

Abstract— The harmony search is considered as musician's
behavior which is inspired by soft computing algorithm. As
the musicians in improvisation process try to find the best
harmony in terms of aesthetics, the decision variables in
optimization process try to be the best vector in terms of
objective function. Cluster analysis is one of attractive data
mining technique that use in many fields. One popular class
of data clustering algorithms is the center based clustering
algorithm. K-means used as a popular clustering method due
to its simplicity and high speed in clustering large datasets.
However, k-means has two shortcomings: dependency on
the initial state and convergence to local optima and global
solutions of large problems cannot found with reasonable
amount of computation effort. In order to overcome local
optima problem lots of studies done in clustering. This
paper describes a new clustering method based on the
harmony search (HS) meta-heuristic algorithm, which was
conceptualized using the musical process of searching for a
perfect state of harmony. The HS algorithm does not require
initial values and uses a random search instead of a gradient
search, so derivative information is unnecessary. We
compared proposed algorithm with other heuristics
algorithms in clustering, such as GA, SA, TS, and ACO, by
implementing them on several simulation and real datasets.
The results indicate that the proposed clustering is a
powerful clustering method suggesting higher degree of
precision and robustness than the existing algorithms.

Index Terms— clustering, meta-heuristic, k-means, harmony

search algorithm.

I. INTRODUCTION

Clustering is one of powerful data mining techniques that can
discover intentional structures in data. It groups instances
which have similar features and builds a concept hierarchy.
As a result, it often extracts new knowledge from a database.
Because of the ability to find the intentional descriptions, it is
one of the very important techniques in managing databases.
Clustering problems arise in many different applications,
such as knowledge discovery [1], data compression and

Manuscript received May 9, 2010.
Babak Amiri, is with the University of Sydney. (e-mail:

amiri_babak@yahoo.com).
Liaquat Hossain is with the University of Sydney
Seyyed Esmaeil Mosavi, is with Tarbiat Modaress University,.

vector quantization [2], and pattern recognition and pattern
classification [3].
There are many methods applied in clustering analysis, like
hierarchical clustering, partition-based clustering,
density-based clustering, and artificial intelligence-based
clustering. One popular class of data clustering algorithms is
the center based clustering algorithm. K-means used as a
popular clustering method due to its simplicity and high
speed in clustering large datasets [4].
K-means has two shortcomings: dependency on the initial
state and convergence to local optima [5] and also global
solutions of large problems cannot found with reasonable
amount of computation effort [6]. In order to overcome local
optima problem lots of studies done in clustering. In these
studies researchers used meta heuristic algorithms like, GA
[7 and 8], SA [9], TS [10], ACO [11 and 12].
Recently, Geem et al. [13] developed a new harmony search
(HS) meta-heuristic algorithm that was conceptualized using
the musical process of searching for a perfect state of
harmony. The harmony in music is analogous to the
optimization solution vector, and the musician's
improvisations are analogous to local and global search
schemes in optimization techniques. The HS algorithm does
not require initial values for the decision variables.
And now this paper presents a new k-means algorithm based
on harmony search algorithm. The paper organized as follow:
in section 2 we discussed cluster analysis problems. Section 3
introduce harmony search algorithm. In section 4 application
of HAS on cluster analysis is presented, and then in section 5
experimental result of proposed clustering algorithm in
comparison with other meta heuristics clustering algorithms
are shown.

II. CLUSTER ANALYSIS PROBLEM

Clustering in N-dimensional Euclidean space RN is the
process of partitioning a given set of n points into a number,
say k, of groups (or, clusters) based on some similarity
(distance) metric in clustering procedure is Euclidean
distance, which derived from the Minkowski metric
(equations 1 and 2) [14].

rm

i

r

jyixyxd

1

1
),(

 (1)

2

1

,

m

i
ji yxyxd (2)

Let the set of n points {X1, X2,…, Xn} be represented by

Application of Harmony Search Algorithm on
Clustering

Babak Amiri, Liaquat Hossain and Seyyed Esmaeil Mosavi.

