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Abstract—Super-resolution seeks to recover a high
resolution image from one or more low resolution im-
ages. It is an ill-posed problem, with no consensus
how best to devise image models that can both im-
pose smoothness and preserve the edges in the image.
Here we investigate the use of prior based on Pearson
type VII density integrated with a Markov Random
Field (MRF) model. We formulate two different ver-
sions, one that acts on the pixel level and another one
that acts on the entire image. Having a single down-
sampled and noisy version of low resolution frame, we
aim to obtain the high resolution image. We compare
the state of the art of image priors in super resolu-
tion application and we discover that our image prior
Pearson-MRF achieves the best performance in terms
of qualitative measurement.

Keywords: single-frame super-resolution, Pearson type

VII, MRF model

1 Introduction

Super-resolution seeks to generate a high resolution im-
age from one or more low resolution images. The lim-
itations of the capturing source often allow the loss of
resolution including the shifting, rotation, blur and down-
sampling. Moreover, the capturing process instigates ad-
ditive noise that causes it is not sufficiently to sample
the scene adequately. Often the observed frames are de-
ficient or noisy, which makes this problem ill-posed and
possibly under-determined too. Thus, extra knowledge
is vital to acquire an adequate solution and well-known
as image prior. Employing the probabilistic model based
framework, this extra information may be specified as a
prior distribution on the salient statistics that images are
known to have. The two main criterions are apparently
contrary each other: local smoothness and the existence
of edges. Hence the requirement of a good image prior is
demanding.

The former prior models have been proposed in the lit-
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erature, yet with no substantiation. Gaussian Markov
Random Fields represent a common choice for its compu-
tational tractability. The Huber-MRF is prominent since
it is more robust but still convex and works in [5, 6, 7]
are considered to be the state of the art approach.

In our previous paper [3], we proposed a robust den-
sity, the univariate version of Pearson type VII formu-
lated as Markov Random Field(MRF) in super resolution
approach. Previously, the comparison with the existing
image priors are concentrating on compressive matrices
transformation. Due of curiosity, we formulated and ex-
amined the multivariate of Pearson type VII and compare
it with the state of the art approach using the classical
super resolution technique. This density is formerly used
as robust density estimation in [1] as alternative to the
t-mixtures and in stock market modelling [2]. The re-
mainder of the paper is organised as follow. In Section
2, we describe the problem formally including how to es-
timate the high resolution image. Section 3 presents the
image prior that we investigate. Section 4 presents our
proposed solution and Section 5 details the experimental
results and their analysis. Finally, Section 6, concludes
the paper.

2 Framework of Image Super Resolution

2.1 Observation Model

The high resolution image of N = r × c pixel intensities
will be vectorised and denoted as z. This image suffers
a quite complicated transformation into a low-resolution
frame includes blur and down-sampled. We adopt a linear
model to express this transformation which, although it
is not completely accurate, it has worked well in many
previous studies on super-resolution [4, 5, 7]. Denoting
the low resolution frame by y in a vectorised form, and
the linear transform that takes z into y by W where it
is a stack of trasformation matrices into a single matrix
W. We expand the forward model as the following:

y = Wz + η (1)

W is a product of blurring and down-sampling matrix of
size [M×N], usually ill-conditioned matrix that models
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a linear blur operation and the down-sampling by row
and column operator. η is a vector that represents an
additive noise, assumed to be Gaussian with zero-mean
and σ2 variance. To make the problem more challeng-
ing, an additive noise is contaminated to the blurred and
down-sampled image.

2.2 The Joint Model

The overall model is the joint model of the observations
y and the unknowns z. Using these, we have joint prob-
ability

Pr(y, z) = Pr(y|z)Pr(z) (2)

where the first term is the observation model, the second
term is the image prior model. Hence we have for the
first term in (2):

Pr(y|z) ∝ exp
{
− 1

2σ2
(y − Wz)T (y − Wz)

}
(3)

This is also called the model likelihood, because it ex-
presses how likely it is that a given z produced the ob-
served y through the transformation W . The second
term of (2) will be instantiated with either one of the im-
age priors discussed in Section 3. To achieve our goal, we
need to ’invert’ the causality described by our model, to
infer the latent variables z from the observed variables y.

