

Abstract—Web services technology embraces the use of

standardized service interfaces, which serve as a service

contract between service providers and service clients. A service

generally has a service definition describing its capabilities, i.e.

operations, which service clients can invoke. Service granularity

is a key decision point during service design since the amount of

capabilities offered by a service leads to issues in service usage

such as reusability, composability, and performance. For a

fine-grained Web service, more service invocations, i.e. more

network roundtrips, are required for service clients to fulfill

certain tasks. In this paper, we look at invocations of service

clients to a particular Web service in order to determine if any

pattern of calls exists for a set of the service operations. This can

be a hint of fine-grained capabilities which have to be invoked

together to fulfill a task. Our capability granularity analysis

framework monitors Web service invocations and analyzes them

using association rules and the Apriori algorithm to discover

relations between the invoked operations. The analysis result

can suggest the service provider a possibility to combine certain

operations to reduce invocation costs.

Index Terms—Apriori, association rules, capability

granularity, Web services.

I. INTRODUCTION

Web services technology embraces the use of standardized

service interfaces, which serve as a service contract between

service providers and service clients. A Web service generally

has an XML-based WSDL definition describing its offered

capabilities in terms of service operations, data that are

exchanged with the service, and a concrete detail about how

to invoke service operations [1]. The service contract is of

paramount importance as it is a mechanism to create

understanding and enable interaction between service clients

and service providers. Service contract design principles then

are dedicated to standardized creation of the service contract.

Granularity is one key decision point during service design.

According to Haesen et al. [2], granularity generally refers to

the size of a service, and a fundamental design principle

supports creation of services of large-sized or coarse-grained.

This is due to the fact that business people are not interested in

fine-grained concepts but prefer using automated chunks of

functionality or services that correspond to units of work they

Manuscript received July 16, 2010.

T. Senivongse is with the Department of Computer Engineering, Faculty

of Engineering, Chulalongkorn University, Bangkok 10330 Thailand

(phone: +66 2 2186996; fax: +66 2 2186955; e-mail: twittie.s@chula.ac.th).

N. Phacharintanakul, C. Ngamnitiporn, and M. Tangtrongchit are also

with the Department of Computer Engineering, Faculty of Engineering,

Chulalongkorn University, Bangkok 10330 Thailand.

usually handle. Different granularity types are defined at the

level of the service interface from the point of view of a

service client. Haesen et al. [2] propose three types of

granularity: (1) functionality granularity which refers to how

much functionality is offered by a service, (2) data

granularity which reflects the amount of data that are

exchanged with a service, and (3) business value granularity

which indicates to which extent a service provides added

business value. Erl et al. [3] classify the term granularity into

(1) service granularity which represents the functional scope

of the overall service context, (2) capability granularity

which represents the functional scope of individual service

capabilities (or operations), (3) constraint granularity which

measures the level of validation logic a given capability will

have, and (4) data granularity which represents the quantity

of data processed. In this paper, we are interested in Erl et

al.’s capability granularity (which corresponds to Haesen et

al.’s functionality granularity).

The trend to design Web service capabilities that are

coarse-grained has been encouraged as a means to overcome

some of the performance challenges. When a capability is

coarse, it abstracts a larger chunk of functionality within a

single interaction. A Web service with finer-grained

capabilities incurs more network roundtrips of service

invocations in order for service clients to fulfill a certain task

or (part of) a business process. Some fine-grained operations,

processing fine-grained data in a traditional RPC style, may

have a performance issue associated with XML-based

processing. However, the coarser the capability granularity,

the less reuse the service may be able to offer. If multiple

functions are bundled into a single operation, it may be

undesirable for service clients who only require the use of one

of those functions. Also, operations with smaller functional

scope generally require uncomplicated data and are more

easily composed. Finding the right granularity is a matter of

balancing between these multiple criteria.