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

the set S and the K clusters be represented by C1, C2…,CK.
Then:

.
1

,...,,1,...,,1

,...,,1

SiC
K

i
and

jiandkjkiforjCiC

kiforiC

In this study, we will also use Euclidian metric as a

distance metric. K-means is one of the simplest unsupervised
learning algorithms that solve the well known clustering
problem [15]. The procedure follows a simple and easy way
to classify a given data set through a certain number of
clusters (assume k clusters) fixed a priori. The main idea is to
define k centroids, one for each cluster. These centroids
shoud be placed in a cunning way because of different
location causes different result. So, the better choice is to
place them as much as possible far away from each other. The
next step is to take each point belonging to a given data set
and associate it to the nearest centroid. When no point is
pending, the first step is completed and an early groupage is
done. At this point we need to re-calculate k new centroids as
barycenters of the clusters resulting from the previous step.
After we have these k new centroids, a new binding has to be
done between the same data set points and the nearest new
centroid. A loop has been generated. As a result of this loop
we may notice that the k centroids change their location step
by step until no more changes are done. In other words
centroids do not move any more.

Finally, this algorithm aims at minimizing an objective
function, in this case a squared error function. The objective
function

N

i
li KlcxMinCXf

1

2 },...,1|||{||),(

Where
2

li cx is a chosen distance measure between a

data point ix
and the cluster centre lc

is an indicator of the
distance of the n data points from their respective cluster
centers.

The algorithm is composed of the following steps:
1. Place K points into the space represented by the

objects that are being clustered. These points
represent initial group centroids.

2. Assign each object to the group that has the closest
centroid.

3. When all objects have been assigned, recalculate the
positions of the K centroids.

4. Repeat Steps 2 and 3 until the centroids no longer
move. This produces a separation of the objects into
groups from which the metric to be minimized can
be calculated.

Although it can be proved that the procedure will always
terminate, the k-means algorithm does not necessarily find
the most optimal configuration, corresponding to the global
objective function minimum. The algorithm is also
significantly sensitive to the initial randomly selected cluster
centers. The k-means algorithm can be run multiple times to
reduce this effect. K-means is a simple algorithm that has
been adapted to many problem domains.

III. MARMONY SEARCH ALGORITHM

Harmony search algorithm is a new algorithm can be
conceptualized from a music performance process (say, a
jazz improvisation) involving searching for a better
harmony. Just like music improvisation seeks a best state
(fantastic harmony) determined by aesthetic estimation,
optimization process seeks a best state (global optimum)
determined by objective function evaluation; Just like
aesthetic estimation is determined by the set of the pitches
played by ensemble instruments, function evaluation is
determined by the set of the values assigned for decision
variables; Just like aesthetic sound quality can be improved
practice after practice, objective function value can be
improved iteration by iteration [13].

Fig. 1: Analogy between improvisation and

Optimization [20]

As Figure 1 shows the analogy between improvisation

and optimization, each music player (saxophonist, double
bassist, and guitarist) can correspond to each decision
variable (x1 , x2 , and x3), and the range of each music
instrument (saxophone={Do, Re, Mi}; double bass={Mi,
Fa, Sol}; and guitar={Sol, La, Si}) corresponds to the range
of each variable value (x1={100, 200, 300}; x2={300, 400,
500}; and x3= {500, 600, 700}). If the saxophonist toots the
note Do, the double bassist plucks Mi, and the guitarist
plucks Sol, their notes together make a new harmony (Do,
Mi, Sol). If this New Harmony is better than existing
harmony, the New Harmony is kept. Likewise, the new
solution vector (100mm, 300mm, 500mm) generated in
optimization process is kept if it is better than existing
harmony in terms of objective function value. Just as the
harmony quality is enhanced practice after practice, the
solution quality is enhanced iteration by iteration.

According to the above algorithm concept and the
procedure of harmony search shown in Figure 1, the HS
algorithm consists of the following steps [16]:

Step 1. Initialize the problem and algorithm parameters.
Step 2. Initialize the harmony memory.
Step 3. Improvise a new harmony.
Step 4. Update the harmony memory.
Step 5. Check the stopping criterion.

