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Abstract—Frequent pattern mining is a basic problem in data 

mining and knowledge discovery. The discovered patterns can 
be used as the input for analyzing association rules, mining 
sequential patterns, recognizing clusters, and so on. 

However, there is a posed question that how is objectivity 
measurement of frequent patterns? Specifically, in market 
basket analysis problem to find out association rules, whether 
or not the frequent patterns discovered represent exactly the 
needs of all customers. Or, these frequent patterns were only 
created by a few customers with too many purchases. 

In this paper, a mathematical space will be introduced with 
some new related concepts and propositions to design a new 
algorithm answering the above questions. 
 

Index Terms—association rule, data mining, frequent 
patterns mining, objectivity measurement. 
 

I. SPACE OF BOOLEAN CHAINS 
Let B = {0,1}, Bm is the space of m-tuple Boolean chains, 

whose elements are s = (s1, s2, .. , sm), si ∈ B, i = 1,..,m. 

A. Definitions 
A Boolean chain a = (a1, a2, .. , am) is said to cover another 

Boolean chain b = (b1, b2, .. , bm) – or b is covered by a, if for 
each i ∈ {1,..,m} the condition bi = 1 implies that ai = 1. For 
instance, (1,1,1,0) covers (0,1,1,0). 

Let S be a set of n Boolean chains. If there are k chains in S 
covering a chain u = (u1, u2, .. , um) then u is called a form with 
a frequency of k in S and [u; k] is called a pattern of S. For 
instance, if S = { (1,1,1,0), (0,1,1,1), (0,1,1,0), (0,0,1,0), 
(0,1,0,1) } then u = (0,1,1,0) is a form with a frequency 2 in S 
and [(0,1,1,0); 2] is a pattern of S. 

A pattern [u; k] of S is called a maximal pattern if and only 
if the frequency k is the maximal number of Boolean chains 
in S. In the above instance, [(0,1,1,0); 3] is a maximal pattern 
in S. 

The set P of all maximal patterns in S whose forms are not 
covered by any form of other maximal pattern, is called a 
representative set and each element of P is called a 
representative pattern of S. 

Based on this definition, the following proposition is 
trivial: 

Proposition 1: Let S be a set of m-tuple Boolean chains and 

P be the representative set of S, then any couple of two 
elements in P are not coincided. 
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By listing all of n elements of the set S of m-tuple Boolean 
chains in a Boolean n×m matrix, each element [u; k] of the 
representative set forms a maximal rectangle with maximal 
height of k in S set. 

For instance, if S = { (1,1,1,0), (0,1,1,1), (1,1,1,0), 
(0,1,1,1), (0,0,1,1) }, then representative set of S consists of 
five representative patterns: P = { [(1,1,1,0); 2], [(0,1,1,0); 4], 
[(0,0,1,0); 5], [(0,1,1,1); 2], [(0,0,1,1); 3] }. All of five 
elements of S are listed in a form of Boolean 5×4 matrix, as 
follows: 

A 5x4 matrix: and [(0,1,1,0); 4]: 
1 1 1 0  1 1 1 0 
0 1 1 1  0 1 1 1 
1 1 1 0  1 1 1 0 
0 1 1 1  0 1 1 1 
0 0 1 1  0 0 1 1 

Fig. 1. A 5x4 matrix for [(0,1,1,0); 4]. 
 
Figure 1 shows a maximal rectangle with boldface 1s and a 

maximal height of 4 corresponding to the pattern [(0,1,1,0); 
4]. Other maximal rectangles formed by elements of P are 

[(1,1,1,0); 2]:  [(0,0,1,0); 5]: 
1 1 1 0  1 1 1 0 
0 1 1 1  0 1 1 1 
1 1 1 0  1 1 1 0 
0 1 1 1  0 1 1 1 
0 0 1 1  0 0 1 1 

Fig. 2a. Matrices for [(1,1,1,0); 2] and [(0,0,1,0); 5]. 
 

[(0,1,1,1); 2]:  [(0,0,1,1); 3]: 
1 1 1 0  1 1 1 0 
0 1 1 1  0 1 1 1
1 1 1 0  1 1 1 0 
0 1 1 1  0 1 1 1
0 0 1 1  0 0 1 1

Fig. 2b. Matrices for [(1,1,1,0); 2] and [(0,0,1,1); 3]. 
 