Although service-related granularity is usually determined

prior to service contract design, a particular service may vary

over time in search of an appropriate granularity level for the

corresponding vertical industry [4]. Even with a careful

consideration at service design, after deployment a pattern of

service usage may reveal inappropriate granularity which

motivates the service provider to consider redesign of the

service. In this paper, we are interested in a sign of

fine-grained capabilities. We look at invocations of service

clients to a particular Web service in order to determine if any

pattern of calls exists for a set of the service operations. This

can be a hint of fine-grained capabilities which have to be

invoked together to provide certain functionality to a client

A Capability Granularity Analysis on Web

Service Invocations

Twittie Senivongse, Nattawud Phacharintanakul, Choltida Ngamnitiporn, and Matee Tangtrongchit

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

community, and hence cause a lot of high-latency service

interactions. A capability granularity analysis framework is

developed to monitor service invocations and analyze them.

The analysis is by the use of association rules and the Apriori

algorithm to discover relations between the invoked

operations of the Web service and suggests the service

provider a possibility to combine them to reduce invocation

costs.

The organization of this paper is as follows. Section II

discusses related work. Section III gives an overview of

association rules and the Apriori algorithm and Section IV

introduces a capability granularity analysis framework which

applies them to service invocations to discover associations

between service operations. Section V gives the evaluation

results. A discussion and conclusion is found in Section VI.

II. RELATED WORK

A number of literatures have addressed the importance of

different types of granularity and their impact on service

architecture. Nevertheless there is neither a concrete solution

to how to get the right granularity nor a way to quantitatively

determine if the granularity is right. Only guidelines are

available for tackling this issue. Erl et al. [5] suggest to assign

coarse-grained interfaces to services designated as solution

endpoints and allow fine-grained interfaces for services

confined to predefined boundaries so that interoperability is

promoted in coarse-grained services and reusability is more

fostered in finer-grained services. Schmelzer [6] addresses

that there is no single measure for fine or coarse granularity

since the measure applies in relation to the services available

and the number of interactions required to accomplish a

specific goal. Foody [7] gives a guideline when looking at

granularity. On performance and size, rules of thumb are

given to combine small operations or break apart bigger

operations based on their response time, and limit the size of

the messages exchanged with the operations. On

transactionality and state, an operation should be

self-contained and avoid keeping transient state across

operations but at the same time should not do too much since

failure in part may cause the whole operation to fail. On

business suitability, understanding the big picture of the

business is necessary for realizing what granularity makes

sense.

An attempt by Shim et al. [8] defines metrics for an SOA

system to measure the degree of service granularity and

parameter granularity (i.e. data granularity). Service

granularity takes into account the number of offered

operations within the system as well as similarity between the

operations which is determined by the number of similar

messages that are exchanged with these operations. Parameter

granularity considers the number of operations with

coarse-grained parameters within the system. This

quantitative approach determines granularity (i.e. size) by the

number of explicit characteristics of the services but still

requires judgment of the service provider on coarseness of

parameters. In an attempt to identify a granularity level, we

use a different approach which analyzes service usage to find

a trace of multiple related invocations that may be combined

for coarser-grained capabilities. We also focus on capability

granularity of a single Web service.

III. OVERVIEW OF ASSOCIATION RULES AND APRIORI

In this section, we give an overview of association rules and

the Apriori algorithm.

A. Association Rules

Association rules [9] are often used to discover interesting

relations between variables in large databases. The data on

which association rules are applied are usually in the form of a

database of transactions. For each transaction, the database

contains the list of items that occur. The objective is to

underline groups of items that typically occur together in a set

of transactions. An example application is a market basket

analysis that measures associations between products

purchased at a supermarket.

Let I = {i1, i2, …, in} be a set of n items. Let D = {t1, t2, …,

tm} be a set of m transactions in a database. Each transaction

in D has a unique transaction ID and contains a subset of the

items in I. For example, if I = {milk, cheese, coffee, biscuit}, a

transaction t1 = {milk, cheese} is a purchase of milk and

cheese of a customer on a visit to the supermarket. With a

large number of transactions in a database, rules that represent

buying behavior of customers can be drawn. A rule is in the

implication form X → Y where X,Y ⊆ I and X ∩ Y = ∅. X

and Y are sets of items (or itemsets) and X is called an

antecedent and Y a consequent. An example rule is {milk,

cheese} → {biscuit} meaning that {milk, cheese} and

{biscuit} occur together. In other words, if milk and cheese is

bought, customers also buy biscuit.

