above background analysis summarizes different 

approaches to solve puzzle problems. According to 
[5][9][11][20] it is possible to infer that the extraction of the 
material pieces and their subsequent inclusion in the 
computerized model is not the key factor that limits the 
amount of pieces that those solutions can handle. On the 
contrary, the means taken to manage the NP-Completeness 
nature of the problem determined the scalability of those 
approaches. Based on this conclusion, SIR’s logical module 
has the highest implementation priority. Therefore this 
publication focuses on that particular subsystem. The 
following section describes briefly the overall architecture 
of SIR contextualizing it location on the general workflow. 
Section 3 discusses the new approach design plus its 
advantages and setbacks. Lastly Section 4 illustrates future 
work for the next quarterly periods. 

II. ARCHITECTURE, WORKFLOW AND BOUNDARIES 
As described in the previous section, SIR is designed as a 

system consisting of three independent modules interacting 
towards the solution of a square jigsaw puzzle. The first, the 
capture module: composed by a regular webcam and a 
software module that articulates a media framework to 
control the camera and triggers the capture. The design of 
this module contemns the inclusion of Gaussian and edge 
detection filters to be applied to the captured image along 
with feature detection techniques and algorithms for unique 
identification of the square jigsaw puzzle and its pieces. The 
output of this module is the set of pieces identified by order 
of appearance and location that will serve as the input and 
trigger for the subsequent module. The puzzle data is 
converted to an abstraction of that image capture changing 
the focus from a pixel matrix (image captured by webcam) 
to well formed and identified pieces of a constituted square 
jigsaw puzzle. Each piece is uniquely identified and their 
borders are considered the only region of interest required to 
solve the problem [1][2][3].  Puzzle dimension is yet 
unknown until the output of this module is made. The 
Logical Module uses a Genetic Algorithm to find a solution 
to the puzzle given by abstracting the original problem 
leading it to a graph optimization one (described in section 
3). The output of this process produces the concrete solution 
and the puzzle dimension. The Robotic Module is the final 
step of the workflow. It’s designed to consume the output of 
the previous module and execute the assembly of the real 
puzzle. The Robotic Module is composed by a Lego 
MindStorms NXT® robotic kit [22], assembled as a robotic 
main controller. It is connected through a Bluetooth® [23] 
interface with a laptop containing SIR software. The result 
from the previous module is parsed and executed, guiding 
the robot controller through the necessary steps to complete 
the assembly. SIR assumes the following problem 
constraints in order to control its boundaries: 1) the system 

is limited to square jigsaw puzzles, 2) puzzle pieces are 
placed on top of plain surface with a distinctive chromatics 
spectrum to make simpler feature extraction, 3) background 
color is the only information given to the system, 4) pieces 
only admit 90º rotations (straight rotations), 5) the execution 
is assumed in a controlled environment complying the 
former constraints. 

III. A NEW GENETIC ALGORITHM APPROACH 
Solving a jigsaw puzzle can be defined as the discovery 

of a global solution that minimizes all the distance 
comparison between all the pieces [1][2][3][4][8][11][12]. 
As a matter of fact, a square jigsaw puzzle containing soft 
gradients or large portions of solid colors can have multiple 
solutions that lead to rather local maxima results [2]. A 
perfect match in the majority of the puzzle plus different 
piece rotations on the gradient or solid area can generate 
these multiple global maxima. Large gradients, solid or 
homogeneous regions tend to create local minima or 
maxima solutions, causing regular algorithms to converge to 
false positive results, if any was reached. Sub-optimal 
solutions are the main reason for applying GA. The 
factorial-exponential magnitude of the problem would 
require long computational time as the number of pieces 
increases minimally as explained in [2]. Genetic Algorithms 
solve these problems. Mutation, crossover and selection 
guarantee that local minima or maxima are breached 
expanding the search span, without having to iteratively 
validate all possible combinations [15][26]. The following 
sub-sections explain some important drawbacks that arise 
from this same technique. 

 
As previously stated, jigsaw puzzle solving is a 

non-linear, constraint based optimization problem. Global 
distance between pieces is the target function, were the 
global solution must optimize edge-to-edge distance. [2] 
Shows that the influence constraints have on the overall 
result, while [3] proves effectiveness in solving some types 
of puzzles in despite of the limitations imposed by the 
analogy chosen to determine chromosome and population.  

 
In addition to the above criteria, the NP-Completeness 

and distance optimization characteristics of the problem 
made the research to be redirected an abstraction that 
presents severe similarities to the TSP [4]. The TSP 
approach was found among the most effective in solving 
large puzzles [5]. In the proposed new approach (used in 
SIR’s design) the jigsaw puzzle is represented as a 
multi-graph [25](without loops), where each node stands for 
a piece of the puzzle.  Each edge establishes a 
border-to-border adjacency between two pieces. The GA 
representation was redesigned to adequate to the graph 
approach. The architecture of the algorithm has to support 
the unknowns, uncertainties and constraints present in the 
original problem. The uncertainty upon the amount of pieces 
involved in the puzzle helped the idea of the chromosome 
representing a candidate solution to the jigsaw puzzle to 
withstand over other considerations. Ergo, chromosome 
length is tightly coupled to the dimension of the puzzle. An 
overview of the proposed model, presents a fixed length 
chromosome. Each gene represents an edge of the graph and 
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the sides of the pieces involved in that adjacency. Details of 
the GA component are discussed after detailing common 
constraints that apply to both puzzle and graph models. 