A noteworthy case of the above instance: [(1,1,0,0); 2] is a 

maximal pattern, but it is not a representative pattern of S 
because its form is covered by (1,1,1,0) of the pattern 
[(1,1,1,0); 2]. 

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I 
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010



 
 

 

B. Binary Relations 
Let a = (a1, a2, .. , am) and b = (b1, b2, .. , bm) be two m-tuple 

Boolean chains, then a = b if and only if ai = bi for any i = 
1,..,m. Otherwise, it is denoted by a ≠ b. 

Given patterns [u; p] and [v; q] in S, [u; p] is contained in 
[v; q] – denoted by [u; p] ⊆ [v; q], if and only if u = v and p ≤ 
q. To negate, the operator ! is used e.g. [u; p] !⊆ [v; q] 

The minimum chain of a, b – denoted by a ∩ b, is a chain z 
= (z1, z2, .. , zm) determined by z = a ∩ b where zk = min(ak, 
bk) with k = 1,..,m. 

The minimum pattern of [u; p] and [v; q] is a pattern [w; r], 
denoted by [u; p] ∩ [v; q], defined as follows: [u; p] ∩ [v; q] 
= [w; r] here w = u ∩ v and r = p + q. 

 

II. AN IMPROVED ALGORITHM 

A. Theorem 1: for Adding a New Element 
Given S be a set of m-tuple Boolean chains and P 

representative set of S. For [u; p], [v; q]∈ P and z ∉ S, let [u; 
p] ∩ [z; 1] = [t; p+1], [v; q] ∩ [z; 1] = [d; q+1]. Only one of 
the following cases must be satisfied: 

  i. [u; p] ⊆ [t; p+1] and [u; p] ⊆ [d; q+1], t = d 
 ii. [u; p] ⊆ [t; p+1] and [u; p] !⊆ [d; q+1], t ≠ d 
iii. [u; p] !⊆ [t; p+1] and [u; p] !⊆ [d; q+1]. 
Proof: From Proposition 1, obviously u ≠ v. The theorem 

is proved if the following claim is true: Let 
(a): u = t , u = d , and t = d; 
(b): u = t , u ≠ d , and t ≠ d; 
(c): u ≠ t and u ≠ d, 

only one of the above statements is correct. 
By the method of induction on the number m of entries of 

chain, in the first step, we show that the claim is correct if u 
and v differ at only one kth entry. 

Without loss of generality, we assume that uk = 0 and vk = 
1. The following cases must be true: 

- Case 1: zk = 0; Then min(uk, zk) = min(vk, zk) = 0, hence 
t = u ∩ z = (u1, u2, .. , 0, .. , um) ∩ (z1, z2, .. , 0, .. , zm) = (x1, 

x2, .. , 0, .. , xm), xi = min(ui, zi), for i = 1,..,m, i≠k; 
d = v ∩ z = (v1, v2, .. , 1, .. , vm) ∩ (z1, z2, .. , 0, .. , zm) = (y1, 

y2, .. , 0, .. , ym), yi = min(vi, zi), for i = 1,..,m, i≠k. 
From the assumption ui = vi when i ≠ k thus xi = yi, so t = d. 

Hence, if u = t then u = d and (a) is correct. On the other hand, 
if u ≠ t then u ≠ d, therefore (c) is correct. 

- Case 2: zk = 1; We have min(uk, zk) = 0, min(vk, zk) = 1 
and t = u ∩ z = (u1, u2, .. , 0, .. , um) ∩ (z1, z2, .. , 1, .. , zm) = (x1, 
x2, .. , 0, .. , xm), xi = min(ui, zi), for i = 1,..,m, i≠k; 

d = v ∩ z = (v1, v2, .. , 1, .. , vm) ∩ (z1, z2, .. , 1, .. , zm) = (y1, 
y2, .. , 1, .. , ym), yi = min(vi, zi), for i = 1,..,m, i≠k. 

So, t ≠ d. If u = t then u ≠ d, thus the statement (b) is 
correct. 

In summary, the above claim is true for any u and v of S 
that differ only at one entry. 