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

IV. APPLICATION OF HARMONY SEARCH ALGORITHM ON CLUSTERING

The search capability of HSA algorithm is used in this
paper for the purpose of appropriately determining a fixed
number of K cluster centers in RN; thereby suitably
clustering the set of n unlabelled points the clustering metric
that has been adopted is the sum of the Euclidean distance
of the points of the points from their respective cluster
centers. Based on steps of HSA, the steps of proposed
clustering algorithm as shown in figure 2 are as follow:
Step 1: Initialize the problem and algorithm parameters

A popular performance function for measuring goodness
of the k clustering is the total within-cluster variance or the
total mean-square quantization error (MSE), that is specified
as follows:

Minimize

N

n
ln KlcxMinCXf

1

2 },...,1|||{||),(

where f(x,c) is objective function, xn is a data, N is the
number of data, cl is a cluster center and k is number of
clusters, C is the set of each decision variable Cl, C=(C1, C2,
…, Ck)=(c11, c12,…, c1d, c21, c22,…, c2d,…, ck1, ck2,…, ckd),
number of decision variables is dk that k is the number
of clusters and d is the number of data dimensions. For
example)4,7,5,2,3,6,1,5,2(C , represents a solution

with 3 cluster centers those are C1= (2, 5, 1), C2= (6, 3, 2),
C3= (5, 7, 4), that each cluster center has 3 dimensions. Cij is
the set of possible range for each decision variable that is
Lcij<Cij<Ucij that Lci and Uci are the lower and upper bounds
for each decision variable. The HS algorithm parameters are
also specified in this step. These are the harmony memory
size (HMS), or the number of solution vectors in the
harmony memory; harmony memory considering rate
(HMCR); pitch adjusting rate (PAR); and the number of
improvisations (NI), or stopping criterion.

The harmony memory (HM) is a memory location where
all the solution vectors (sets of decision variables) are
stored. This HM is similar to the genetic pool in the GA [3].
Here, HMCR and PAR are parameters that are used to
improve the solution vector. Both are defined in Step 3.

Step 2: Initialize the harmony memory

In Step 2, the HM matrix is filled with as many randomly
generated solution vectors as the HMS

HMS
kd

HMS
dk

HMSHMS

HMS
kd

HMS
dk

HMSHMS

kddk

kddk

cccc

cccc

cccc

cccc

)1(1211

11
)1(

1
12

1
11

22
)1(

2
12

2
11

11
)1(

1
12

1
11

Step 3: Improvise a new harmony

A new harmony vector
)()...,,,,...,...,,,,,...,,(212222111211 ijkdkkdd ccccccccccc

that, di 1 and kj 1 is generated based on three

rules: (1) memory consideration, (2) pitch adjustment and
(3) random selection. Generating a new harmony is called
‘improvisation’ [16].

In the memory consideration, the value of the first

decision variable)(11c for the new vector is chosen from

any of the values in the specified HM range

)(11
1

11
HMScc HMS. Values of the other decision

variables

 ً◌)...,,,,...,...,,,,,...,(2122221112 kdkkdd cccccccc are

chosen in the same manner. The HMCR, which varies
between 0 and 1, is the rate of choosing one value from the
historical values stored in the HM; while (1-HMCR) is the
rate of randomly selecting one value from the possible range
of values.

)1(

,}...,,,{ 21

HMCRyprobabilitwithCc

HMRCRyprobabilitwithcccc
c

ijij

HMS
ijijijij

ij

 (3)

For example, a HMCR of 0.85 indicates that the HS
algorithm will choose the decision variable value from
historically stored values in the HM with an 85%
probability or from the entire possible range with a (100–
85)% probability. Every component obtained by the
memory consideration is examined to determine whether it
should be pitch-adjusted. This operation uses the PAR
parameter, which is the rate of pitch adjustment as follows:

)1(

,

PARyprobabilitwithNo

PARyprobabilitwithYes
cfordecisionadjustingPitch ij

(4)

The value of (1 - PAR) sets the rate of doing nothing. If

the pitch adjustment decision for ijc is YES, ijc is replaced

as follow:

bwrandcc ijij () (5)

where bw is an arbitrary distance bandwidth, ()rand is a

random number between 0 and 1.
In Step 3, HM consideration, pitch adjustment or random

selection is applied to each variable of the new harmony
vector in turn.

Step 4: Update harmony memory

If the new harmony vector,

)...,,,,...,...,,,,,...,,(212222111211 kdkkdd cccccccccc
is better than the worst harmony in the HM, judged in terms
of the objective function value, the new harmony is included
in the HM and the existing worst harmony is excluded from
the HM.

Step 5: Check stopping criterion

If the stopping criterion (maximum number of
improvisations) is satisfied, computation is terminated.
Otherwise, Steps 3 and 4 are repeated.