2.3 Inverting the model to estimate z

We can invert the causality encoded in a probabilistic
model by the use of Bayes’ rule.

Pr(z|y) =
Pr(y|z)Pr(z)

Pr(y)
(4)

This is called the posterior probability of z given the ob-
served data y. Eq. (4) says that, the probability that z
is the hidden image that gave rise to what we observed,
i.e. y, is proportional to the likelihood that this z fits the
data y and the probability that this bunch of N inten-
sity values, i.e. the vector z, actually ’looks like’ a valid
image. Note that the latter is desperately needed in un-
derdetermined systems, since there are infinitely many
vectors z that fit the data.

2.4 Maximum A Posteriori Inference
through Optimisation

To obtain the most probable estimate of z that conforms
to our model and data, we need to maximise (4) as a
function of z. Observe that, the denominator, Pr(y)
does not depend on z. Hence, the maximum value of
the fraction (4) occurs for exactly the same z for which
the maximum of the numerator does. That is, the most
probable estimate is given by:

ẑ = arg max
z

Pr(y|z)Pr(z)
Pr(y)

(5)

= arg max
z

Pr(y|z)Pr(z) (6)

Further, this maximisation is also equivalent to maximis-
ing the logarithm in the right hand side, since the log-
arithm is a monotonic increasing function. We can also
turn the maximisation into minimisation, by flipping the
signs, as in the following equivalent rewriting:

ẑ = arg min
z

{− log[Pr(y|z)] − log[Pr(z)]} (7)

In words, the most probable high resolution image is the
one for which the negative log of the joint probability
model takes its minimum value. Thus, our problem is
now solvable by performing this minimisation. The ex-
pression to be minimised, i.e. the negative log of the
joint probability model may be interpreted as an error
objective, and shall be denoted as:

Obj(z) = − log[Pr(y|z)] − log[Pr(z)] (8)

The most probable estimate is the ẑ that has highest
probability in the model. Equivalently the one that
achieves the lowest error. Since our model has had two
factors (the likelihood or observation model, and the im-
age prior), consequently our error-objective also has two
terms: the misfit to observed data, and ’penalty’ for vi-
olating the smoothness and/or other characteristics en-
coded in the prior. By plugging in the functional forms
for the observation model and for the various possible
priors into (8), we now give the specific form of this ob-
jective function below, so the interpretation of the indi-
vidual error terms is more evident. We will make use of
the following notation, taking the log of eq. (3):

l(z) := − log Pr(y|z) + const. (9)

=
1

2σ2
(y − Wz)T (y − Wz) (10)

3 Prior Image Model: Markov Random
Fields

The main characteristic of any natural image is a local
smoothness. That is, the intensities of neighbouring pix-
els tend to be very similar. A MRF is a joint distribu-
tion over all the pixels on the image that captures spatial
dependencies of pixel intensities. A first-order MRF as-
sumes that, for any pixel, its intensity depends on the
intensities of its closest cardinal neighbours but does not
depend on any other pixel of the image. Here we will
adopt the 1-st order MRF that conditions each pixel of
intensity on its four cardinal neighbours in the following
way. For any one pixel zi we define:

Pr(zi|z−i) = Pr(zi|z4neighb(i)) (11)

= Pr(zi − 1
4

∑
j∈4neighb(i)

zj) (12)

where the notation z−i means all the pixels excluding
the i-th, and the set of four cardinal neighbours of zi was
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denoted as 4neighb(i). This is a univariate probability
distribution.

Consequently, for the whole image of N pixels, the MRF
represents the joint probability over all the pixels on the
image — a multivariate probability distribution.

Pr(z) ∝
N∏

i=1

Pr(zi|z4neighb(i)) (13)

=
N∏

i=1

Pr(zi − 1
4

∑
j∈4neighb(i)

zj) (14)

The notation ’∝’ means ’proportional to’, i.e. there is a
division by a constant that makes the probability den-
sity integrate to one. This constant may depend on vari-
ous parameters of the actual instantiation of the building
block probability densities, but it does not depend on z.
Since in this work we only need to estimate z, therefore
we can ignore the expression of the normalising constant
throughout.

