

The Objectivity Measurement of
Frequent Patterns

Phi-Khu Nguyen, Thanh-Trung Nguyen

Abstract—Frequent pattern mining is a basic problem in data

mining and knowledge discovery. The discovered patterns can
be used as the input for analyzing association rules, mining
sequential patterns, recognizing clusters, and so on.

However, there is a posed question that how is objectivity
measurement of frequent patterns? Specifically, in market
basket analysis problem to find out association rules, whether
or not the frequent patterns discovered represent exactly the
needs of all customers. Or, these frequent patterns were only
created by a few customers with too many purchases.

In this paper, a mathematical space will be introduced with
some new related concepts and propositions to design a new
algorithm answering the above questions.

Index Terms—association rule, data mining, frequent
patterns mining, objectivity measurement.

I. SPACE OF BOOLEAN CHAINS
Let B = {0,1}, Bm is the space of m-tuple Boolean chains,

whose elements are s = (s1, s2, .. , sm), si ∈ B, i = 1,..,m.

A. Definitions
A Boolean chain a = (a1, a2, .. , am) is said to cover another

Boolean chain b = (b1, b2, .. , bm) – or b is covered by a, if for
each i ∈ {1,..,m} the condition bi = 1 implies that ai = 1. For
instance, (1,1,1,0) covers (0,1,1,0).

Let S be a set of n Boolean chains. If there are k chains in S
covering a chain u = (u1, u2, .. , um) then u is called a form with
a frequency of k in S and [u; k] is called a pattern of S. For
instance, if S = { (1,1,1,0), (0,1,1,1), (0,1,1,0), (0,0,1,0),
(0,1,0,1) } then u = (0,1,1,0) is a form with a frequency 2 in S
and [(0,1,1,0); 2] is a pattern of S.

A pattern [u; k] of S is called a maximal pattern if and only
if the frequency k is the maximal number of Boolean chains
in S. In the above instance, [(0,1,1,0); 3] is a maximal pattern
in S.

The set P of all maximal patterns in S whose forms are not
covered by any form of other maximal pattern, is called a
representative set and each element of P is called a
representative pattern of S.

Based on this definition, the following proposition is
trivial:

Proposition 1: Let S be a set of m-tuple Boolean chains and

P be the representative set of S, then any couple of two
elements in P are not coincided.

Manuscript received June 30, 2010.
Phi-Khu Nguyen is with University of Information Technology, Vietnam

National University HCM City, Vietnam (e-mail: khunp@uit.edu.vn).
Thanh-Trung Nguyen is with the Department of Computer Science,

University of Information Technology, Vietnam National University HCM
City, Vietnam (e-mail: nguyen_thanh_trung_key@yahoo.com.vn).

By listing all of n elements of the set S of m-tuple Boolean
chains in a Boolean n×m matrix, each element [u; k] of the
representative set forms a maximal rectangle with maximal
height of k in S set.

For instance, if S = { (1,1,1,0), (0,1,1,1), (1,1,1,0),
(0,1,1,1), (0,0,1,1) }, then representative set of S consists of
five representative patterns: P = { [(1,1,1,0); 2], [(0,1,1,0); 4],
[(0,0,1,0); 5], [(0,1,1,1); 2], [(0,0,1,1); 3] }. All of five
elements of S are listed in a form of Boolean 5×4 matrix, as
follows:

A 5x4 matrix: and [(0,1,1,0); 4]:
1 1 1 0 1 1 1 0
0 1 1 1 0 1 1 1
1 1 1 0 1 1 1 0
0 1 1 1 0 1 1 1
0 0 1 1 0 0 1 1

Fig. 1. A 5x4 matrix for [(0,1,1,0); 4].

Figure 1 shows a maximal rectangle with boldface 1s and a

maximal height of 4 corresponding to the pattern [(0,1,1,0);
4]. Other maximal rectangles formed by elements of P are

[(1,1,1,0); 2]: [(0,0,1,0); 5]:
1 1 1 0 1 1 1 0
0 1 1 1 0 1 1 1
1 1 1 0 1 1 1 0
0 1 1 1 0 1 1 1
0 0 1 1 0 0 1 1

Fig. 2a. Matrices for [(1,1,1,0); 2] and [(0,0,1,0); 5].