V. EXPERIMENTAL RESULTS

The experimental results comparing the HSAK clustering
algorithm with several typical stochastic algorithms
including the ACO algorithm [12], the simulated annealing
approach [9], the genetic algorithms [8], and the tabu search
approach [10] are provided for four artificial data sets (Data
1, Data 2, Data 3 and Data 4) and five real-life data sets
(Vowel, Iris, Crude Oil, Wine and Thyroid diseases data),
respectively. These are first described below. The
effectiveness of stochastic algorithms is greatly dependent
on the generation of initial solutions. Therefore, for every

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

dataset, algorithms performed 10 times individually for their
own effectiveness tests, each time with randomly generated
initial solutions. We have done our experiments on a
Pentium IV, 2.8 GHz, 512 GB RAM computer and we have
coded with Matlab 7.1 software. We run all five algorithms
on datasets.

A. Artificial data sets

Data 1: This is none overlapping two-dimensional data
set where the number of clusters is two. It has 10 points.
The value of K is chosen to be 2 for this data set.

Data 2: This is none overlapping two-dimensional data
set where the number of clusters is three. It has 76 points.
The value of K is chosen to be 3 for this data set.

Data 3: This is an overlapping two-dimensional triangular
distribution of data points having nine classes where all the
classes are assumed to have equal a priori probabilities
(=1/19). It has 900 data points. The X-Y ranges for the nine
classes are as follows:
Class 1: [-3.3,-0.7] × [0.7, 3.3],
Class 2: [-1.3, 1.3] × [0.7, 3.3],
Class 3: [0.7, 3.3] × [0.7, 3.3],
Class 4: [-3.3,-0.7] × [-1.3, 1.3],
Class 5: [-1.3, 1.3] × [-1.3, 1.3],
Class 6: [0.7, 3.3] × [-1.3, 1.3],
Class 7: [-3.3,-0.7] × [-3.3,-0.7],
Class 8: [-1.3, 1.3] × [-3.3,-0.7],
Class 9: [0.7, 3.3] × [-3.3,-0.7].

Thus the domain for the triangular distribution for each
class and for each axis is 2.6. Consequently, the height will
be 1/1.3 (since 12*2.6*height"1). The value of K is chosen
to be 9 for this data set.

Data 4: This is an overlapping ten-dimensional data set
generated using a triangular distribution of the form shown
in Fig. 3 for two classes, 1 and 2. It has 1000 data points.
The value of K is chosen to be 2 for this data set. The range
for class 1 is [0, 2] × [0, 2] × [0, 2]…10 times, and that for
class 2 is [1, 3] × [0, 2] × [0, 2]…9 times, with the
corresponding peaks at (1, 1) and (2, 1). The distribution
along the first axis (X) for class 1 may be formally
quantified as:

.20

,212

,10

,00

)(1

xfor

xforx

xforx

xfor

xf

for class 1. Similarly for class 2

.30

,323

,211

,10

)(1

xfor

xforx

xforx

xfor

xf

The distribution along the other nine axes (Yi, i=1, 2… 9)
for both the classes is

.20

,212

,10

,00

)(1

i

ii

ii

i

yfor

yfory

yfory

yfor

xf

Figure 3. Triangular distribution along the X-axis

B. Real-life data sets

Vowel data: This data consists of 871 Indian Telugu
vowel sounds [17]. These were uttered in a consonant-
vowel-consonant context by three male speakers in the age
group of 30-35 years. The data set has three features F1, F2
and F3, corresponding to the first, second and third vowel
formant frequencies, and six overlapping classes {, a, i, u,
e, o}. The value of K is therefore chosen to be 6 for this
data.

Iris data: This is the Iris data set, which is perhaps the
best-known database to found in the pattern recognition
literature. Fisher’s paper is a classic in the field and
referenced frequently to this day. The data set contains three
classes of 50 instances each, where each class refers to a
type of iris plant. One class is linearly separable from the
other 2; the latter are not linearly separable from each other.
There are 150 instances with four numeric attributes in iris
data set. There is no missing attribute value. The attributes
of the iris data set are; sepal length in cm, sepal width in cm,
petal length in cm and petal width in cm [18].

Crude oil data: This overlapping data [19] has 56 data
points, 5 features and 3 classes. Hence the value of K is
chosen to be 3 for this data set.