By induction in the second step, it is assumed that the 
claim is true if u and v differ at r entries, and only one of the 
three statements (a), (b) or (c) is true. 

Without loss of generality, we assume that the first r 
entries of u and v are different, and they differ at (r+1)-th 
entries. Applying the same method in the first step where r = 

1 to this instance, it is obtained 
True 

statements 
when u ≠ v, 

and their 
first r entries 
are different: 

True 
statements 

when u ≠ v, 
and their 
first r+1 

entries are 
different:  

True 
statements 

when 
combining 

the two 
possibilities: 

(a) (a) (a) 
(a) (b) (b) 
(a) (c) (c) 
(b) (a) (b) 
(b) (b) (b) 
(b) (c) (c) 
(c) (a) (c) 
(c) (b) (c) 
(c) (c) (c) 

Fig. 3. Cases in comparision. 
 
Therefore, if u and v are different at r+1 entries, only one 

of the (a), (b), (c) statements is correct. The above claim is 
true, and Theorem 1 is proved. 

B. Algorithm: for Finding a New Representative Set 
Let S be a set that consists of n m-tuple Boolean chains, 

and P the representative set of S. If a m-tuple Boolean chain z 
is added to S, the following algorithm is used to determine the 
new representative set of S ∪ {z}: 

ALGORITHM NewRepresentative( P , z ) 
// Finding new representative set for S when one chain is 

added to S. 
// Input: P is a representative set of S, z: a chain added to S. 
// Output: The new representative set P of S ∪ {z}. 
1. M = ∅ // M: set of new elements of P 
2. flag1 = 0 
3. flag2 = 0 
4. for each x ∈ P do 
5.  q = x ∩ [z; 1] 
6.  if q ≠ 0 // q is not one chain with all elements 0 
7.   if x ⊆ q then P = P \ {x} 
8.   if [z; 1] ⊆ q then flag1 = 1 
9.   for each y ∈ M do 
10.    if y ⊆ q then 
11.     M = M \ {y} 
12.     break for 
13.    endif 
14.    if q ⊆ y then 
15.     flag2 = 1 
16.     break for 
17.    endif 
18.   endfor 
19.  else 
20.   flag2 = 1 
21.  endif 
22.  if flag2 = 0 then M = M ∪ {q} 
23.  flag2 = 0 
24. endfor 
25. if flag1 = 0 then P = P ∪ { [z; 1] } 
26. P = P ∪ M 
27. return P 
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C. Theorem 2: for Finding Representative Sets 
Let S be a set of n m-tuple Boolean chains. The 

representative set of S is determined by applying 
NewRepresentative algorithm to each of n elements of S in 
turn. 

Proof: This theorem is proved by induction on the number 
n of elements of S. 

Firstly, when applying the above algorithm to the set S of 
only one element, this element is added into P and then P with 
that only element is the representative set of S. Thus, 
Theorem 2 is proved in the case of n = 1. 

Next, assume that S consists of n elements, the above 
algorithm is applied to S, and it is obtained a representative 
set P0 of p patterns. Each element of P0 allows to form a 
maximal rectangle from S. When adding a new m-tuple 
Boolean chain z to S, it is necessary to prove that the 
algorithm allows to find a new representative set P of S ∪ 
{z}. 

Indeed, with z, some new rectangle forms will be formed 
along with the existing rectangle forms. But some of these 
new rectangle forms which are covered by other rectangle 
forms, the so-called ‘redundant’ rectangles, need to be 
removed to gain P. 

The fifth statement in the NewRepresentative algorithm 
shows that the operator ∩ is applied to z and p elements of P0 
to produce p new elements belonging to P. This means z 
‘scans’ all elements in the set P0 to find out new rectangle 
forms when adding z into S. Consequently, three groups of 
2p+1 elements in total are created from the sets P0, P, and z. 

To remove redundant rectangles, we have to check 
whether each element of P0 is contained by elements of P or 
not, and elements of P contain other one, in which z is an 
element in P. 

Let x be an element of P0 and consider the form x ∩ z, 
there are two instances: if the form of z covers the one of x 
then x is a new form; or if the form of x covers the one of z 
then z is a new form. Anyway, the frequency of the new form 
is always one unit greater than frequency of the original. 