[(0,1,1,1); 2]: [(0,0,1,1); 3]:
1 1 1 0 1 1 1 0
0 1 1 1 0 1 1 1
1 1 1 0 1 1 1 0
0 1 1 1 0 1 1 1
0 0 1 1 0 0 1 1

Fig. 2b. Matrices for [(1,1,1,0); 2] and [(0,0,1,1); 3].

A noteworthy case of the above instance: [(1,1,0,0); 2] is a

maximal pattern, but it is not a representative pattern of S
because its form is covered by (1,1,1,0) of the pattern
[(1,1,1,0); 2].

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

B. Binary Relations
Let a = (a1, a2, .. , am) and b = (b1, b2, .. , bm) be two m-tuple

Boolean chains, then a = b if and only if ai = bi for any i =
1,..,m. Otherwise, it is denoted by a ≠ b.

Given patterns [u; p] and [v; q] in S, [u; p] is contained in
[v; q] – denoted by [u; p] ⊆ [v; q], if and only if u = v and p ≤
q. To negate, the operator ! is used e.g. [u; p] !⊆ [v; q]

The minimum chain of a, b – denoted by a ∩ b, is a chain z
= (z1, z2, .. , zm) determined by z = a ∩ b where zk = min(ak,
bk) with k = 1,..,m.

The minimum pattern of [u; p] and [v; q] is a pattern [w; r],
denoted by [u; p] ∩ [v; q], defined as follows: [u; p] ∩ [v; q]
= [w; r] here w = u ∩ v and r = p + q.

II. AN IMPROVED ALGORITHM

A. Theorem 1: for Adding a New Element
Given S be a set of m-tuple Boolean chains and P

representative set of S. For [u; p], [v; q]∈ P and z ∉ S, let [u;
p] ∩ [z; 1] = [t; p+1], [v; q] ∩ [z; 1] = [d; q+1]. Only one of
the following cases must be satisfied:

 i. [u; p] ⊆ [t; p+1] and [u; p] ⊆ [d; q+1], t = d
 ii. [u; p] ⊆ [t; p+1] and [u; p] !⊆ [d; q+1], t ≠ d
iii. [u; p] !⊆ [t; p+1] and [u; p] !⊆ [d; q+1].
Proof: From Proposition 1, obviously u ≠ v. The theorem

is proved if the following claim is true: Let
(a): u = t , u = d , and t = d;
(b): u = t , u ≠ d , and t ≠ d;
(c): u ≠ t and u ≠ d,

only one of the above statements is correct.
By the method of induction on the number m of entries of

chain, in the first step, we show that the claim is correct if u
and v differ at only one kth entry.

Without loss of generality, we assume that uk = 0 and vk =
1. The following cases must be true:

- Case 1: zk = 0; Then min(uk, zk) = min(vk, zk) = 0, hence
t = u ∩ z = (u1, u2, .. , 0, .. , um) ∩ (z1, z2, .. , 0, .. , zm) = (x1,

x2, .. , 0, .. , xm), xi = min(ui, zi), for i = 1,..,m, i≠k;
d = v ∩ z = (v1, v2, .. , 1, .. , vm) ∩ (z1, z2, .. , 0, .. , zm) = (y1,

y2, .. , 0, .. , ym), yi = min(vi, zi), for i = 1,..,m, i≠k.
From the assumption ui = vi when i ≠ k thus xi = yi, so t = d.

Hence, if u = t then u = d and (a) is correct. On the other hand,
if u ≠ t then u ≠ d, therefore (c) is correct.