Since there are many possible rules, minimum thresholds

on the following constraints can be used to select interesting

rules:

• support(X) is a measure of an itemset’s frequency within

the database. It is obtained by dividing the number of

transactions that contain all items in X by the total

number of transactions. For example, support({milk,

cheese}) is 3/5 (i.e. 60%) if there are 3 transactions out

of 5 transactions which contain {milk, cheese}.

• confidence(X → Y) is a measure of a rule’s strength and

indicates the frequency (or probability) of occurrence of

Y, conditional on X being true. It is obtained by dividing

the number of transactions that contain the items in X ∪

Y by the number of transactions that contain the items in

X (i.e. support(X ∪ Y)/support(X)). For example,

confidence({milk, cheese} → {biscuit}) is 2/3 (i.e.

66.67%) if support({milk, cheese} ∪ {biscuit}) is 2/5

and support({milk, cheese}) is 3/5.

The process to find interesting rules then comprises two

steps: (1) Define a minimum support threshold and discover

all itemsets for which their support passes this threshold. Such

itemsets are called frequent itemsets. (2) Define a minimum

confidence threshold and generate rules from the frequent

itemsets. The rules for which their confidence passes this

threshold will be selected. We use the Apriori algorithm to

assist in these two steps.

B. Apriori Algorithm

Apriori is an algorithm for discovering frequent itemsets

and association rules [10]. Its property guarantees that for a

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

frequent itemset, also all its subsets are frequent, and thus for

an infrequent itemset, all its supersets must be infrequent. The

algorithm iteratively finds frequent itemsets of size 1 to k

(k-itemset) as in the following pseudocode in Listing I.

LISTING I. APRIORI ALGORITHM.

Ck: {candidate itemsets of size k}

Lk: {frequent itemsets of size k}

L1 = {frequent itemsets of size 1};

for (k = 2; Lk-1 != ∅; k++) do

 begin

 Ck = {candidate itemsets generated from Lk-1};

 for each transaction t in the database do

 increment the support count of all candidate

itemsets in Ck whose items are found in t;

 Lk = {candidate itemsets in Ck whose support

count ≥ minimum support threshold;}

 end

return L = ∪kLk

To generate Ck in the algorithm above, the join step and

prune step are performed respectively. In the join step,

itemsets of size k are generated by joining Lk-1 with itself.

Then in the prune step, those itemsets of size k with any of its

k-1-item subsets ∉ Lk-1 (i.e. infrequent) will be discarded from

Ck.

The procedure to generate association rules from L is in

Listing II.

LISTING II. GENERATING ASSOCIATION RULES.

for each frequent itemset I where I ∈ L do

generate all non-empty proper subsets s of I (s

≠ ∅ and s ≠ I);

for each non-empty proper subset s of I do

output the rule s → I-s if support(I)/support(s)

≥ minimum confidence threshold;

IV. CAPABILITY GRANULARITY ANALYSIS

We propose a capability granularity analysis framework to

analyze capability granularity of Web service operations as in

Fig. 1. The major components of the framework are (1) Web

service invocation monitor which intercepts service

invocations from Web service clients, (2) Web service

invocation log which records invocation data in a database,

and (3) Web service invocation analyzer which performs an

analysis on logged invocation data using association rules and

Apriori. These components can be installed in the host

environment of the Web services without affecting the hosted

Web services and their clients.

A. Web Service Invocation Monitor

When there is a service invocation from a client, the Web

service invocation monitor will intercept the message and

record invocation data into the Web service invocation log.

Then it will forward the request to the Web service and

receive the reply before sending it back to the client.