This form of MRF has been previously employed with
success in e.g. [4, 5]. Alternatives include the so-called
total variation model, employed e.g. in e.g. [7],which is
based on image gradients, also quite simple. In [6], an
experimental comparison of these two alternatives sug-
gests these have comparable performance, the former be-
ing slightly superior though.

The simplicity of (14) is also intuitively appealing. One
can think of the difference between a pixel intensity
and the average intensity of its neighbours, i.e. zi −
1
4

∑
j∈4neighb(i) zj , as a feature. Considering that we want

to encode the general smoothness property of images, it
is easy to see that this feature is very useful: When-
ever this difference is small in absolute value, we have
a smooth neighbourhood. Whenever it is large in abso-
lute value, we have a discontinuity. Hence, to express
smoothness, we just need to instantiate the probability
distribution over this feature, i.e. the uni-variate densi-
ties in the product (14), Pr(zi − 1

4

∑
j∈4neighb(i) zj), with

symmetricdensities around zero, which give high proba-
bility to small values. The Gaussian is a good example.
In the same time, to allow for a few discontinuities, we
need to use heavy tail densities, such as the Huber or the
Pearson type VII density.

To simplify notation and it is conveniently to create the
symmetric N × N matrix D to encode the above neigh-
bourhood structure, with entries:

dij =

⎧⎨
⎩

1 if i = j;
−1/4 if i and j are neighbours;
0 otherwise.

Then we may write the i-th feature in a vector form, with
the aid of the i-th row of this matrix (denoted Di) as the

following:

zi − 1
4

∑
j∈4neighb(i)

zj =
N∑

j=1

dijzj (15)

= Diz (16)

Again, this is the i-th neighbourhood feature of the im-
age, and there are i = 1, . . . , N such features on an N -
pixel image.

The studies of data visualisation of the neighbour-hood
features (Diz) from several natural images are presented
in a histogram. We now turn to instantiate the functional
form of the probability densities that describe the shape
of the likely values of these features. Figure 1 shows a few
examples of observed histograms of these features, from
natural images. The probability densities that we employ
in our image priors should ideally have similar shapes.
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Figure 1: Examples of histograms of the distribution of
neighbourhood features Diz, i = 1, · · · , N from natural
images.

3.1 Gaussian-MRF

The Gaussian MRF is the most widely used image prior
density. It has the following form:

Pr(z) ∝
N∏

i=1

exp
{
− 1

2λ
(Diz)2

}
(17)

= exp

{
− 1

2λ

N∑
i=1

(Diz)2
}

(18)

where λ is the variance parameter.

3.2 Huber-MRF

The Huber density is defined with the aid of the Huber
function. It takes a threshold parameter δ, specifying the
value at which it diverts from being quadratic to being
linear. A generic variable u in the definition of this func-
tion will be instantiated later as a neighbourhood-feature
Diz within the image prior use.

H(u|δ) =
{

u2, if |u| < δ
2δ|u| − δ2, otherwise. (19)
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The Huber-MRF prior is then defined in (21) where λ is
similar to a variance parameter.

Pr(z) ∝
N∏

i=1

exp
{
− 1

2λ
H(Diz|δ)

}
(20)

= exp

{
− 1

2λ

N∑
i=1

H(Diz|δ)
}

(21)

4 Pearson Type VII-MRF

4.1 The univariate Pearson Type VII-MRF

The Pearson-MRF made of univariate building blocks: A
zero mean univariate Pearson prior, is defined as:

Pr(z) ∝
N∏

i=1

{
(Diz)2 + λ

}−( 1+ν
2 )

(22)

where ν and λ control the shape of the distribution.