- Case 2: zk = 1; We have min(uk, zk) = 0, min(vk, zk) = 1
and t = u ∩ z = (u1, u2, .. , 0, .. , um) ∩ (z1, z2, .. , 1, .. , zm) = (x1,
x2, .. , 0, .. , xm), xi = min(ui, zi), for i = 1,..,m, i≠k;

d = v ∩ z = (v1, v2, .. , 1, .. , vm) ∩ (z1, z2, .. , 1, .. , zm) = (y1,
y2, .. , 1, .. , ym), yi = min(vi, zi), for i = 1,..,m, i≠k.

So, t ≠ d. If u = t then u ≠ d, thus the statement (b) is
correct.

In summary, the above claim is true for any u and v of S
that differ only at one entry.

By induction in the second step, it is assumed that the
claim is true if u and v differ at r entries, and only one of the
three statements (a), (b) or (c) is true.

Without loss of generality, we assume that the first r
entries of u and v are different, and they differ at (r+1)-th
entries. Applying the same method in the first step where r =

1 to this instance, it is obtained
True

statements
when u ≠ v,

and their
first r entries
are different:

True
statements

when u ≠ v,
and their
first r+1

entries are
different:

True
statements

when
combining

the two
possibilities:

(a) (a) (a)
(a) (b) (b)
(a) (c) (c)
(b) (a) (b)
(b) (b) (b)
(b) (c) (c)
(c) (a) (c)
(c) (b) (c)
(c) (c) (c)

Fig. 3. Cases in comparision.

Therefore, if u and v are different at r+1 entries, only one

of the (a), (b), (c) statements is correct. The above claim is
true, and Theorem 1 is proved.

B. Algorithm: for Finding a New Representative Set
Let S be a set that consists of n m-tuple Boolean chains,

and P the representative set of S. If a m-tuple Boolean chain z
is added to S, the following algorithm is used to determine the
new representative set of S ∪ {z}:

ALGORITHM NewRepresentative(P , z)
// Finding new representative set for S when one chain is

added to S.
// Input: P is a representative set of S, z: a chain added to S.
// Output: The new representative set P of S ∪ {z}.
1. M = ∅ // M: set of new elements of P
2. flag1 = 0
3. flag2 = 0
4. for each x ∈ P do
5. q = x ∩ [z; 1]
6. if q ≠ 0 // q is not one chain with all elements 0
7. if x ⊆ q then P = P \ {x}
8. if [z; 1] ⊆ q then flag1 = 1
9. for each y ∈ M do
10. if y ⊆ q then
11. M = M \ {y}
12. break for
13. endif
14. if q ⊆ y then
15. flag2 = 1
16. break for
17. endif
18. endfor
19. else
20. flag2 = 1
21. endif
22. if flag2 = 0 then M = M ∪ {q}
23. flag2 = 0
24. endfor
25. if flag1 = 0 then P = P ∪ { [z; 1] }
26. P = P ∪ M
27. return P

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

C. Theorem 2: for Finding Representative Sets
Let S be a set of n m-tuple Boolean chains. The

representative set of S is determined by applying
NewRepresentative algorithm to each of n elements of S in
turn.

Proof: This theorem is proved by induction on the number
n of elements of S.

Firstly, when applying the above algorithm to the set S of
only one element, this element is added into P and then P with
that only element is the representative set of S. Thus,
Theorem 2 is proved in the case of n = 1.

Next, assume that S consists of n elements, the above
algorithm is applied to S, and it is obtained a representative
set P0 of p patterns. Each element of P0 allows to form a
maximal rectangle from S. When adding a new m-tuple
Boolean chain z to S, it is necessary to prove that the
algorithm allows to find a new representative set P of S ∪
{z}.

Indeed, with z, some new rectangle forms will be formed
along with the existing rectangle forms. But some of these
new rectangle forms which are covered by other rectangle
forms, the so-called ‘redundant’ rectangles, need to be
removed to gain P.

The fifth statement in the NewRepresentative algorithm
shows that the operator ∩ is applied to z and p elements of P0
to produce p new elements belonging to P. This means z
‘scans’ all elements in the set P0 to find out new rectangle
forms when adding z into S. Consequently, three groups of
2p+1 elements in total are created from the sets P0, P, and z.