According to Theorem 1, with x ∈ P0, if some pattern w 
contains x then w must be a new element which belongs to P, 
and that new element is q = x ∩ [z; 1]. To check whether x is 
contained by elements belonging to P, we do that whether x is 
contained by q or not. If x contained by q, it must be removed 
from the representative (line 7). 

In summary, first the algorithm checks whether elements 
belonging to P0 is contained by elements belonging to P. 
Then, the algorithm checks whether elements of P contain 
one other (from line 9 to line 18), and whether [z; 1] is 
contained by elements belonging to P or not (line 8). 

Finally, the above NewRepresentative algorithm can be 
used to find new representative set when adding new 
elements to S. 

 

III. THE OBJECTIVITY MEASUREMENT 

A. Association Rule Discovery 
Advanced technologies have enabled us to collect large 

amounts of data on a continuous or periodic basis in many 

fields. On one hand, these data present the potential for us to 
discover useful information and knowledge that we could not 
find before. On the other hand, we are limited in our ability to 
manually process large amounts of data to discover useful 
information and knowledge. This limitation demands 
automatic tools for data mining to mine useful information 
and knowledge from large amounts of data. Data mining has 
become an active area of research and development. 

Association rules – a data mining methodology that is 
usually used to discover frequently co-occurring data items, 
for example, items that are commonly purchased together by 
customers at grocery stores. Association rule discovery 
problem were introduced in 1993 by Agrawal [17]. Since 
then, this problem has received much attention. Today the 
exploitation such rules is still one of the most popular way for 
exploiting pattern in order to conduct knowledge discovery 
and data mining. 

Exactly, association rule discovery is the process 
discovering sets of value of attribute appearing frequently in 
data objects. From the frequent patterns, association rules can 
be created in order to reflect the ability of appearing 
simultaneously the value of attribute in the set of objects. To 
bring out the meaning, an association rule of X → Y reflects 
the occurrence of the set X conduces to the appearance of the 
set Y. In other words, an association rule indicates an affinity 
between X (antecedent) and Y (consequent). An association 
rule is accompanied by frequency-based statistics that 
describe that relationship. The two statistics that were used 
initially to describe these relationships were support and 
confidence [17]. 

The apocryphal example is a chain of convenience stores 
that performs a analysis and discovers that disposable diapers 
and beer are frequently bought together [8]. This unexpected 
knowledge is potentially valuable as it provides insight into 
the purchasing behavior of both disposable diaper and beer 
purchasing customers for the convenience store chain. So 
that, we can find association rules help identify trends in 
sales, customer psychology, etc. to make strategic layout 
item, business, marketing, and so on. 

In short, the association rule discovery can be divided into 
two parts: 

• Finding all frequent patterns that satisfy min-support. 
• Finding all association rules that satisfy minimum 

confidence. 
Most research in the area of association rule discovery has 

focused on the sub-problem of efficient frequent pattern 
discovery (for example, Han, Pei, & Yin, 2000; Park, Chen, 
& Yu, 1995; Pei, Han, Lu, Nishio, Tang, & Yang, 2001; 
Savasere, Omiecinski, & Navathe, 1995). When seeking all 
associations that satisfy constraints on support and 
confidence, once frequent patterns have been identified, 
generating the association rules is trivial. 

B. The Methods of Finding Frequent Patterns 
• Candidate Generation Methods: for instance, Apriori 

method proposed by Agrawal in piece of research 
[17]–[8], and algorithms rely on Apriori such as 
AprioriTID, Apriori-Hybrid, DIC, DHP, PHP,... in 
[3]–[4]–[8]. 

• Without Candidate Generation Methods: for example, 
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Zaki’s method relies on IT-tree and intersection part of 
Tidsets in order to reckon support, [3]; or J. Han’s one 
relies on FP-tree in order to exploit frequent patterns, 
[9]–[5]; or methods Lcm, DCI, ... presented in [9]. 

• Paralleled Methods: instances in [15]–[16]–[11]. 

C. Issues Need to be Solved 
• Working with the varying database is the biggest 

challenge. Especially, it need not scan again the whole 
database whenever having need of adding a new 
element. 

• A number of algorithms are effective, but their basis of 
mathematics and way of installation are complex. 