The Web service invocation monitor supports JAX-WS

Web services which is a Servlet in a container (or a Java EE

application server). The container receives an HTTP request

message before sending it to the Web service Servlet. We

intercept this request message from the container by using a

Servlet filter [11] which allows us to transparently examine

the request before it reaches the Web service Servlet (Fig. 2).

The filter reads the HTTP request header to get the Web

service name and IP address and port number of the client,

and reads the SOAP body in the HTTP request body to get the

invoked operation name. Date and time of invocation are also

recorded. Due to a limitation that an HTTP request body can

be read only once, a wrapper has to be created to wrap the

HTTP Servlet request in order for the Servlet to read the

SOAP message within the HTTP request body for its

processing of the request.

Fig. 1. Capability granularity analysis framework.

Fig. 2. Using filter to intercept invocations.

We use Java SE 6 update 11, Java EE 5, Apache Tomcat

6.0.18, and NetBeans IDE 6.5 in the implementation of the

Web service invocation monitor.

B. Web Service Invocation Log

The Web service invocation log is a database of invocation

data. The data schema consists of

1) id: ID of each invocation in the database

2) timestamp: date and time of invocation

3) client_ip: IP address of client

4) client_port: port number of client

5) service: Web service name

6) operation: Web service operation name.

We use MySQL Server 5.0.67, MySQL Query Browser

1.2.14, and phpMyAdmin 2.10.0.2 in the implementation of

the Web service invocation log.

C. Web Service Invocation Analyzer

The Web service invocation analyzer performs an analysis

on the logged invocation data. The analysis is based on an

assumption that service operations of a Web service which are

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

often observed to be called consecutively by clients are likely

to form a logical group of tasks that are needed together at one

time as part of some business process. These operations may

be combined to reduce interaction cost for this group of tasks.

The analysis produces a Web service operations granularity

report which can suggest the service provider which service

capabilities are likely to be fine-grained and may be combined

into a more coarse-grained operation.

Before analyzing the invocation data, the Web service

invocation analyzer prepares the transactions for the Apriori

algorithm. Any two invocation entries in the log are

“adjacent”, i.e. one invocation is immediately followed by the

other, and hence belong to the same transaction if they are

from the same client and the difference in their invocation

time is within a boundary t. For example, given a Web service

WS1 with the operations A, B, C, D, and E, and the logged

entries in Fig. 3. If the time boundary is 1 second, we obtain

transactions t1-t4 for the Apriori algorithm; there are two

occurrences of a call to B followed by a call to C within 1

second from the same client, and a call to D is also followed

by a call to E from the same client within this time boundary.

id timestamp client_ip client_port service operation

1 2010-06-18

16:04:16

192.168.1.64 1235 WS1 B

2 2010-06-18

16:04:17

192.168.1.64 1235 WS1 C

3 2010-06-18

16:04:25

192.168.1.62 50648 WS1 A

4 2010-06-18

16:04:30

192.168.1.61 50101 WS1 D

5 2010-06-18

16:04:31

192.168.1.61 50101 WS1 E

6 2010-06-18

16:04:45

192.168.1.151 1039 WS1 B

7 2010-06-18

16:04:46

192.168.1.151 1039 WS1 C

t1 = {B, C}

t2 = {A}

t3 = {D, E}

t4 = {B, C}

Fig. 3. Preparation of transactions from logged data.

The Web service invocation analyzer analyzes the

transactions using the Apriori algorithm. Since the problem

here is to find two or more operations of a Web service which

may be combined, the algorithm in Listing I starts with L2 (i.e.

the set of frequent itemsets of size 2) instead of L1. Although

time complexity of finding association rules is of O(2
n
) where

n is the number of operations, the algorithm is considered

practical for the problem because it is unlikely that a Web

service would offer too many operations. The Web service

invocation analyzer also allows for the time boundary,

minimum support threshold, and minimum confidence

threshold to be configured.

We use NetBeans IDE 6.5, Eclipse 3.4.1, and Java SE 6

update 11 in the implementation of the Web service

invocation analyzer.