Wine data: This is the wine data set, which also taken
from MCI laboratory. These data are the results of a
chemical analysis of wines grown in the same region in Italy
but derived from three different cultivars. The analysis
determined the quantities of 13 constituents found in each of
the three types of wines. There are 178 instances with 13
numeric attributes in wine data set. All attributes are
continuous. There is no missing attribute value.

Thyroid diseases data: This dataset categories N = 215
samples of patients suffering from three human thyroid
diseases, K=3 as: euthyroid, hyperthyroidism, and
hypothyroidism patients where 150 individuals are tested
euthyroid thyroid, 30 patients are experienced
hyperthyroidism thyroid while 35 patients are suffered by
hypothyroidism thyroid. Each individual was characterized
by the result of five, n =5 laboratory tests as: total serum
thyroxin, total serum tri-iodothyronine, serum tri-

0 0.5 1 1.5 2 2.5 3

0.5 f(
x)

1

x

Class 2

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

iodothyronine resin uptake, serum thyroid-stimulating
hormone (TSH), and increase TSH after injection of TSH-
releasing hormone [18].

The comparison of results for each dataset based on the
bet solution found in 10 distinct runs of each algorithm and
the convergence processing time taken to attain the best
solution. The solution quality is also given in terms of the
average and worst values of the clustering metric (Favg,
Fworst, respectively) after 10 different runs for each of the
five algorithms. F is the performance of clustering method
that illustrated in equation 3. Tables 1–9 show these results.

Table 1. Result obtained by the five algorithms for 10
different runs on dataset 1
Method Function Value CPU

time (s) Fbest Faverage Fworst

HSAK 3,120321 3,130807 3,225182 1.74
ACO 3,142375 3,163422 3,352843 1.89
GA 3,273426 3,355521 3,683901 2.01
TS 3,244326 3,310024 3,572814 1.92
SA 3,217832 3,282089 3,539115 1.99

Table 2. Result obtained by the five algorithms for 10
different runs on dataset 2
Method Function Value CPU

time (s) Fbest Faverage Fworst

HSAK 51.427326 51.447066 51.624728 8.23
ACO 52.082746 52.212071 52.729373 8.98
GA 56.142562 56.377520 57.317354 17.24
TS 54.752946 54.879342 55.384927 14.57
SA 53.562492 53.635943 53.929748 14.82

Table 3. Result obtained by the five algorithms for 10
different runs on dataset 3
Method Function Value CPU

time (s) Fbest Faverage Fworst

HSAK 961.524871 961.682520 963.101361 25.98
ACO 964.739472 965.048327 966.283745 26.88
GA 966.649837 966.772302 966.853946 38.52
TS 972.629478 973.209275 975.528463 32.78
SA 966.418263 966.614089 967.397392 31.24

Table 4. Result obtained by the five algorithms for 10
different runs on dataset 4
Method Function Value CPU

time (s) Fbest Faverage Fworst

HSAK 1246.264515 1246.318181 1246.801172 121.56
ACO 1248.958685 1249.034036 1249.335442 122.34
GA 1258.673362 1520.777767 1271.635528 178.42
TS 1282.538294 1285.988483 1299.789237 142.15
SA 1249.736287 1249.968105 1250.895375 136.61

Table 5. Result obtained by the five algorithms for 10
different runs on Vowel data
Method Function Value CPU

time
(s)

Fbest Faverage Fworst

HSAK 148267.618815 148267.618815 148267.618815 67.49
ACO 148837.736634 148837.768828 148837.937878 73.65
GA 149346.152274 149391.501798 149436.851323 98.72
TS 150635.653256 150648.079532 150697.784636 81.25
SA 149357.634587 149436.017542 149749.549362 79.46

Table 6. Result obtained by the five algorithms for 10
different runs on Iris data
Method Function Value CPU

time (s) Fbest Faverage Fworst

HSAK 96.001255 96.001255 96.001255 32.21
ACO 97.100777 97.171546 97.808466 33.72
GA 113.986503 125.197025 139.778272 105.53
TS 97.365977 97.868008 98.569485 72.86
SA 97.100777 97.134625 97.263845 95.92

Table 7. Result obtained by the five algorithms for 10
different runs on Crude oil data
Method Function Value CPU

time (s) Fbest Faverage Fworst

HSAK 250.327045 250.545712 252.513712 14.26
ACO 253.564637 254.180897 256.645938 14.98
GA 278.965152 279.907029 283.674535 35.26
TS 254.645375 255.422953 258.533264 26.55
SA 253.763548 254.653208 258.211847 24.74