• The limit of computer memory. Hence, combining how 
to store the data mining context most effectively with 
costing the memory least and how to store frequent 
patterns is also not a small challenge. 

• Ability of dividing data into several parts for paralleled 
processing is also concerned. 

Using the NewRepresentative algorithm is making good 
the above problems. 

D. Data Mining Context 
Let O be a limited non-empty set of invoices, and I be a 

limited non-empty set of goods. Let R be a binary relation 
between O and I so that: for o ∈ O and i ∈ I, (o, i) ∈ R if and 
only if the invoice o includes the i-th goods. Then R is a 
subset of the product set O×I, and the trio (O, I, R) describes a 
data mining context. 

For example, we have a context which is illustrated in 
Table 1, consisted of five invoices with the codes oj, j = 1,..,5 
and four kinds of goods ik, k = 1,..,4. The corresponding 
binary relation R is described in Table 2 which can be 
represented by a 5×4 Boolean matrix. 

Table 1. Invoice details 
Invoice code  Goods code 

o1 i1 
o1 i2 
o1 i3 
o2 i2 
o2 i3 
o2 i4 
o3 i2 
o3 i3 
o3 i4 
o4 i1 
o4 i2 
o4 i3 
o5 i3 
o5 i4 

 
Table 2. Boolean matrix of data mining context 

 i1 i2 i3 i4 
o1 1 1 1 0 
o2 0 1 1 1 
o3 0 1 1 1 
o4 1 1 1 0 
o5 0 0 1 1 

E. The Objectivity Measurement of Frequent Patterns 
Let's survey Table 3 

Table 3. Boolean matrix of data mining context with 
customers 

 Customer i1 i2 i3 i4 
o1 C1 1 1 1 0 
o2 C2 0 1 1 1 
o3 C3 0 1 1 1 
o4 C1 1 1 1 0 
o5 C4 0 0 1 1 

 

 
By observing with the naked eye, we can notice 

immediately that the frequent pattern having form (1110) 
appears in two invoices (o1, o4) and is decided by the only 
customer C1. Meanwhile, the frequent pattern having form 
(0010) appears in five invoices (o1, o2, o3, o4, o5) and is 
decided by all four customer (C1, C2, C3, C4). 

Obviously, with minsupp=40%, the both frequent patterns 
are satisfied. But, whether or not we can use these two 
frequent patterns to generate association rules, then apply 
these rules to prospective customers? To answer this question 
requires us to consider objectivity measurement of each 
frequent pattern. Or, more detail, we must determine the ratio 
of number of customers involved in the process of creating a 
frequent pattern to total of customers. The higher the ratio is, 
the better the objectivity measurement of the frequent pattern 
is. Viz, the frequent pattern is created by most customers. 
Since then, we hope that this will also correct for the majority 
of prospective customers. 

Back to the above example, the frequent pattern (1110) has 
the objectivity measurement of 1/4=25%. Meanwhile, the 
frequent pattern (0010) has the objectivity measurement of 
4/4=100%. With these parameters, business managers will 
have more information when making decisions. 

When applying the algorithm NewRepresentative, we can 
solve this problem. 

The tenor of the algorithm is to find out new rectangle 
forms created by applying the operator ∩ to corresponding 
line of data of current step and rectangle forms found in prior 
steps. However, in the first step, grouping the data mining 
context in order to gain the first evident rectangle forms and 
their corresponding height is a need. In per step, if the 
rectangle form created newly covers an existent rectangle 
form then removing the old rectangle form is necessary. 
Besides, it also needs to remove the newly created rectangle 
form if they mutually cover. 

In summary, after per step, the set P whose elements differ 
mutually is created. This means to achieve various maximal 
rectangle forms in the database, as from the first line of data 
to the line of data corresponding to the current step. 