To remove redundant rectangles, we have to check
whether each element of P0 is contained by elements of P or
not, and elements of P contain other one, in which z is an
element in P.

Let x be an element of P0 and consider the form x ∩ z,
there are two instances: if the form of z covers the one of x
then x is a new form; or if the form of x covers the one of z
then z is a new form. Anyway, the frequency of the new form
is always one unit greater than frequency of the original.

According to Theorem 1, with x ∈ P0, if some pattern w
contains x then w must be a new element which belongs to P,
and that new element is q = x ∩ [z; 1]. To check whether x is
contained by elements belonging to P, we do that whether x is
contained by q or not. If x contained by q, it must be removed
from the representative (line 7).

In summary, first the algorithm checks whether elements
belonging to P0 is contained by elements belonging to P.
Then, the algorithm checks whether elements of P contain
one other (from line 9 to line 18), and whether [z; 1] is
contained by elements belonging to P or not (line 8).

Finally, the above NewRepresentative algorithm can be
used to find new representative set when adding new
elements to S.

III. THE OBJECTIVITY MEASUREMENT

A. Association Rule Discovery
Advanced technologies have enabled us to collect large

amounts of data on a continuous or periodic basis in many

fields. On one hand, these data present the potential for us to
discover useful information and knowledge that we could not
find before. On the other hand, we are limited in our ability to
manually process large amounts of data to discover useful
information and knowledge. This limitation demands
automatic tools for data mining to mine useful information
and knowledge from large amounts of data. Data mining has
become an active area of research and development.

Association rules – a data mining methodology that is
usually used to discover frequently co-occurring data items,
for example, items that are commonly purchased together by
customers at grocery stores. Association rule discovery
problem were introduced in 1993 by Agrawal [17]. Since
then, this problem has received much attention. Today the
exploitation such rules is still one of the most popular way for
exploiting pattern in order to conduct knowledge discovery
and data mining.

Exactly, association rule discovery is the process
discovering sets of value of attribute appearing frequently in
data objects. From the frequent patterns, association rules can
be created in order to reflect the ability of appearing
simultaneously the value of attribute in the set of objects. To
bring out the meaning, an association rule of X → Y reflects
the occurrence of the set X conduces to the appearance of the
set Y. In other words, an association rule indicates an affinity
between X (antecedent) and Y (consequent). An association
rule is accompanied by frequency-based statistics that
describe that relationship. The two statistics that were used
initially to describe these relationships were support and
confidence [17].

The apocryphal example is a chain of convenience stores
that performs a analysis and discovers that disposable diapers
and beer are frequently bought together [8]. This unexpected
knowledge is potentially valuable as it provides insight into
the purchasing behavior of both disposable diaper and beer
purchasing customers for the convenience store chain. So
that, we can find association rules help identify trends in
sales, customer psychology, etc. to make strategic layout
item, business, marketing, and so on.

In short, the association rule discovery can be divided into
two parts:

• Finding all frequent patterns that satisfy min-support.
• Finding all association rules that satisfy minimum

confidence.
Most research in the area of association rule discovery has

focused on the sub-problem of efficient frequent pattern
discovery (for example, Han, Pei, & Yin, 2000; Park, Chen,
& Yu, 1995; Pei, Han, Lu, Nishio, Tang, & Yang, 2001;
Savasere, Omiecinski, & Navathe, 1995). When seeking all
associations that satisfy constraints on support and
confidence, once frequent patterns have been identified,
generating the association rules is trivial.

B. The Methods of Finding Frequent Patterns
• Candidate Generation Methods: for instance, Apriori

method proposed by Agrawal in piece of research
[17]–[8], and algorithms rely on Apriori such as
AprioriTID, Apriori-Hybrid, DIC, DHP, PHP,... in
[3]–[4]–[8].

• Without Candidate Generation Methods: for example,

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

Zaki’s method relies on IT-tree and intersection part of
Tidsets in order to reckon support, [3]; or J. Han’s one
relies on FP-tree in order to exploit frequent patterns,
[9]–[5]; or methods Lcm, DCI, ... presented in [9].