 
Square jigsaw puzzles have clear rules concerning 

adjacencies. Besides the four corner pieces remaining static 
in any solution, the amount of pieces presenting 2, 3 and 
4-sided adjacencies [6] vary depending on the puzzle 
dimension. These variables are coupled to the aspect of the 
resulting puzzle and consequently the existence of an 
optimal solution for it. The other aspect of puzzle 
constraints is invalid adjacencies. When not properly 
validated, mutation and crossover operations can cause 
adjacencies that are either not physically or logically 
possible. In example, a piece of the puzzle cannot be 
matched with itself or present an invalid one-sided 
adjacency. Spurious solutions may arise when not properly 
validated spreading the error to subsequent iterations, setting 
the algorithm out of it boundaries. This led to the second 
drawback: the complexity of validating individuals and 
solutions. 

 
To avoid possible bias in the search span, GA’s are 

initialized with random populations [26][27]. The current 
approach presents an exception to that rule. Initial 
populations would be created in a controlled random 
process. Meaning that the chromosomes that initialize the 
algorithm must be randomly picked but yet respecting the 
constraints of the problem. Other operations such as 
crossover and specially mutation require being tightly  

 

 
Figure 3.1 – Square Jigsaw Puzzle as a Graph 

 
controlled and validated to ensure the GA does not outbound 
the given problem. This validation is done during selection 
and other offspring generation operations to guarantee the 
consistency of the entire process. 

 
According to experimental work published in [3], Genetic 

Algorithms present proficient results when the puzzle to 
solve is up to 8x8 pieces, although computational times tend 
to increase considerably.  The method chosen in [3] assumes 
fixed and known dimensions of the puzzle to solve where 
the solution is represented as a population formed by rows 
acting as individuals.  Recent research conducted by the 
same authors in [1] improved puzzle size resolution to a 

maximum of 16x12. Their method consists in putting pieces 
that fit well together and doing a block comparison. To 
establish the first blocks, the method requires previous 
knowledge of the type of puzzle to be assembled. Along 
with other techniques, GA is presented as an alternative to 
converge to a solution of a jigsaw puzzle in [2]. Unlike [3], 
populations are formed with sets of solutions to the puzzles. 
Validations discussed above in this same section are taken in 
consideration by the author. These experiences lead to the 
design of the graph abstraction (Figure3.1). The graph 
theory model, offers versatility of application along with a 
wider search span. As discussed previously, by representing 
the puzzle solution as a set of adjacencies between nodes 
(arcs or edges of the graph) it is feasible to represent any 
possible layout for the jigsaw puzzle, including those that 
are invalid. The graph representation of the puzzle solution 
(chromosome) must comply with the following constraints. 

1) Constraints in the graph model 
Invalid adjacencies must be detected and consequently 
discarded.  Given an m by n pieces puzzle, the numbers of 
edges (genes) of a chromosome are dictated by the function: 

A(m,n) = 2mn – n – m . (1) 

4-edge nodes respond to the function: 

j(m,n)= (m- 2)(n-2) . (2) 

3-edge nodes are determined by this other function: 

k(m,n) = 2(m-2) +2(n-2) . (3) 

2-edge nodes (corners) are always four. Chromosome and 
gene validations continue to be done in order to ensure 
consistency during breeding and selection. Code complexity 
to do these operations is reduced thanks to Graph Theory 
properties such as vertex degree, graph size and adjacency 
matrixes. A chromosome is surveyed by representing it as 
an Adjacency Matrix [25]. The grade of the node determines 
the type of adjacency that represents (2-edge, 3-edge or 
4-edge). The adjacencies are summarized and compared 
against the expected values returned by functions (1), (2) 
and (3). Any chromosome not complying the constraints 
must be rendered infertile. The proposed abstraction 
includes validation methods mentioned in [2] as it also 
avoids complex evaluation of individuals and solution as 
separate processes and defines more parameters to narrow 
down the GA’s search breadth. 
 

2) Elements of the Genetic Algorithm 
 

The fitness function is defined as:  

€ 

F (x) =
1

2mn −m − n
. (P(xi )

1

A (m,n)

∑ )  (4) 

 
Where P(x) is the percentage of edge-to-edge (border) 

coincidence between two pieces and f(si) is a function that 
returns two vertices (pieces) involved in the si graph edge. 
The parameter x represents the chromosome input. 

 
A Population is defined as a set of fertile chromosomes; it 

is evolved until convergence is detected. A chromosome 
represents a graph that illustrates a possible solution to the 
puzzle. Chromosomes are deeply analyzed by certain 
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criteria. If any criterion is not met, the individual is rendered 
infertile by assigning 0 (zero) to its fitness value. The low 
fitness value causes its suppression from the population. A 
Gene represents an edge connecting two pieces of the puzzle 
together in the graph abstraction model. They are evaluated 
in the fitness function to determine how well adapted an 
individual is. Recursively, genes are validated with different 
criteria and failure to comply a criterion would render the 
chromosome infertile. Genes are composed of two Alleles. 
Each one of those represents a border of a piece of the 
puzzle.  

