
 

 

 

  

Abstract—Web services technology embraces the use of 

standardized service interfaces, which serve as a service 

contract between service providers and service clients. A service 

generally has a service definition describing its capabilities, i.e. 

operations, which service clients can invoke. Service granularity 

is a key decision point during service design since the amount of 

capabilities offered by a service leads to issues in service usage 

such as reusability, composability, and performance. For a 

fine-grained Web service, more service invocations, i.e. more 

network roundtrips, are required for service clients to fulfill 

certain tasks. In this paper, we look at invocations of service 

clients to a particular Web service in order to determine if any 

pattern of calls exists for a set of the service operations. This can 

be a hint of fine-grained capabilities which have to be invoked 

together to fulfill a task. Our capability granularity analysis 

framework monitors Web service invocations and analyzes them 

using association rules and the Apriori algorithm to discover 

relations between the invoked operations. The analysis result 

can suggest the service provider a possibility to combine certain 

operations to reduce invocation costs.     

 
Index Terms—Apriori, association rules, capability 

granularity, Web services.  

 

I. INTRODUCTION 

Web services technology embraces the use of standardized 

service interfaces, which serve as a service contract between 

service providers and service clients. A Web service generally 

has an XML-based WSDL definition describing its offered 

capabilities in terms of service operations, data that are 

exchanged with the service, and a concrete detail about how 

to invoke service operations [1]. The service contract is of 

paramount importance as it is a mechanism to create 

understanding and enable interaction between service clients 

and service providers. Service contract design principles then 

are dedicated to standardized creation of the service contract.  

Granularity is one key decision point during service design. 

According to Haesen et al. [2], granularity generally refers to 

the size of a service, and a fundamental design principle 

supports creation of services of large-sized or coarse-grained.  

This is due to the fact that business people are not interested in 

fine-grained concepts but prefer using automated chunks of 

functionality or services that correspond to units of work they 
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usually handle. Different granularity types are defined at the 

level of the service interface from the point of view of a 

service client. Haesen et al. [2] propose three types of 

granularity: (1) functionality granularity which refers to how 

much functionality is offered by a service, (2) data 

granularity which reflects the amount of data that are 

exchanged with a service, and (3) business value granularity 

which indicates to which extent a service provides added 

business value. Erl et al. [3] classify the term granularity into 

(1) service granularity which represents the functional scope 

of the overall service context, (2) capability granularity 

which represents the functional scope of individual service 

capabilities (or operations), (3) constraint granularity which 

measures the level of validation logic a given capability will 

have, and (4) data granularity which represents the quantity 

of data processed. In this paper, we are interested in Erl et 

al.’s capability granularity (which corresponds to Haesen et 

al.’s functionality granularity).   

The trend to design Web service capabilities that are 

coarse-grained has been encouraged as a means to overcome 

some of the performance challenges. When a capability is 

coarse, it abstracts a larger chunk of functionality within a 

single interaction. A Web service with finer-grained 

capabilities incurs more network roundtrips of service 

invocations in order for service clients to fulfill a certain task 

or (part of) a business process. Some fine-grained operations, 

processing fine-grained data in a traditional RPC style, may 

have a performance issue associated with XML-based 

processing. However, the coarser the capability granularity, 

the less reuse the service may be able to offer. If multiple 

functions are bundled into a single operation, it may be 

undesirable for service clients who only require the use of one 

of those functions. Also, operations with smaller functional 

scope generally require uncomplicated data and are more 

easily composed. Finding the right granularity is a matter of 

balancing between these multiple criteria.  

Although service-related granularity is usually determined 

prior to service contract design, a particular service may vary 

over time in search of an appropriate granularity level for the 

corresponding vertical industry [4]. Even with a careful 

consideration at service design, after deployment a pattern of 

service usage may reveal inappropriate granularity which 

motivates the service provider to consider redesign of the 

service. In this paper, we are interested in a sign of 

fine-grained capabilities. We look at invocations of service 

clients to a particular Web service in order to determine if any 

pattern of calls exists for a set of the service operations. This 

can be a hint of fine-grained capabilities which have to be 

invoked together to provide certain functionality to a client 
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community, and hence cause a lot of high-latency service 

interactions. A capability granularity analysis framework is 

developed to monitor service invocations and analyze them. 

The analysis is by the use of association rules and the Apriori 

algorithm to discover relations between the invoked 

operations of the Web service and suggests the service 

provider a possibility to combine them to reduce invocation 

costs.  