• Paralleled Methods: instances in [15]–[16]–[11].

C. Issues Need to be Solved
• Working with the varying database is the biggest

challenge. Especially, it need not scan again the whole
database whenever having need of adding a new
element.

• A number of algorithms are effective, but their basis of
mathematics and way of installation are complex.

• The limit of computer memory. Hence, combining how
to store the data mining context most effectively with
costing the memory least and how to store frequent
patterns is also not a small challenge.

• Ability of dividing data into several parts for paralleled
processing is also concerned.

Using the NewRepresentative algorithm is making good
the above problems.

D. Data Mining Context
Let O be a limited non-empty set of invoices, and I be a

limited non-empty set of goods. Let R be a binary relation
between O and I so that: for o ∈ O and i ∈ I, (o, i) ∈ R if and
only if the invoice o includes the i-th goods. Then R is a
subset of the product set O×I, and the trio (O, I, R) describes a
data mining context.

For example, we have a context which is illustrated in
Table 1, consisted of five invoices with the codes oj, j = 1,..,5
and four kinds of goods ik, k = 1,..,4. The corresponding
binary relation R is described in Table 2 which can be
represented by a 5×4 Boolean matrix.

Table 1. Invoice details
Invoice code Goods code

o1 i1
o1 i2
o1 i3
o2 i2
o2 i3
o2 i4
o3 i2
o3 i3
o3 i4
o4 i1
o4 i2
o4 i3
o5 i3
o5 i4

Table 2. Boolean matrix of data mining context

 i1 i2 i3 i4
o1 1 1 1 0
o2 0 1 1 1
o3 0 1 1 1
o4 1 1 1 0
o5 0 0 1 1

E. The Objectivity Measurement of Frequent Patterns
Let's survey Table 3

Table 3. Boolean matrix of data mining context with
customers

 Customer i1 i2 i3 i4
o1 C1 1 1 1 0
o2 C2 0 1 1 1
o3 C3 0 1 1 1
o4 C1 1 1 1 0
o5 C4 0 0 1 1

By observing with the naked eye, we can notice

immediately that the frequent pattern having form (1110)
appears in two invoices (o1, o4) and is decided by the only
customer C1. Meanwhile, the frequent pattern having form
(0010) appears in five invoices (o1, o2, o3, o4, o5) and is
decided by all four customer (C1, C2, C3, C4).

Obviously, with minsupp=40%, the both frequent patterns
are satisfied. But, whether or not we can use these two
frequent patterns to generate association rules, then apply
these rules to prospective customers? To answer this question
requires us to consider objectivity measurement of each
frequent pattern. Or, more detail, we must determine the ratio
of number of customers involved in the process of creating a
frequent pattern to total of customers. The higher the ratio is,
the better the objectivity measurement of the frequent pattern
is. Viz, the frequent pattern is created by most customers.
Since then, we hope that this will also correct for the majority
of prospective customers.

Back to the above example, the frequent pattern (1110) has
the objectivity measurement of 1/4=25%. Meanwhile, the
frequent pattern (0010) has the objectivity measurement of
4/4=100%. With these parameters, business managers will
have more information when making decisions.

When applying the algorithm NewRepresentative, we can
solve this problem.

The tenor of the algorithm is to find out new rectangle
forms created by applying the operator ∩ to corresponding
line of data of current step and rectangle forms found in prior
steps. However, in the first step, grouping the data mining
context in order to gain the first evident rectangle forms and
their corresponding height is a need. In per step, if the
rectangle form created newly covers an existent rectangle
form then removing the old rectangle form is necessary.
Besides, it also needs to remove the newly created rectangle
form if they mutually cover.

In summary, after per step, the set P whose elements differ
mutually is created. This means to achieve various maximal
rectangle forms in the database, as from the first line of data
to the line of data corresponding to the current step.