 
One constraint to this problem has been mentioned and not 
yet explained. A jigsaw puzzle is considered valid if the 
detection process finds a non-prime number of pieces in the 
playground. Meaning that, single row/column puzzles are 
not considered as valid puzzles in this paper or in the 
project. SIR’s workflow requires a valid number of pieces to 
produce a resolution to a puzzle. Based on that number 
divisors and multiples, different instances of the GA are 
executed with the corresponding M and N parameter 
defining the target M by N dimension for that instance. The 
fittest chromosomes of each instance are placed into an elite 
population until the whole process concludes. Afterwards, a 
ranking selection is executed on the elite population to 
obtain the optimum solution to the puzzle. 

IV. HEURISTIC FITNESS CLASSIFICATION 
Abstracting the puzzle into a graph model presents various 
advantages towards the piece-driven approach chosen in 
precedent works [1][2][3][8][111][12][13][20]. The graph 
model enlarges the GA’s search span. Making the algorithm 
is less biased, therefore the odds of falling into local minima 
solutions is reduced. Also provides a flexible setting that 
supports different puzzle topologies than the one chosen for 
the current stage of the project. That flexibility is achieved 
by changing the criteria that define valid puzzle 
characteristics.   
 
These features have setbacks attached to them. Leaving the 
“piece matrix” representation of the puzzle makes the model 
difficult to represent in both data structure and reality. This 
difficulty has a residual effect on the GA’s workflow (figure 
4.1 describes the workflow, which is based on Fig. 15.1 
[27]). It is possible for the mutation or cross-over operations 
to dismantle a fit chromosome population, lowering its 
fitness value or even rendering it infertile by detaching 
genes that have maximum local fitness (minimum 
edge-to-edge distance).  
 
Because of the nature of the problem, genes that have 
minimum edge-to-edge distance are more likely to be 
present on the puzzle optimum solution as well. To avoid 
these genes being removed, the GA’s workflow includes a 
way of tagging genes that surpass a defined edge-to-edge 
distance.  SIR contemplates two thresholds that can be 
adjusted to different edge-to-edge distance values. This 
creates two new classes of genes: candidate genes and sticky 
genes. Candidate refers to genes that have a percentage of 
edge-to-edge similarities that is considered “acceptable” as a 
part of a fit chromosome but identified as “not optimal”. 

Sticky refers to “optimal” edge-to-edge distance two 
borders. 
 
Sticky or Candidate genes are less likely to be affected by 
genetic operations. This heuristic allows operations not to 
dismantle fit genes during mutation or crossover. Tagging 
process is done by the fitness function. This capability can 
be switched on and off during the GA’s workflow 
depending on the convergence evaluation.  
 
 

 
Figure 4.1 GA’s workflow with out heuristic fitness usage 

 

 

Figure 4.2 – Execution of GA using heuristic fitness classification 
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In Theory, tagging genes helps the GA to converge to 
optimum solutions faster. It also makes the unbiased graph 
based workflow, biased. Since candidate genes are not 
optimum edge-to-edge distance adjacencies, it is possible 
that populations evolve to sub-optimal convergence states. 
Anticipating that consequence, convergence is analyzed 
taking in consideration the fact that locking sub-optimal 
genes during the manipulation phase, affects the global 
solution fitness negatively. Figure 4.2 describes the overall 
execution of the GA using the heuristic fitness classification. 
 
The workflow described in figure 4.2, is executed for every 
possible puzzle dimension that can be conformed from the 
number of pieces that were extracted by the capture module. 
A GA instance is set up an initialized for a given M by N 
dimension. The workflow described in figure 4.1, is 
executed using a fitness function and operations that can 
handle tagged genes. Firstly, genes are tagged as candidate 
or sticky according to the thresholds the GA was set up with. 
The overall execution goes from a biased one, to a 
non-biased one. If the heuristic methods do not help the GA 
to converge to optimal solutions, their usage is reduced until 
the last execution of the GA by itself with no use of the 
tagging. When sub-optimal convergence is detected, the 
resultant population is stored. If the algorithm fails to 
converge to better results, the best solution of that stored 
population will be selected as the best result of that given 
dimension.  

V. CURRENT STATE AND FUTURE WORK 
The project described in the present work, is currently in 

development. As SIR’s logical module reaches completion, 
the different combination of the heuristic settings will be 
tested and their performance compared to determine whether 
the usage of heuristic fitness classification is a key factor in 
helping optimal convergence of the GA. The robotic stage is 
the hindmost step of the workflow and the project itself. The 
necessary equipment has been acquired and tested. For 
license and compatibility purposes, the Lego® Brick was 
converted to a Java Virtual Machine supported by the 
LEjOS open source framework [24]. The Robotic Module 
development, testing and deployment are scheduled for Q3 
2010. 
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