The organization of this paper is as follows. Section II 

discusses related work. Section III gives an overview of 

association rules and the Apriori algorithm and Section IV 

introduces a capability granularity analysis framework which 

applies them to service invocations to discover associations 

between service operations. Section V gives the evaluation 

results. A discussion and conclusion is found in Section VI. 

II. RELATED WORK 

A number of literatures have addressed the importance of 

different types of granularity and their impact on service 

architecture. Nevertheless there is neither a concrete solution 

to how to get the right granularity nor a way to quantitatively 

determine if the granularity is right. Only guidelines are 

available for tackling this issue. Erl et al. [5] suggest to assign 

coarse-grained interfaces to services designated as solution 

endpoints and allow fine-grained interfaces for services 

confined to predefined boundaries so that interoperability is 

promoted in coarse-grained services and reusability is more 

fostered in finer-grained services. Schmelzer [6] addresses 

that there is no single measure for fine or coarse granularity 

since the measure applies in relation to the services available 

and the number of interactions required to accomplish a 

specific goal.  Foody [7] gives a guideline when looking at 

granularity. On performance and size, rules of thumb are 

given to combine small operations or break apart bigger 

operations based on their response time, and limit the size of 

the messages exchanged with the operations. On 

transactionality and state, an operation should be 

self-contained and avoid keeping transient state across 

operations but at the same time should not do too much since 

failure in part may cause the whole operation to fail. On 

business suitability, understanding the big picture of the 

business is necessary for realizing what granularity makes 

sense.  

An attempt by Shim et al. [8] defines metrics for an SOA 

system to measure the degree of service granularity and 

parameter granularity (i.e. data granularity). Service 

granularity takes into account the number of offered 

operations within the system as well as similarity between the 

operations which is determined by the number of similar 

messages that are exchanged with these operations. Parameter 

granularity considers the number of operations with 

coarse-grained parameters within the system. This 

quantitative approach determines granularity (i.e. size) by the 

number of explicit characteristics of the services but still 

requires judgment of the service provider on coarseness of 

parameters. In an attempt to identify a granularity level, we 

use a different approach which analyzes service usage to find 

a trace of multiple related invocations that may be combined 

for coarser-grained capabilities. We also focus on capability 

granularity of a single Web service.  

III. OVERVIEW OF ASSOCIATION RULES AND APRIORI 

In this section, we give an overview of association rules and 

the Apriori algorithm.  

A. Association Rules 

Association rules [9] are often used to discover interesting 

relations between variables in large databases. The data on 

which association rules are applied are usually in the form of a 

database of transactions. For each transaction, the database 

contains the list of items that occur. The objective is to 

underline groups of items that typically occur together in a set 

of transactions. An example application is a market basket 

analysis that measures associations between products 

purchased at a supermarket.  

Let I = {i1, i2, …, in} be a set of n items. Let D = {t1, t2, …, 

tm} be a set of m transactions in a database. Each transaction 

in D has a unique transaction ID and contains a subset of the 

items in I. For example, if I = {milk, cheese, coffee, biscuit}, a 

transaction t1 = {milk, cheese} is a purchase of milk and 

cheese of a customer on a visit to the supermarket. With a 

large number of transactions in a database, rules that represent 

buying behavior of customers can be drawn. A rule is in the 

implication form X → Y where X,Y ⊆ I and X ∩ Y = ∅. X 

and Y are sets of items (or itemsets) and X is called an 

antecedent and Y a consequent. An example rule is {milk, 

cheese} → {biscuit} meaning that {milk, cheese} and 

{biscuit} occur together. In other words, if milk and cheese is 

bought, customers also buy biscuit. 

Since there are many possible rules, minimum thresholds 

on the following constraints can be used to select interesting 

rules: 

• support(X) is a measure of an itemset’s frequency within 

the database. It is obtained by dividing the number of 

transactions that contain all items in X by the total 

number of transactions. For example, support({milk, 

cheese}) is 3/5 (i.e. 60%) if there are 3 transactions out 

of 5 transactions which contain {milk, cheese}.  

• confidence(X → Y) is a measure of a rule’s strength and 

indicates the frequency (or probability) of occurrence of 

Y, conditional on X being true. It is obtained by dividing 

the number of transactions that contain the items in X ∪ 

Y by the number of transactions that contain the items in 

X (i.e. support(X ∪ Y)/support(X)). For example, 

confidence({milk, cheese} → {biscuit}) is 2/3 (i.e. 