To calculate the objectivity measurement, in lines 22 and
25 of the algorithm NewRepresentative, before addition q to
M and [z, 1] to P, we add the list of customers to q and [z, 1].
Customer of [z, 1] is the customer purchasing the invoice
forming [z, 1]. Customer list of q is generated from customer
lists of x and [z, 1]. Adding customer list includes examining
whether the duplicate customer or not for increasing the
number of iterations of customers. Specifically, consider the
following example. Based on the Boolean matrix in Table 3

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

with a minsupp of 40%.
Table 3. Boolean matrix of data mining context with

customers
 Customer i1 i2 i3 i4
o1 C1 1 1 1 0
o2 C2 0 1 1 1
o3 C3 0 1 1 1
o4 C1 1 1 1 0
o5 C4 0 0 1 1

Let P be the set of maximal rectangle forms of that Boolean

matrix. It can be determined by following steps:

- Step 1:
Consider line 1: [(1110); 1] (l1)
Since P now is empty means should we put (l1) in P, we
have:
P = { [(1110); 1; (C1-1)] } (1)

- Step 2:
Consider line 2: [(0111); 1] (l2)
Let (l2) perform the ∩ operation with the elements
existing in P in order to get the new elements

(l2) ∩ (1): [(0111); 1] ∩ [(1110); 1] = [(0110); 2] (n1)
Considering excluded:

Considering whether or not the old elements in P is
contained in the new elements:

We remain: (1)
Considering whether or not the new elements contain
each other (note: (l2) is also a new element):

We remain: (l2) and (n1)
After considering excluded, it supplements the list of
customers of the elements remaining:

(1): [(1110); 1; (C1-1)]
(l2): [(0111); 1; (C2-1)]
(n1): [(0110); 2; (C1-1, C2-1)] //because (n1) is

generated by (l2) and
(1)

Putting the elements into P, we have:
P = { [(1110); 1; (C1-1)] (1)

[(0110); 2; (C1-1, C2-1)] (2)
[(0111); 1; (C2-1)] (3)

}

- Step 3:
Consider line 3: [(0111); 1] (l3)
Let (l3) perform the ∩ operation with the elements
existing in P in order to get the new elements

(l3) ∩ (1): [(0111); 1] ∩ [(1110); 1] = [(0110); 2] (n1)
(l3) ∩ (2): [(0111); 1] ∩ [(0110); 2] = [(0110); 3] (n2)
(l3) ∩ (3): [(0111); 1] ∩ [(0111); 1] = [(0111); 2] (n3)

Considering excluded:
Considering whether or not the old elements in P is
contained in the new elements:

We remove: (2) because of being contained in
(n1), and (3) because of being
contained in (n3)

We remain: (1)
Considering whether or not the new elements contain

each other (note: (l3) is also a new element):
We remove: (n1) because of being contained in

(n2), and (l3) because of being
contained in (n3)

We remain: (n2) and (n3)
After considering excluded, it supplements the list of
customers of the elements remaining:

(1): [(1110); 1; (C1-1)]
(n2): [(0110); 3; (C1-1, C2-1, C3-1)] //because (n2) is

generated by
(l3) and (2)

(n3): [(0111); 2; (C2-1, C3-1)] //because (n3) is
generated by (l3)
and (3)

Putting the elements into P, we have:
P = { [(1110); 1; (C1-1)] (1)

[(0110); 3; (C1-1, C2-1, C3-1)] (2)
[(0111); 2; (C2-1, C3-1)] (3)

}

- Step 4:
Consider line 4: [(1110); 1] (l4)
Let (l4) perform the ∩ operation with the elements existing
in P in order to get the new elements

(l4) ∩ (1): [(1110); 1] ∩ [(1110); 1] = [(1110); 2] (n1)
(l4) ∩ (2): [(1110); 1] ∩ [(0110); 3] = [(0110); 4] (n2)
(l4) ∩ (3): [(1110); 1] ∩ [(0111); 2] = [(0110); 3] (n3)

Considering excluded:
Considering whether or not the old elements in P is
contained in the new elements:

We remove: (1) because of being contained in
(n1), and (2) because of being
contained in (n2)

We remain: (3)
Considering whether or not the new elements contain
each other (note: (l4) is also a new element):