Table 8. Result obtained by the five algorithms for 10
different runs on Wine data
Method Function Value CPU

time (s) Fbest Faverage Fworst

HSAK 16239.202351 16239.202351 16239.202351 53.17
ACO 16530.533807 16530.533807 16530.533807 68.29
GA 16530.533807 16530.533807 16530.533807 226.68
TS 16666.226987 16785.459275 16837.535670 161.45
SA 16530.533807 16530.533807 16530.533807 57.28

Table 9. Result obtained by the five algorithms for 10
different runs on Thyroid data
Method Function Value CPU time

(s) Fbest Faverage Fworst

HSAK
10081.72546
1

10081.725461 10081.725461 95.41

ACO
10111.82775
9

10112.126903 10114.819200 102.15

GA
10116.29486
1

10128.823145 10148.389608 153.24

TS
10249.72917
0

10354.315021 10438.780449 114.01

SA
10111.82775
9

10114.045265 10115.934358 108.22

For Dataset 1 (Table 1) it is found that the HSAK

clustering algorithm provides the optimal vale of 3,120321
in 90% of the total runs that is better than other clustering
algorithms. The ACO clustering algorithm found value of
3,142375 in 90% of runs and GA, TS, and SA found values
of 3,273426, 3,244326, and 3,217832 in 80% of runs. The
HSAK required the least processing time (1.74). For Data 2
(Table 2) the HSA clustering algorithm attains the best
value of 51.427326 in 90% of the total runs.

On the other hand ACO, GA, TS and SA algorithms
attain 52,082746, 56,142562, 54,752946, and 53,562492 in
80% of the total runs. The execution time taken by the
HSAK algorithm is less than other algorithms (8.23).
Similarly for data 3 (Table 3) and Data 4 (Table 4) the best
HSA clustering algorithm attains the best values of
961.524871 and 1246.264515 in 90% and all of total runs,
respectively. The best value provided by ACO, TS and SA
obtained in 80% of total runs and the best vale provided by
GA obtained in 40% of runs. In Term of the processing time
the HSAK performed better than other clustering algorithms
as can observed from Table 3 and 4.

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

For Vowel Data, (Table 5) the HSA clustering algorithm
attains the best value of 148267.618815 in all of runs. ACO,
TS, and SA provided the best values in 80% of runs and the
GA algorithm attains the best value only in 50% of total
runs. In addition the HSA clustering algorithm performed
better than other algorithms in term of the processing time
required (67.49). For clustering problem, on iris dataset
results given in Table 6, show that the HSAK provide the
optimum value of 96.001263, the ACO and SA methods
obtain 97.100777. The HSAK was able to find the optimum
10 times as compared to that of nine times obtained by ACO
and five times obtained by SA. The HSAK required the
least processing time (32.21). For Crude Oil data set, the
HSA clustering algorithm attains the best value of
250.327045 in 90% of total runs and ACO, GA, TS, and SA
attain the best value of 253.564637, 278,965152,
254.645375, and 253.763548 in 80% of total runs. The
processing time required by HSA is less than other
algorithms (14.26).

The result obtained for the clustering problem, Wine
dataset given in Table 8. The HSAK find the optimum
solution of 16239.202351 and the ACO, SA and GA
methods provide 16530.533807. The HSAK, ACO, SA and
GA methods found the optimum solution in all their 10
runs. The execution time taken by the HSAK algorithm is
less than other algorithms.

The HSAK algorithm for the human thyroid disease
dataset, provide the optimum solution of 10093.118364 to
this problem with success rate of 100% during 10 runs. In
term of the processing time the HSAK performed better than
other clustering algorithms as can observed from Table 9.

Shelokar et al [12] performed several simulations to find
the algorithmic parameters that result into the best
performance of ACO, GA, SA and TS algorithms in terms
of the equality of solution found, the function evaluations
and the processing time required. In this study, we used
their algorithmic parameters. In addition, we performed
several simulations to find the algorithmic parameters for
HSAK algorithm.

The result illustrate that the proposed HSAK optimization
approach can be considered as a viable and an efficient
heuristic to find optimal or near optimal solutions to
clustering problems of allocating N objects to k clusters.

