
                                     

                                                                             

Abstract−This paper deals with design of a robust adaptive 

control (RAC) of robotic manipulators for trajectory tracking 

with structured and unstructured uncertainties. This 

controller has been used for evaluation of tracking error and 

time of settlement of output and desired output has been 

compared. Simulation results on a two-link SCARA 

manipulator are shown for trajectory tracking in the presence 

of the impulse disturbance. 

    Index Terms— Robust Adaptive Control (RAC), Robot 

Manipulator, Uncertainty. 

I. INTRODUCTION 

Robust Adaptive control [1]-[4] are widely accepted as a 

powerful methods of tackling uncertain non-linear systems. 

Model-based adaptive controller has received more 

attention in the last years because it makes it possible to 

cope with the above variations using linear like techniques 

do to the linear parameterization property of the mode. In 

general, the adaptive control laws designed use a non-linear 

term having the same structure as the regressor of the model 

in which appear the actual state variables, their desired 

values or both. (Slotine & Li, 1986; Ortega& Spong, 1989; 

Whitcomb, Rizzi & Koditschek , 1993; Alonge, D'Ippolito 

& Raimondi, 1999). The adaptive control laws are based on 

a plant model that is free of noise, disturbances and 

unmodeled dynamics.  

These schemes are to be implemented on actual plants that 

most likely deviate from the plant models on which their 

design is based. In the adaptive approach, one designs a 

controller that attempts to “learn” the uncertain parameters 

of the system and, if properly designed, will eventually be a 
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“best” controller for the system in question.  In the robust 

approach, the controller has a fixed structure that yields 

“acceptable” performance for a class of plants which 

include the plant in question. In general, the adaptive 

approach is applicable to a wider range of uncertainties, but 

robust controller is simpler to implement and no time is 

required to “tune” the controller to the particular plant. The 

typical structure of a robust control is composed of a 

nominal part, similar to a feedback linearization or inverse 

control law, and of additional terms aimed at dealing with 

model uncertainty [5]. 

In this paper, section 2 gives a brief review on robust 

adaptive control with uncertain parameter and unmodeled 

dynamics and bounded measurement noise. Then in section 

3, this way is applied on a two-link SCARA manipulator as 

a plant to show its ability and merits. 

II. MATHEMATICAL MODEL OF ROBUST ADAPTIVE 

CONTROLLER WITH UNMODELED DYNAMICS AND 

PARAMETER UNCERTAINTY 

One of the attractive features of the adaptive controllers is 

that the control implementation does not require a priori 

knowledge of unknown constant parameters such as 

payload masses or friction coefficients. Two disadvantages 

of the adaptive controllers are that large amounts of on-line 

calculation are required, and the lack of robustness to 

additive bounded disturbances. 

Two of the attractive features of the robust controllers are 

that on-line computation is kept to a minimum and their 

inherent robustness to additive bounded disturbances. One 

of the disadvantages of the robust control approach is that 

these controllers require a priori known bounds on the 

uncertainty. In general, calculations of the bounds on the 

uncertainty can be quite a tedious process since this 

calculation involves finding the maximum values for the 

mass and friction related constants for each link of the robot 

manipulator. Another disadvantage of the robust control 

approach is that even in the absence of additive bounded 

disturbances, we cannot guarantee asymptotic stability of 

the tracking error. In general, it would be desirable to obtain 
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at least a “theoretical” asymptotic stability result for the 

tracking error. 

The adaptive robust controller can be thought of as 

combining the best qualities of the adaptive controller and 

the robust controller. This control approach has the 

advantages of reduced online calculations (compared to the 

adaptive control method), robustness to additive bounded 

disturbances, no a priori knowledge of system uncertainty, 

and asymptotic tracking error performance.  

For purposes of control design, we assume that the robotic 

manipulator is a revolute manipulator with dynamics given 

by 

 𝜏 = 𝑀 𝑞 𝑞 + 𝑉𝑚 𝑞, 𝑞  𝑞 + 𝐺 𝑞 + 𝐹𝑑𝑞 + 𝐹𝑠 𝑞  + 𝑇𝑑                                                                      

(1) 

Where 𝐹𝑑 is a 𝑛 × 𝑛 positive definite, diagonal matrix that 

is used to represent the dynamic coefficients of 

friction, 𝐹𝑠 𝑞    is a 𝑛 × 1 vector containing the static 

friction terms, 𝑇𝑑 is a n×1 vector representing an unknown 

bounded disturbance. 