We remove: (n3) because of being contained in
(n2), and (l4) because of being
contained in (n1)

We remain: (n1) and (n2)
After considering excluded, it supplements the list of
customers of the elements remaining:

(3): [(0111); 2; (C2-1, C3-1)]
(n1): [(1110); 2; (C1-2)] //because (n1) is generated by

(l4) and (1)
(n2): [(0110); 4; (C1-2, C2-1, C3-1)] //because (n2) is

generated by
(l4) and (2)

Putting the elements into P, we have:
P = { [(0111); 2; (C2-1, C3-1)] (1)

[(1110); 2; (C1-2)] (2)
[(0110); 4; (C1-2, C2-1, C3-1)] (3)

}

- Step 5:
Consider line 5: [(0011); 1] (l5)
Let (l5) perform the ∩ operation with the elements existing
in P in order to get the new elements

(l5) ∩ (1): [(0011); 1] ∩ [(0111); 2] = [(0011); 3] (n1)

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

(l5) ∩ (2): [(0011); 1] ∩ [(1110); 2] = [(0010); 3] (n2)
(l5) ∩ (3): [(0011); 1] ∩ [(0110); 4] = [(0010); 5] (n3)

Considering excluded:
Considering whether or not the old elements in P is
contained in the new elements:

We remain: (1), (2), and (3)
Considering whether or not the new elements contain
each other (note: (l5) is also a new element):

We remove: (l5) because of being contained in
(n1), and (n2) because of being
contained in (n3)

We remain: (n1) and (n3)
After considering excluded, it supplements the list of
customers of the elements remaining:

(1): [(0111); 2; (C2-1, C3-1)]
(2): [(1110); 2; (C1-2)]
(3): [(0110); 4; (C1-2, C2-1, C3-1)]
(n1): [(0011); 3; (C2-1, C3-1, C4-1)] //because (n1) is

generated by (l5)
and (1)

(n3): [(0010); 5; (C1-2, C2-1, C3-1, C4-1)] //because
(n3) is
generated
by (l5) and
(3)

Putting the elements into P, we have:
P = { [(0111); 2; (C2-1, C3-1)] (1)

[(1110); 2; (C1-2)] (2)
[(0110); 4; (C1-2, C2-1, C3-1)] (3)
[(0011); 3; (C2-1, C3-1, C4-1)] (4)
[(0010); 5; (C1-2, C2-1, C3-1, C4-1)] (5)

}

So, the frequent patterns satisfy minsupp = 40% (2/5) is

listed:
{ {i2, i3, i4} (2/5); {i1, i2, i3} (2/5); {i2, i3} (4/5);

{i3, i4} (3/5); {i5} (5/5) }
However, when considering the objective measurement or

the impact measurement of customer, we clearly see that the
frequent pattern {i1, i2, i3} (2/5) just was created by only
customer C1. Thus, when analyzing, we will have better
information about the objective measurement of this frequent
pattern, viz. 1/4=25%. In addition, the objective
measurement of {i2, i3, i4} (2/5) is 2/4=50%, {i2, i3} (4/5) is
3/4=75%, {i3, i4} (3/5) is 3/4=75%, and {i5} (5/5) is
4/4=100%.

IV. CONCLUSIONS AND FUTURE WORK
This research proposed the improved algorithm for mining

frequent patterns. It ensures a number of the following
requests:

• To solve adding data into the data mining context in
which scanning again the database is unnecessary.

• To install easy and the low complexity (n22m, where n is
number of invoices and m is number of goods. In reality,
m is not varying and thus 22m is considered a constant).

• The representative set P created deputies mainly for the
data mining context. So, sometimes, to save the capacity

of computer memory, it needs only to store the P set
instead of the whole context.

• To surmount the limit of computer memory not enough
for storing the enormous data mining context. Because
the algorithm allows classifying the context into several
parts for processing one by one.

• Applying simply paralleled strategy to the algorithm.
• Finding out the objectivity measurement
A number of problems need studying further:
• Expanding the algorithm for the circumstance of altering

data.
• Improving the rate of the algorithm.
• Investigating for applying the algorithm to the real

works.