66.67%) if   support({milk, cheese} ∪ {biscuit}) is 2/5 

and support({milk, cheese}) is 3/5.   

The process to find interesting rules then comprises two 

steps: (1) Define a minimum support threshold and discover 

all itemsets for which their support passes this threshold. Such 

itemsets are called frequent itemsets. (2) Define a minimum 

confidence threshold and generate rules from the frequent 

itemsets. The rules for which their confidence passes this 

threshold will be selected. We use the Apriori algorithm to 

assist in these two steps.  

B. Apriori Algorithm 

Apriori is an algorithm for discovering frequent itemsets 

and association rules [10]. Its property guarantees that for a 
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frequent itemset, also all its subsets are frequent, and thus for 

an infrequent itemset, all its supersets must be infrequent. The 

algorithm iteratively finds frequent itemsets of size 1 to k 

(k-itemset) as in the following pseudocode in Listing I. 

 
LISTING I. APRIORI ALGORITHM. 

 

Ck: {candidate itemsets of size k} 

Lk: {frequent itemsets of size k} 

 

L1 = {frequent itemsets of size 1}; 

for (k = 2; Lk-1 != ∅; k++) do  

 begin 

  Ck = {candidate itemsets generated from Lk-1};  

  for each transaction t in the database do 

   increment the support count of all candidate 

itemsets in Ck whose items are found in t;  

  Lk = {candidate itemsets in Ck whose support 

count ≥ minimum support threshold;}  

 end 

return L = ∪kLk 

 

To generate Ck in the algorithm above, the join step and 

prune step are performed respectively. In the join step, 

itemsets of size k are generated by joining Lk-1 with itself. 

Then in the prune step, those itemsets of size k with any of its 

k-1-item subsets ∉ Lk-1 (i.e. infrequent) will be discarded from 

Ck.  

The procedure to generate association rules from L is in 

Listing II. 

 
LISTING II. GENERATING ASSOCIATION RULES. 

 
for each frequent itemset I where I ∈ L do 

generate all non-empty proper subsets s of I (s  

≠ ∅ and s ≠ I); 

for each non-empty proper subset s of I do 

output the rule s → I-s if support(I)/support(s)  

≥ minimum confidence threshold; 

IV. CAPABILITY GRANULARITY ANALYSIS 

We propose a capability granularity analysis framework to 

analyze capability granularity of Web service operations as in 

Fig. 1. The major components of the framework are (1) Web 

service invocation monitor which intercepts service 

invocations from Web service clients, (2) Web service 

invocation log which records invocation data in a database, 

and (3) Web service invocation analyzer which performs an 

analysis on logged invocation data using association rules and 

Apriori. These components can be installed in the host 

environment of the Web services without affecting the hosted 

Web services and their clients.   

A. Web Service Invocation Monitor 

When there is a service invocation from a client, the Web 

service invocation monitor will intercept the message and 

record invocation data into the Web service invocation log. 

Then it will forward the request to the Web service and 

receive the reply before sending it back to the client.  

The Web service invocation monitor supports JAX-WS 

Web services which is a Servlet in a container (or a Java EE 

application server). The container receives an HTTP request 

message before sending it to the Web service Servlet. We 

intercept this request message from the container by using a 

Servlet filter [11] which allows us to transparently examine 

the request before it reaches the Web service Servlet (Fig. 2). 

The filter reads the HTTP request header to get the Web 

service name and IP address and port number of the client, 

and reads the SOAP body in the HTTP request body to get the 

invoked operation name. Date and time of invocation are also 

recorded. Due to a limitation that an HTTP request body can 

be read only once, a wrapper has to be created to wrap the 

HTTP Servlet request in order for the Servlet to read the 

SOAP message within the HTTP request body for its 

processing of the request. 

 

Fig. 1. Capability granularity analysis framework. 

 

 

 
Fig. 2. Using filter to intercept invocations. 

 

We use Java SE 6 update 11, Java EE 5, Apache Tomcat 

6.0.18, and NetBeans IDE 6.5 in the implementation of the 

Web service invocation monitor.      

B. Web Service Invocation Log 

The Web service invocation log is a database of invocation 

data. The data schema consists of  

 

1) id: ID of each invocation in the database 

2) timestamp: date and time of invocation 

3) client_ip: IP address of client 

4) client_port: port number of client 

5) service: Web service name 

6) operation: Web service operation name. 