To calculate the objectivity measurement, in lines 22 and 
25 of the algorithm NewRepresentative, before addition q to 
M and [z, 1] to P, we add the list of customers to q and [z, 1]. 
Customer of [z, 1] is the customer purchasing the invoice 
forming [z, 1]. Customer list of q is generated from customer 
lists of x and [z, 1]. Adding customer list includes examining 
whether the duplicate customer or not for increasing the 
number of iterations of  customers. Specifically, consider the 
following example. Based on the Boolean matrix in Table 3 
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with a minsupp of 40%. 
Table 3. Boolean matrix of data mining context with 

customers 
 Customer i1 i2 i3 i4 
o1 C1 1 1 1 0 
o2 C2 0 1 1 1 
o3 C3 0 1 1 1 
o4 C1 1 1 1 0 
o5 C4 0 0 1 1 

 
Let P be the set of maximal rectangle forms of that Boolean 

matrix. It can be determined by following steps: 
 
- Step 1: 
Consider line 1: [(1110); 1] (l1) 
Since P now is empty means should we put (l1) in P, we 
have: 
P = { [(1110); 1; (C1-1)] } (1) 
 
- Step 2: 
Consider line 2: [(0111); 1] (l2) 
Let (l2) perform the ∩ operation with the elements 
existing in P in order to get the new elements 

(l2) ∩ (1): [(0111); 1] ∩ [(1110); 1] = [(0110); 2] (n1) 
Considering excluded: 

Considering whether or not the old elements in P is 
contained in the new elements: 

We remain: (1) 
Considering whether or not the new elements contain 
each other (note: (l2) is also a new element): 

We remain: (l2) and (n1) 
After considering excluded, it supplements the list of 
customers of the elements remaining: 

(1): [(1110); 1; (C1-1)]  
(l2): [(0111); 1; (C2-1)] 
(n1): [(0110); 2; (C1-1, C2-1)] //because (n1) is 

generated by (l2) and 
(1) 

Putting the elements into P, we have: 
P = { [(1110); 1; (C1-1)] (1) 

[(0110); 2; (C1-1, C2-1)] (2) 
[(0111); 1; (C2-1)] (3) 

} 
 
- Step 3: 
Consider line 3: [(0111); 1] (l3) 
Let (l3) perform the ∩ operation with the elements 
existing in P in order to get the new elements 

(l3) ∩ (1): [(0111); 1] ∩ [(1110); 1] = [(0110); 2] (n1) 
(l3) ∩ (2): [(0111); 1] ∩ [(0110); 2] = [(0110); 3] (n2) 
(l3) ∩ (3): [(0111); 1] ∩ [(0111); 1] = [(0111); 2] (n3) 

Considering excluded: 
Considering whether or not the old elements in P is 
contained in the new elements: 

We remove: (2) because of being contained in 
(n1), and (3) because of being 
contained in (n3) 

We remain: (1) 
Considering whether or not the new elements contain 

each other (note: (l3) is also a new element): 
We remove: (n1) because of being contained in 

(n2), and (l3) because of being 
contained in (n3) 

We remain: (n2) and (n3) 
After considering excluded, it supplements the list of 
customers of the elements remaining: 

(1): [(1110); 1; (C1-1)] 
(n2): [(0110); 3; (C1-1, C2-1, C3-1)] //because (n2) is 

generated by 
(l3) and (2) 

(n3): [(0111); 2; (C2-1, C3-1)] //because (n3) is 
generated by (l3) 
and (3) 

Putting the elements into P, we have: 
P = { [(1110); 1; (C1-1)] (1) 

[(0110); 3; (C1-1, C2-1, C3-1)] (2) 
[(0111); 2; (C2-1, C3-1)] (3) 

} 
 
- Step 4: 
Consider line 4: [(1110); 1] (l4) 
Let (l4) perform the ∩ operation with the elements existing 
in P in order to get the new elements 

(l4) ∩ (1): [(1110); 1] ∩ [(1110); 1] = [(1110); 2] (n1) 
(l4) ∩ (2): [(1110); 1] ∩ [(0110); 3] = [(0110); 4] (n2) 
(l4) ∩ (3): [(1110); 1] ∩ [(0111); 2] = [(0110); 3] (n3) 

Considering excluded: 
Considering whether or not the old elements in P is 
contained in the new elements: 

We remove: (1) because of being contained in 
(n1), and (2) because of being 
contained in (n2) 

We remain: (3) 
Considering whether or not the new elements contain 
each other (note: (l4) is also a new element): 

We remove: (n3) because of being contained in 
(n2), and (l4) because of being 
contained in (n1) 

We remain: (n1) and (n2) 
After considering excluded, it supplements the list of 
customers of the elements remaining: 