The adaptive robust controller is very similar to the robust 

control strategies, in that an auxiliary controller is used to 

“bound” the uncertainty. The robust controllers bounded the 

uncertainty by using a scalar function that was composed of 

tracking error norms and positive bounding constants. The 

uncertainty for a given robot controller can be shown in this 

form: 

 

𝜔 = 𝑀 𝑞  𝑞 𝑑 + 𝑒  + 𝑉𝑚  𝑞, 𝑞   𝑞 𝑑 + 𝑒 + 𝐺 𝑞 + 𝐹𝑑𝑞 +
𝐹𝑠 𝑞  + 𝑇𝑑                                                (2)  

 

That is, the dynamics given by (2) are uncertain in that 

payload masses, coefficients of friction, and disturbances 

are not known exactly. It is assumed; however, that a 

positive scalar function ρ can be used to bound the 

uncertainty as follows: 

𝜌 ≥  𝜔                                (3) 

As delineated in [Dawson et al. 1990], the physical 

properties of the robot manipulator can be used to show that 

the dynamics given by (2) can be bounded as 

𝜌 = 𝛿0 + 𝛿1 𝑒 + 𝛿2 𝑒 
2 ≥  𝜔                      (4) 

 

Where 

𝑒 =  
𝑒

𝑒 
                                                    (5) 

And δ0, δ1, and δ2 are positive bounding constants that are 

based on the largest possible payload mass, link mass, 

friction coefficients, disturbances, and so on. 

Similar to the general development presented in [Corless 

and Leitmann 1983], the adaptive robust controller has the 

form 

𝜏 = 𝐾𝑣𝑟 + 𝑣𝑅                                                   (6) 

Where Kv   is a n×n diagonal, positive-definite matrix, r is 

the filtered tracking error and vR is a n×1 vector representing 

an auxiliary controller. The auxiliary controller vR in (6) is 

defined by 

𝑣𝑅 =
𝑟𝜌 2

𝜌  𝑟 + 𝜀
                      (7) 

Where 

𝜀 = −𝑘𝜀𝜀    ; 𝜀 0 > 0                     (8) 

𝑘𝜀  Is a positive scalar control constant, 𝜌  is a scalar function 

defined as 

𝜌 = 𝛿 0 + 𝛿 1 𝑒 + 𝛿 2 𝑒 
2              (9) 

And 𝛿 0 , 𝛿 1, 𝛿 2 are the dynamic estimates of the 

corresponding bounding constants δ0, δ1, and δ2 defined in 

(4). The bounding estimates denoted by “ˆ” are changed on-

line based on an adaptive update rule. Before giving the 

update rule, we write (9) in the more convenient form 

𝜌 = ℎ𝑥                                            (10) 

Where 

ℎ =  1   𝑒    𝑒 2   𝑎𝑛𝑑  𝑥 =  𝛿 0  𝛿 1  𝛿 2 
𝑇

      (11) 

The actual bounding function ρ given in (3) can also be 

written in the matrix form 

𝜌 = ℎ𝑥                                                  (12)  
The bounding estimates defined in (10) are updated on-line 

by the relation 

𝑥  = 𝛾ℎ𝑇 𝑟                                             (13) 

Where r is defined in (6), h is defined in (10), and γ is a 

positive scalar control constant. 

 

We now analyze the stability of the error system with the 

Lyapunov-like function 

𝑉 =
1

2
𝑟𝑇𝑀 𝑞 𝑟 +

1

2
𝑥 𝑇𝛾−1𝑥 + 𝑘𝜀

−1𝜀                (14) 

With differentiating and simplifying we obtain 

𝑉 ≤ −𝑟𝑇𝐾𝑣𝑟                                                        (15) 

The right side of (15) is negative, so with respect to the 

Lyapunov theory the stability of the system has been 

ensured. 

 
III. SIMULATION 

In order to verify the peculiarities of the previously 

discussed control laws, an application example is proposed. 