REFERENCES

[1] Charu C. Aggarwal, Yan Li, Jianyong Wang, Jing Wang, Frequent
Pattern Mining with Uncertain Data, ACM KDD Conference, 2009.

[2] H. Cheng, X. Yan, J. Han, and P. S. Yu, Direct Discriminative Pattern
Mining for Effective Classification, ICDE'08 (Proc. of 2008 Int. Conf.
on Data Engineering).

[3] Jiawei Han and Micheline Kamber, Data Mining: Concepts and
Techniques (2nd edition), Morgan Kaufmann Publishers, 2006.

[4] Jean-Marc Adamo, Data Mining for Association Rules and Sequential
Patterns, Springer-Verlag NewYork, Inc., 2006.

[5] Quang Tran Minh, Shigeru Oyanagi, Katsuhiro YAMAZAKI, An
Explorative Approach to Mining the k-Most Frequent Patterns, 2006.

[6] Microsoft Corporation, Building Business Intelligence and Data
Mining Applications with Microsoft SQL Server 2005, 2005.

[7] Sun, L and Zhang, X 2004, Efficient frequent pattern mining on web
logs, in JX Yu et al. (ed.) Advanced Web Technologies and
Applications: Sixth Asia-Pacific Web Conference, APWeb 2004.

[8] Nong Ye, The Handbook of Data Mining, Lawrence Erlbaum
Associates Publishers, Mahwah, New Jersey, 2003.

[9] Han, J., Pei, J., and Yin, Y., Mining frequent patterns without
candidate generation, In proc. of ACM SIGMOD Conference on
Management of Data, pp. 1-12, 2000.

[10] B. Mobasher, H. Dai, T. Luo, N. Nakagawa, Y. Sun, J. Wiltshire,
Discovery of Aggregate Usage Profiles for Web Personalization, Proc.
of the Web Mining for E-Commerce Workshop (WebKDD’2000),
August 2000.

[11] R. Kosala, H. Blockeel, Web Mining Research: A Survey, SIGKKD
Explorations, 2(1), July 2000.

[12] R. Cooley, B. Moshaber, J. Srivastava, Data Preparation for Mining
World Wide Web Browsing Patterns, Knowledge and Information
Systems, 1(1), 1999.

[13] IBM Corporation, Using the Intelligent Miner for Data, 1998.
[14] M. Berry, G. Linoff, Data Mining Techniques - For Marketing, Sales

and Customer Support, John Wiley & Sons, 1997.
[15] R. Agrawal and J. C. Shafer. Parallel mining of association rules. IEEE

Trans. OnKnowledge And Data Engineering, 8:962–969, 1996.
[16] Mohammed Javeed Zaki, Mitsunori Ogihara, Srinivasan Parthasarathy,

and Wei Li. Parallel data mining for association rules on
shared-memory multiprocessors. Technical Report TR618, 1996.

[17] R. Agrawal, R. Srikant, Fast Algorithms for Mining Association Rules,
Proc. of the 20th VLDB Conference, 1994.

[18] Brian F. J. Manly, Multivariate Statistical Methods, Chapman & Hall,
1986.

[19] Access Log Analyzers,
http://www.uu.se/Software/Analyzers/Accessanalyzers.html.

[20] IBM Quest Data Mining Project. Quest synthetic data generation,
http://almaden.ibm.com/software/quest/Resources/index.shtml.

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

	I. Space of Boolean Chains
	A. Definitions
	B. Binary Relations
	II. An Improved Algorithm
	A. Theorem 1: for Adding a New Element
	B. Algorithm: for Finding a New Representative Set
	C. Theorem 2: for Finding Representative Sets

	III. The Objectivity Measurement
	A. Association Rule Discovery
	B. The Methods of Finding Frequent Patterns
	C. Issues Need to be Solved
	D. Data Mining Context
	E. The Objectivity Measurement of Frequent Patterns

	IV. Conclusions and Future Work