VI. CONCLUSION

In summary, in this paper a new clustering algorithm is
presented based on the recently developed HS meta-
heuristic algorithm that it was conceptualized using the
musical process of searching for a perfect state of harmony.
Proposed algorithm has several advantages when compared
with other optimization techniques, it does not require
complex calculus, thus it is free from divergence and
proposed algorithm does not require initial value settings for
the decision variables, thus it may escape local optima. The
harmony search algorithm for data clustering can be apply
when the number of clusters is known a priori and is crisp in
nature. To evaluate the performance of the HSA algorithm,
it compared with other stochastic algorithms viz. ant colony,
genetic algorithm, simulated annealing and tabu search. The
algorithm implemented and tested on several simulation and
real datasets; preliminary computational experience is very

encouraging in terms of the quality of solution found and
the processing time required. Thus proposed algorithm can
be considered as a viable and an efficient heuristic to find
optimal or near optimal solutions of clustering problems.

REFERENCES
[1] U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy,

Advances in Knowledge Discovery and Data Mining. AAAI/MIT
Press, 1996.

[2] A. Gersho and R.M. Gray, Vector Quantization and Signal
Compression. Boston: Kluwer Academic, 1992.

[3] R.O. Duda and P.E. Hart, Pattern Classification and Scene Analysis.
New York: John Wiley & Sons, 1973.

[4] E.W. Forgy, Cluster analysis of multivariate data: Efficiency versus
interpretability of classifications, Biometrics 21 (3) (1965) 768–769.

[5] S.Z. Selim, M.A. Ismail, K-means type algorithms: a generalized
convergence theorem and characterization of local optimality, IEEE
Trans. Pattern Anal. Mach. Intell. 6 (1984) 81}87.

[6] H. Spath, Clustering Analysis Algorithms, Ellis Horwood, Chichester,
UK, 1989.

[7] Ujjwal Mualik, Sanghamitra Bandyopadhyay, genetic algorithm-based
clustering technique, pattern Recognition, 33 (2000) 1455-1465.

[8] K. Krishna, Murty, genetic k-means Algorithm, IEEE Transaction on
Systems, man, and Cybernetics-Part B: Cybernetics 29 (1999), 433-439

[9] Shokri Z. Selim and K. Al-Sultan, A Simulated Annealing Algorithm
for the Clustering problem, Pattern Recognition, Volume 24, Issue 10,
1991, Pages 1003-1008.

[10] C.S. Sung, H.W. Jin, A tabu-search-based heuristic for clustering,
Pattern Recognition, Volume 33, 2000, Pages 849-858.

[11] R. I. kuo, H. S. Wang, Tung-Lai Hu, S. H. Chou, Application of Ant
K-Means on Clustering Analysis, Computers and Mathematics with
Applications 50 (2005) 1709-1724.

[12] P.S. Shelokar, V.K. Jayaraman, B.D. Kulkarni, An ant colony approach
for clustering, Analytica Chimica Acta 509 (2004) 187–195.

[13] Geem ZW, Kim JH, Loganathan GV. A new heuristic optimization
algorithm: harmony search. Simulation 2001;76 (2):60–8.

[14] Zulal Gungor, Alper Unler, K-harmonic means data clustering with
simulated annealing heuristic, Applied Mathematics and Computation,
2006.

[15] R.A. Johnson, D.W. Wichern, Applied Multivariate Statistical
Analysis, Prentice-Hall, Englewood Cli!s, NJ, 1982.

[16] K.S. Lee, Z.W. Geem, A new meta-heuristic algorithm for continues
engineering optimization: harmony search theory and practice,
Comput. Meth. Appl. Mech. Eng. 194 (2004) 3902–3933.

[17] S.K. Pal, D.D. Majumder, Fuzzy sets and decision making approaches
in vowel and speaker recognition, IEEE Trans. Systems, Man
Cybernet. SMC-7 (1977) 625}629.

[18] C.L. Blake, C.J. Merz, UCI repository of machine learning databases.
Available from:
<http://www.ics.uci.edu/_mlearn/MLRepository.html>.

[19] R.A. Johnson, D.W. Wichern, Applied Multivariate Statistical
Analysis, Prentice-Hall, Englewood Cli!s, NJ, 1982.

[20] Zong W. Geem, Improved Harmony Search from Ensemble of Music
Players, Lecture Notes in Computer Science, (2006) Volume 4251,
86-93.

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