A robot manipulator is shown in Fig.1. The arm dynamics 

are given by two coupled nonlinear differential equations: 

 
 

Fig.1. Robot manipulator 
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Fig.2. It shows the first parameter (𝛿0) that is converging to the constant 

value. 

 

 
 

 

Fig.3. It shows the first parameter (𝛿1) that is converging to the constant 

value. 

 

 
 

 

Fig.4. It shows the first parameter (𝛿2) that is converging to the constant 

value. 

 

 

 
 

Fig.5. It shows the tracking error of joint 1. 

 

 
 

Fig.6. It shows the tracking error of joint 2. 

 

 

 
 

Fig.7. It shows the control law of joint 1. 
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Fig.8. It shows the control law of joint 2. 

 

 

 

Fig.9. It shows output and desired output of joint 1 in a workspace (the 

first data (red color) is denoted as output and next (blue color) is denoted 

as desired output). 

 

 

 

Fig.10. It shows output and desired output of joint 2 in a workspace (the 

first data (red color) is denoted as output and next (blue color) is denoted 

as desired output). 

 

𝜏1 =   𝑚1 + 𝑚2 𝑙1
2 + 𝑚2𝑙2

2 + 2𝑚2𝑙1𝑙2𝑐𝑜𝑠𝜃2 𝜃 1
+  𝑚2𝑙2

2 + 𝑚2𝑙1𝑙2𝑐𝑜𝑠𝜃2 𝜃 2

− 𝑚2𝑙1𝑙2 2𝜃 1𝜃 2 + 𝜃 2
2
 𝑠𝑖𝑛𝜃2

+  𝑚1 + 𝑚2 𝑔𝑙1𝑐𝑜𝑠𝜃1

+ 𝑚2𝑔𝑙2 cos 𝜃1 + 𝜃2           (16) 

𝜏2 =  𝑚2𝑙2
2

+ 𝑚2𝑙1𝑙2𝑐𝑜𝑠𝜃2 𝜃 1 + 𝑚2𝑙2
2𝜃 2

+ 𝑚2𝑙1𝑙2𝜃 1
2𝑠𝑖𝑛𝜃2

+ 𝑚2𝑔𝑙2 cos 𝜃1 + 𝜃2            (17) 

 

 

To model friction and disturbances, the dynamics 

2𝑞 1 + 0.5𝑠𝑔𝑛 𝑞 1 + 0.2 sin 3𝑡 + 𝑇𝑑  

2𝑞 2 + 0.5𝑠𝑔𝑛 𝑞 2 + 0.2 sin 3𝑡 + 𝑇𝑑  

That 𝑇𝑑   is bounded disturbance. Figs.2, 3 and 4 Show that 

all of the parameters have a nice convergence to desired 

values, that is requested. In figs.5, 6 tracking error of the 

system has converged after 3 seconds with using of this 

controller for both of joints approximately. The bounded 

disturbance is imposed in t=2. As you see, in this time, all 

of the diagrams have a sharp pick in their curves, but this 

value is controlled with robust adaptive controller. After 

this time, all of the figures are converging asymptotically, 

nearly.  

In equation (6) control law has been extracted. Performance 

of this control law is suitable. (Figs. 7 and 8) 

Figs.9 and 10 show that the joint variables of robot (joint 

angles) are following the desired output in a workspace. As 

you see, there is a good convergence after 3 seconds in the 

system.  

Likewise, in t=2 the bounded disturbance is imposed and 

robust adaptive controller could control the system in 

presence of uncertainties. 

It should be noted that from the theoretical development, 

we are only guaranteed that the position tracking error is 

asymptotically stable while all other signals remain 

bounded. 

 

 
IV. CONCLUSION 

In this paper, an approach is considered for designing a 

control law that includes parameter uncertainty and 

bounded disturbance. This approach is based on a detailed, 

though approximate, modeling of the dynamic of robot 
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manipulator starting from which the design of a robust 

adaptive control law is affected in presence of bounded 

disturbance and parameter uncertainty. Results showed that 

although there are four parts of friction and disturbances on 

the system, but using of this controller is suitable and 

tracking error converging globally asymptotically to zero. 

Likewise parameters converge to their real value. 
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