V. EVALUATION

To evaluate the framework, we implement a Java Web

service called Shopping which offers the operations in Table

I, simulate invocations to this Web service, and mine the

associations of invocations.

TABLE I. OPERATIONS OF SHOPPING SERVICE.

Operations Arguments Return Type Descripti

on

browseCatalog String:keyword int:categoryID Browse

catalog

cartCreate int:customerID int:cartID Create

cart

cartAdd int:cartID

String:item

int:quantity

boolean:isFinished Add item

into cart

cartGet int:cartID Array:items Get items

in cart

cartRemove int:cartID

String:item

int:quantity

boolean:isFinished Remove

item from

cart

cartClear int:cartID - Clear cart

calculatePrice int:cartID double:price Calculate

price

checkOut int:customerID

int:cartID

boolean:isValid Check out

cart

itemLookup int:itemID boolean:isFinished Find item

by id

itemSearch String:itemNam

e

int:itemID Find item

by name

sellerLookup int:sellerID boolean:isFinished Find

seller by

id

sellerSearch String:sellerNa

me

int:sellerID Find

seller by

name

customer

Content

Lookup

int:customerID boolean:isFinished Find

customer

by id

customer

Content

Search

String:customer

Name

int:customerID Find

customer

by name

login String:username

String:password

int:customerID login

logout int:customerID - logout

A. Invocation Sequences

We define ten patterns of invocation sequences, each

specifying a sequence of calls to different number of

operations at different time. The design of these patterns is

based on Amazon E-Commerce Service [12]. As examples,

two patterns are presented in Table II.

TABLE II. TWO INVOCATION SEQUENCES.

Pattern1 Pattern2

Time (ith sec) Operation Time (ith sec) Operation

0 login 10 login

5 cartGet 15 browseCatalog

10 cartAdd 21 itemSearch

11 calculatePrice 22 itemLookup

15 itemSearch 39 cartCreate

16 itemLookup 40 cartAdd

20 cardAdd 41 calculatePrice

21 calculatePrice 45 browseCatalog

25 itemSearch 50 itemSearch

26 itemLookup 51 itemLookup

30 cartAdd 60 cartAdd

31 calculatePrice 61 calculatePrice

35 calculatePrice 70 logout

36 checkOut

40 logout

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

We simulate the invocation to the Shopping service using

15 clients, each iteratively selecting one of the patterns at

random and making calls as in the pattern. We simulate the

invocation until there are 20,000 operation calls recorded in

the Web service invocation log.

B. Mining Association Rules

With the logged invocation data, we use the Web service

invocation analyzer to analyze them. Fig. 4 shows its user

interface. We specify the database of the Web service

invocation log, Web service name, and necessary parameters

for the analysis. Considering a possibility of service load and

elapsed time of each request roundtrip, we specify the time

boundary of 2,000 milliseconds for adjacent calls. The

minimum support threshold can be specified as a percentage

or the number of count, and the minimum confidence

threshold as a percentage. The service provider can tune these

parameters to obtain appropriate mining results.

After clicking the “Analyze” button, the Web service

invocation analyzer shows the frequent itemsets (i.e. frequent

groups of operations) which pass the minimum support

threshold with their support count. Also all association rules

and their confidence are listed. If the “Use Minimum

Confidence to filter output rules” box is checked, the

granularity report will show only the rules that pass the

minimum confidence threshold. For example, in the figure,

the rule cartGet → calculatePrice with confidence of

98.4127% passes the minimum confidence threshold. The

service provider may consider combining them because when

a customer lists all items in a cart, it is likely that the customer

also wants to know the total price of all items.

VI. DISCUSSION AND CONCLUSION

This paper presents a capability granularity analysis

framework that can find a trace of fine-grained capabilities of

Web service operations by using association rules and the

Apriori algorithm to analyze client invocation behavior. As a

result of inappropriate design of service interface or change in

invocation behavior over time, the analysis can guide the

service provider to combine them to reduce invocation costs.