 

We use MySQL Server 5.0.67, MySQL Query Browser 

1.2.14, and phpMyAdmin 2.10.0.2 in the implementation of 

the Web service invocation log. 

C. Web Service Invocation Analyzer 

The Web service invocation analyzer performs an analysis 

on the logged invocation data. The analysis is based on an 

assumption that service operations of a Web service which are 
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often observed to be called consecutively by clients are likely 

to form a logical group of tasks that are needed together at one 

time as part of some business process. These operations may 

be combined to reduce interaction cost for this group of tasks. 

The analysis produces a Web service operations granularity 

report which can suggest the service provider which service 

capabilities are likely to be fine-grained and may be combined 

into a more coarse-grained operation.  

Before analyzing the invocation data, the Web service 

invocation analyzer prepares the transactions for the Apriori 

algorithm. Any two invocation entries in the log are 

“adjacent”, i.e. one invocation is immediately followed by the 

other, and hence belong to the same transaction if they are 

from the same client and the difference in their invocation 

time is within a boundary t.  For example, given a Web service 

WS1 with the operations A, B, C, D, and E, and the logged 

entries in Fig. 3. If the time boundary is 1 second, we obtain 

transactions t1-t4 for the Apriori algorithm; there are two 

occurrences of a call to B followed by a call to C within 1 

second from the same client, and a call to D is also followed 

by a call to E from the same client within this time boundary. 

 
id timestamp client_ip client_port service operation 

1 2010-06-18 

16:04:16 

192.168.1.64 1235 WS1 B 

2 2010-06-18 

16:04:17 

192.168.1.64 1235 WS1 C 

3 2010-06-18 

16:04:25 

192.168.1.62 50648 WS1 A 

4 2010-06-18 

16:04:30 

192.168.1.61 50101 WS1 D 

5 2010-06-18 

16:04:31 

192.168.1.61 50101 WS1 E 

6 2010-06-18 

16:04:45 

192.168.1.151 1039 WS1 B 

7 2010-06-18 

16:04:46 

192.168.1.151 1039 WS1 C 

 
t1 = {B, C} 

t2 = {A} 

t3 = {D, E} 

t4 = {B, C} 

 
Fig. 3. Preparation of transactions from logged data.  

 

The Web service invocation analyzer analyzes the 

transactions using the Apriori algorithm. Since the problem 

here is to find two or more operations of a Web service which 

may be combined, the algorithm in Listing I starts with L2 (i.e. 

the set of frequent itemsets of size 2) instead of L1. Although 

time complexity of finding association rules is of O(2
n
) where 

n is the number of operations, the algorithm is considered 

practical for the problem because it is unlikely that a Web 

service would offer too many operations. The Web service 

invocation analyzer also allows for the time boundary, 

minimum support threshold, and minimum confidence 

threshold to be configured.  

We use NetBeans IDE 6.5, Eclipse 3.4.1, and Java  SE 6 

update 11 in the implementation of the Web service 

invocation analyzer. 

V. EVALUATION 

To evaluate the framework, we implement a Java Web 

service called Shopping which offers the operations in Table 

I, simulate invocations to this Web service, and mine the 

associations of invocations.  

 
TABLE I. OPERATIONS OF SHOPPING SERVICE. 

 
Operations Arguments Return Type Descripti

on 

browseCatalog String:keyword int:categoryID Browse 

catalog 

cartCreate int:customerID int:cartID Create 

cart 

cartAdd int:cartID 

String:item 

int:quantity 

boolean:isFinished Add item 

into cart 

cartGet int:cartID Array:items Get items 

in cart 

cartRemove int:cartID 

String:item 

int:quantity 

boolean:isFinished Remove 

item from 

cart 

cartClear int:cartID - Clear cart 

calculatePrice int:cartID double:price Calculate 

price 

checkOut int:customerID 

int:cartID 

boolean:isValid Check out 

cart 

itemLookup int:itemID boolean:isFinished Find item 

by id 

itemSearch String:itemNam

e 

int:itemID Find item 

by name  

sellerLookup int:sellerID boolean:isFinished Find 

seller by 

id 

sellerSearch String:sellerNa

me 

int:sellerID Find 

seller by 

name 

customer 

Content 

Lookup 

int:customerID boolean:isFinished Find 

customer 

by id 

customer 

Content 

Search 

String:customer 

Name 

int:customerID Find 

customer 

by name 

login String:username 

String:password 

int:customerID login  

logout int:customerID - logout  

A. Invocation Sequences 

We define ten patterns of invocation sequences, each 

specifying a sequence of calls to different number of 

operations at different time. The design of these patterns is 

based on Amazon E-Commerce Service [12]. As examples, 

two patterns are presented in Table II.    