4.2 The multivariate Pearson Type VII-
MRF

A zero mean multivariate Pearson-MRF density in a
generic N-dimensional vector of Diz, has the following
form:

Pr(z) ∝
{

N∑
i=1

(Diz)2 + λ

}−( ν+N
2 )

(23)

4.3 Discussion on the two versions of
Pearson-MRF

The version devised in Section 4.1 may be re-
garded as having independent Pearson-priors on each
neighbourhood-feature. Of course, we ought to point out
that the neighbourhood features are not independent in
reality. However, since each pixel only depends on four
others, it may be a reasonable approximation.

The version gave in section 4.2, in turn, does not allow
such independence interpretation. Conversely, this can
has the advantage that the spatial dependencies are not
broken up, but more reliably accounted for. However, on
the downside, the heavy tail behaviour is more advanta-
geous to have on the pixel level, i.e., on the distribution
of neighbourhood features. Indeed, it is the distribution
of neighbourhood features the one in which the edges
from the image creates outliers. In turn, the multivariate
Pearson-MRF is a density on images. Hence, its heavy
tail behaviour would be well suited to account for outly-
ing or atypical images. Including both of these versions
in our comparison will therefore uncover to us which of
these pros or cons are more important for recovering qual-
ity high resolution images.

5 Experiments

5.1 Experimental Setting

We present two set of a single frame image super res-
olution experiments illustrating the performance of the
hyper-parameters and four different images for testing
the stability of the parameters found. The LR image is
blurred by the unifrom blur matrix of size 3x3, down-
sampled by factor 4 and contaminated by standard de-
viation of Gaussian noise of 1e-3 and 1e-2. The original
image for Exp. 1 is the cameraman, Exp. 2 is the panda
bear, Exp. 3 is the chamomile flower and Exp 4 is the
ladybug. All are in size 100x100. The initial guess was
initialized with Gaussian-MRF with σ2/λ set to 1 and
was used as a starting point for the recovery algorithm.
We employed a conjugate gradient type method1, which
requires the gradient vector of the objectives. All the
pixel intensities are scaled to interval [-0.5,0.5].

In our paper [3], we applied the compressive matrix of W
to find out how well is the proposed image prior based
MRF in comparison with other state of the art priors, and
hyper-parameters is manually tuned to acquire the opti-
mum mean square error for all methods. Meanwhile in
this paper we compare it using the transformation matrix
consists of blur and down-sampling, which one of the two
version of Pearson works better and does it still good al-
though for a different transformation? Secondly how the
selection of hyper-parameters of univariate Pearson type
VII is determined and how good is the proposed prior in
under-determined system where W has [2500,10000] size.
For this experiment, we wider the test images and the
noise variance as well.

5.2 Hyper-parameters Selection of Pearson-
MRF

The performance of the image recovery of high resolu-
tion is depending on how good selection value of hyper-
parameters in image prior. Bad estimation can lead to
produce a bad result. Since we are assessing the perfor-
mance of both parameters, the recovery algorithm is as-
suming knowing the true noise variance σ2. From the ob-
servation using the constructed blur and down-sampling
matrix W, we found practical range of λ and ν.

The results are presented in Figure 2. Too small λ (0.001)
and ν reduces the effect of prior and the solution ap-
proaching the Maximum Likelihood(ML). Whilst too big
λ (10000) will blur the edges. The overall performance of
the recovered image is depending strongly on the selec-
tion of λ. We can conclude that the ν can be fixed into
a practicable range (i.e:1-10) so that the iteration could
terminate earlier and the λ is found best from 0.1 to 100.
Two set of images (cameraman and panda image) are

1We made use of the efficient implementation available from
http://www.kyb.tuebingen.mpg.de/bs/people/carl/code/minimize/
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examined to achieve the best performance. While Fig-
ure 3 shows the variation performance varying several λ.
Besides, the performance for several level of noise is in-
vestigated using one of the stable range of ν using four
different images and the results are presented in Figure
4.
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Figure 2: Top: Test image of cameraman, bottom: test
image of panda are used to inspect the best value of
hyper-parameters by computing the MSE performance
varying several λ where noise variance is 0.001.