We see that the association rules that pass the minimum

confidence threshold can only be a suggestion to the service

provider. Combining service operations still needs careful

consideration of the service provider since it changes the

service contract and hence will affect service clients. Even

though the fine-grained capabilities are desirable, the service

provider can begin to explore the possibility of providing

alternative WSDL definitions for the same Web service; one

is fine-grained and the other is coarser-grained. Another

possibility is to offer redundant fine-grained and

coarser-grained operations in the same WSDL definition.

These could de-normalize the service contract but can address

performance issues and accommodate a range of clients [5].

The granularity issue for services internal to an

organization can be more relaxed than that for services

offered at a larger scale with a diversity of clients. This is

because patterns of service use by internal clients can be

defined or modeled early. The organization can only focus on

building the right set of services so that they serve the right set

of problems for the organization.

Having only fine-grained services is beneficial when

connecting or composing them with other services, but it

would be hard to build anything large. Having only

coarse-grained services that do certain amount of

functionality would be good for such functionality, but they

are not particularly reusable for building anything else [13].

Having an appropriate assortment of services, ranging from

fine-grained to coarse-grained, to address particular business

problems and clients would be an interesting approach.

Future work would be an application of this capability

granularity analysis framework to real Web services, and a

study of invocation patterns for services in particular vertical

domains and the impact of all analysis parameters. Also an

analysis of invocation costs that are reduced after combining

service operations would help in a further evaluation of the

framework.

REFERENCES

[1] w3c, (2001, March 15). Web services description language (WSDL)

1.1 [Online]. Available: http://www.w3.org/TR/wsdl

[2] R. Haesen, M. Snoeck, W. Lemahieu, and S. Poelmans, “On the

definition of service granularity and its architectural impact,” in Proc.

of 20th Int. Conf. on Advanced Information Systems Engineering

(CAiSE 2008), LNCS 5074, 2008, pp. 375-389.

[3] T. Erl et al., Web Service Contract Design and Versioning for SOA.

Prentice Hall, 2008, ch. 3.

[4] P. Herzum and O. Sims, Business Components Factory: A

Comprehensive Overview of Component-Based Development for the

Enterprise. New York: John Wiley & Sons, Inc., 2000.

[5] T. Erl et al., Service Oriented Architecture: Concepts, Technology,

and Design. Prentice Hall, 2005, ch. 15.

[6] R. Schmelzer, (2007, August 3). The service granularity matrix

[Online]. Available:

http://www.zapthink.com/2007/08/03/the-service-granularity-matrix/

[7] D. Foody, (2005, August 13). Getting Web service granularity right

[Online]. Available:

http://soa-zone.com/index.php?/archives/11-Getting-web-service-gran

ularity-right.html

[8] B. Shim, S. Choue, S. Kim, and S. Park, “A design quality model for

service-oriented architecture,” in Proc. of 15th Asia-Pacific Software

Engineering Conference (APSEC 2008), 2008, pp. 403-410.

[9] R. Agrawal, T. Imielinski, and A. Swami, “Mining association rules

between sets of items in large databases,” in Proc. of 1993 ACM

SIGMOD Conf., May 1993, pp. 207-216.

[10] R. Agrawal and R. Srikant, “Fast algorithms for mining association

rules in large databases,” in Proc.of 20th VLDB Conf., 1994, pp.

487-499.

[11] B. Basham, K. Sierra, and B. Bates, Head First Servlets and JSP, 2nd

Ed. O’Rielly Media, 2008, ch. 13.

[12] Amazon, (2007, April 4). Amazon E-Commerce Service Developer

Guide [Online].

http://docs.amazonwebservices.com/AWSECommerceService/2007-0

4-04/DG/

[13] R. Schmelzer, (2005, November 15). Right-sizing services [Online].

Available:

http://searchsoa.techtarget.com/tip/0,289483,sid26_gci1145391,00.ht

ml

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

Fig. 4. User interface of Web service invocation analyzer.

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