 
TABLE II. TWO INVOCATION SEQUENCES. 

 
Pattern1  Pattern2 

Time (ith sec) Operation  Time (ith sec) Operation 

0 login  10 login 

5 cartGet  15 browseCatalog 

10 cartAdd  21 itemSearch 

11 calculatePrice  22 itemLookup 

15 itemSearch  39 cartCreate 

16 itemLookup  40 cartAdd 

20 cardAdd  41 calculatePrice 

21 calculatePrice  45 browseCatalog 

25 itemSearch  50 itemSearch 

26 itemLookup  51 itemLookup 

30 cartAdd  60 cartAdd 

31 calculatePrice  61 calculatePrice 

35 calculatePrice  70 logout 

36 checkOut    

40 logout    
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We simulate the invocation to the Shopping service using 

15 clients, each iteratively selecting one of the patterns at 

random and making calls as in the pattern. We simulate the 

invocation until there are 20,000 operation calls recorded in 

the Web service invocation log.   

B. Mining Association Rules 

With the logged invocation data, we use the Web service 

invocation analyzer to analyze them. Fig. 4 shows its user 

interface. We specify the database of the Web service 

invocation log, Web service name, and necessary parameters 

for the analysis. Considering a possibility of service load and 

elapsed time of each request roundtrip, we specify the time 

boundary of 2,000 milliseconds for adjacent calls. The 

minimum support threshold can be specified as a percentage 

or the number of count, and the minimum confidence 

threshold as a percentage. The service provider can tune these 

parameters to obtain appropriate mining results. 

After clicking the “Analyze” button, the Web service 

invocation analyzer shows the frequent itemsets (i.e. frequent 

groups of operations) which pass the minimum support 

threshold with their support count. Also all association rules 

and their confidence are listed. If the “Use Minimum 

Confidence to filter output rules” box is checked, the 

granularity report will show only the rules that pass the 

minimum confidence threshold. For example, in the figure, 

the rule cartGet → calculatePrice with confidence of 

98.4127% passes the minimum confidence threshold. The 

service provider may consider combining them because when 

a customer lists all items in a cart, it is likely that the customer 

also wants to know the total price of all items.  

VI. DISCUSSION AND CONCLUSION 

This paper presents a capability granularity analysis 

framework that can find a trace of fine-grained capabilities of 

Web service operations by using association rules and the 

Apriori algorithm to analyze client invocation behavior. As a 

result of inappropriate design of service interface or change in 

invocation behavior over time, the analysis can guide the 

service provider to combine them to reduce invocation costs.  

We see that the association rules that pass the minimum 

confidence threshold can only be a suggestion to the service 

provider. Combining service operations still needs careful 

consideration of the service provider since it changes the 

service contract and hence will affect service clients. Even 

though the fine-grained capabilities are desirable, the service 

provider can begin to explore the possibility of providing 

alternative WSDL definitions for the same Web service; one 

is fine-grained and the other is coarser-grained. Another 

possibility is to offer redundant fine-grained and 

coarser-grained operations in the same WSDL definition. 

These could de-normalize the service contract but can address 

performance issues and accommodate a range of clients [5].  

The granularity issue for services internal to an 

organization can be more relaxed than that for services 

offered at a larger scale with a diversity of clients. This is 

because patterns of service use by internal clients can be 

defined or modeled early. The organization can only focus on 

building the right set of services so that they serve the right set 

of problems for the organization. 

Having only fine-grained services is beneficial when 

connecting or composing them with other services, but it 

would be hard to build anything large. Having only 

coarse-grained services that do certain amount of 

functionality would be good for such functionality, but they 

are not particularly reusable for building anything else [13]. 

Having an appropriate assortment of services, ranging from 

fine-grained to coarse-grained, to address particular business 

problems and clients would be an interesting approach. 

Future work would be an application of this capability 

granularity analysis framework to real Web services, and a 

study of invocation patterns for services in particular vertical 

domains and the impact of all analysis parameters. Also an 

analysis of invocation costs that are reduced after combining 

service operations would help in a further evaluation of the 

framework.    
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Fig. 4. User interface of Web service invocation analyzer. 
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