(3): [(0111); 2; (C2-1, C3-1)] 
(n1): [(1110); 2; (C1-2)] //because (n1) is generated by 

(l4) and (1) 
(n2): [(0110); 4; (C1-2, C2-1, C3-1)] //because (n2) is 

generated by 
(l4) and (2) 

Putting the elements into P, we have: 
P = { [(0111); 2; (C2-1, C3-1)] (1) 

[(1110); 2; (C1-2)] (2) 
[(0110); 4; (C1-2, C2-1, C3-1)] (3) 

} 
 
- Step 5: 
Consider line 5: [(0011); 1] (l5) 
Let (l5) perform the ∩ operation with the elements existing 
in P in order to get the new elements 

(l5) ∩ (1): [(0011); 1] ∩ [(0111); 2] = [(0011); 3] (n1) 
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(l5) ∩ (2): [(0011); 1] ∩ [(1110); 2] = [(0010); 3] (n2) 
(l5) ∩ (3): [(0011); 1] ∩ [(0110); 4] = [(0010); 5] (n3) 

Considering excluded: 
Considering whether or not the old elements in P is 
contained in the new elements: 

We remain: (1), (2), and (3) 
Considering whether or not the new elements contain 
each other (note: (l5) is also a new element): 

We remove: (l5) because of being contained in 
(n1), and (n2) because of being 
contained in (n3) 

We remain: (n1) and (n3) 
After considering excluded, it supplements the list of 
customers of the elements remaining: 

(1): [(0111); 2; (C2-1, C3-1)] 
(2): [(1110); 2; (C1-2)] 
(3): [(0110); 4; (C1-2, C2-1, C3-1)] 
(n1): [(0011); 3; (C2-1, C3-1, C4-1)] //because (n1) is 

generated by (l5) 
and (1) 

(n3): [(0010); 5; (C1-2, C2-1, C3-1, C4-1)] //because 
(n3) is 
generated 
by (l5) and 
(3) 

Putting the elements into P, we have: 
P = { [(0111); 2; (C2-1, C3-1)] (1) 

[(1110); 2; (C1-2)] (2) 
[(0110); 4; (C1-2, C2-1, C3-1)] (3) 
[(0011); 3; (C2-1, C3-1, C4-1)] (4) 
[(0010); 5; (C1-2, C2-1, C3-1, C4-1)] (5) 

} 
 
So, the frequent patterns satisfy minsupp = 40% (2/5) is 

listed: 
{  {i2, i3, i4} (2/5);   {i1, i2, i3} (2/5);   {i2, i3} (4/5);    

{i3, i4} (3/5);   {i5} (5/5)  } 
However, when considering the objective measurement or 

the impact measurement of customer, we clearly see that the 
frequent pattern {i1, i2, i3} (2/5) just was created by only 
customer C1. Thus, when analyzing, we will have better 
information about the objective measurement of this frequent 
pattern, viz. 1/4=25%. In addition, the objective 
measurement of {i2, i3, i4} (2/5) is 2/4=50%, {i2, i3} (4/5) is 
3/4=75%, {i3, i4} (3/5) is 3/4=75%, and  {i5} (5/5) is 
4/4=100%. 

 

IV. CONCLUSIONS AND FUTURE WORK 
This research proposed the improved algorithm for mining 

frequent patterns. It ensures a number of the following 
requests: 

• To solve adding data into the data mining context in 
which scanning again the database is unnecessary. 

• To install easy and the low complexity (n22m, where n is 
number of invoices and m is number of goods. In reality, 
m is not varying and thus 22m is considered a constant). 

• The representative set P created deputies mainly for the 
data mining context. So, sometimes, to save the capacity 

of computer memory, it needs only to store the P set 
instead of the whole context. 

• To surmount the limit of computer memory not enough 
for storing the enormous data mining context. Because 
the algorithm allows classifying the context into several 
parts for processing one by one. 

• Applying simply paralleled strategy to the algorithm. 
• Finding out the objectivity measurement 
A number of problems need studying further: 
• Expanding the algorithm for the circumstance of altering 

data. 
• Improving the rate of the algorithm. 
• Investigating for applying the algorithm to the real 

works. 
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