5.3 Results

To asses the goodness of the proposed method, Pearson-
MRF estimation results are compared with image en-
hancement state of the art methods in [4, 5, 7] using the
qualitative measurement, mean square error (MSE). The
competing image priors are: Gaussian-MRF, a multivari-
ate Pearson type VII based MRF and the Huber-MRF.
These results are presented in Figure 5 and we can see
that the univariate Pearson type VII based MRF can
achieve state-of-the-art performance, comparable to the
Huber-MRF as well across all noise levels tested while
the other priors tested perform worse. Finally we also il-
lustrated two recovery set of experiment where the trans-
formation matrix consists blur and down-sampling. Here
we generated a single frame of high resolution for under-
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Figure 3: MSE measurement varying λ where the ν is
fixed to 0.05 and this value is found one of the best from
manually search.
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Figure 4: Test set on a different level of noise for four
type of images varying several λ using one of the optimal
value found (ν = 0.05).
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determined system as well in this case. Figure 7 shows the
outcome using univariate Pearson type VII based MRF.
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Figure 5: Comparative MSE performance for under-
determined system where W has [2500,10000] and vary-
ing several level of noise using the best values of hyper-
parameter for every image prior. The error bars are over
10 independent trials.
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Figure 6: Comparing the MSE performance of the image
with the access to the ground truth image for finding the
hyperparameters Pearson type VII baased MRF and us-
ing the same value of the optimal found for other images.
The error bars are over 10 independent trials over the ran-
dom draw of the additive noise and the transformation
W consists of blur and down-sampling.

6 Conclusions and Future Work

In this paper we formulated two versions of Pearson-MRF
image priors, and conducted a comparative experimental
study among these and state of the art methods of image
prior from a single noisy version of low resolution im-
age. We demonstrate that our proposed prior, univariate
Pearson Type VII-MRF is likewise superior with Huber
for all level of noise. The recovered image is always con-
sistent although it has several local optima and we asses

Ground Truth Low resolution image

Ground Truth Low resolution image Pearson

Figure 7: Left: Ground truth image, blurred and down-
sampled image corrupted by additive noise and estimated
image using Pearson-MRF from a noisy version of single
low-resolution frame. The problem is under-determined
system where W[2500,10000] and the σ is 0.001.

four different images. Our motivation for Pearson-MRF
prior has been the heavy tail property of the Pearson
type VII-distribution, which indeed seems to be a good
way of preserving the edges too while imposing smooth-
ness. We tested this in under-determined systems, using
the optimal value under various natural images. Future
work is aimed towards recovering from multiple frames
and working with multiple scenes for under-determined
system and over-determined system as well.

References

[1] J.Sun, A.Kabán and J.Garibaldi, “Robust Mixture Mod-
eling using the Pearson Type VII Distribution“, Pro.
Int. Joint Conference on Neural Network, 2010, to appear.
http://www.cs.bham.ac.uk/∼axk/PearsonTypeVIIMixture.pdf

[2] Y.Nagahara, “Non-gaussian distribution for stock returns and
related stochastic differential equation“, Asia-Pacific Finan-
cial MArkets, V3, N2, pp. 121-149, 1996

[3] AKaban and S.A. Pitchay, “Single-frame Image Super-
resolution Using a Pearson Type VII MRF“, Proc. IEEE In-
ternational Workshop on Machine Learning for Signal Pro-
cessing, (MLSP 2010)

[4] R. C. Hardie, K. J. Barnard, “Joint MAP Registration and
High-Resolution Image Estimation Using a Sequence of Un-
dersampled Images“’, IEEE Trans. Image Processing, V6,
N12, Dec. 1997, pp. 621–633.

[5] H. He and L.P. Kondi, “MAP Based Resolution Enhancement
of Video Sequences Using a Huber-Markov Random Field
Image Prior Model“, IEEE Conference of Image Processing,
2003, pp. 933-936.

[6] H. He and L.P. Kondi, “Choice of Threshold of the Huber-
Markov Prior in MAP Based Video Resolution Enhance-
ment“, IEEE Electrical and Computer Engineering Canadian
Conference, 2004.

[7] L. C. Pickup, D. P. Capel, S. J. Roberts, A. Zissermann,
“Bayesian Methods for Image Super-Resolution“, The Com-
puter Journal, 2007.

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I 
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010




