
Rule Based Classification System for Medical
Data Mining Using Fuzzy Ant Colony Optimization

Mostafa Fathi Ganji, Mohamad Saniee Abadeh

Mostafa Fathi Ganji is with Faculty of Electrical and Computer Engineer-
ing, Tarbiat Modares University, Nasr Bridge, Jalal Ale Ahmad Highway,
TEHRAN, IRAN (email: m.ganji@modares.ac.ir)

Mohamad Saniee Abadeh is with Faculty of Electrical and Computer
Engineering, Tarbiat Modares University, Nasr Bridge, Jalal Ale Ahmad
Highway, TEHRAN, IRAN (email: saniee@modares.ac.ir)

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

2. ANT COLONY OPTIMIZATION (ACO)
Ant algorithms are based on the cooperative behavior of real ant
colonies, which are able to find the shortest path from a food
source to their nest [2]. While walking, real ants deposit a
chemical substance called pheromone on the ground. Ants can
smell pheromone and when choosing their way, they tend to
choose, in a probabilistic way, paths marked by strong pheromone
concentrations [19]. In the absence of pheromone, ants choose
paths randomly. Pheromone is evaporated over time, therefore, in
shorter paths pheromone evaporation is less in comparison with
longer paths and causes more pheromone accumulation in the
shorter routes [15]. This positive feedback effect means that
because of more pheromone all the ants will eventually use the
shortest path [16]. Although a single ant is capable of building a
solution (i.e., a path), the optimal solution comes about solely as a
result of the cooperative behavior of the ant colony (which is
based on a simple form of indirect communication through the
pheromone, called stigmergy). Although the first ACO algorithm,
called Ant System, was applied to solve the TSP problem [7], a
large number of applications to other problems were proposed
after the introduction of ant system. Recently, the ACO
metaheuristic was proposed as a common framework for existing
applications [19]. Each ant builds a possible solution to the
problem by moving through a finite sequence of neighbor states
(nodes). Moves are selected by applying a stochastic local search
directed by the ant internal state, problem-specific local
information and the shared information about the pheromone [2].

3. PROPOSED METHOD
FC-ANTMINER operates in two main stages: Training Stage and
Testing Stage. In training stage, at first, the ACO algorithm is
applied to generate a set of fuzzy rules via training patterns. These
fuzzy rules are displayed as the following form:
Rule Rj:
 If x1 is Aj,1 and … and xn is Aj,n , then Class Cj with CF=CFj.

Where Rj is the label of the jth fuzzy if–then rule, Aj1,…, Ajn are
antecedent fuzzy sets on the unit interval [0,1] (each triple
<attribute, operator, value> called a term), Cj is the consequent
class (i.e., one of the given c classes), and CFj is the grade of
certainty of the fuzzy If–then rule Rj. The antecedents of each
fuzzy rule are presented in the form of typical set of linguistic
values as figure 1. The membership function of each linguistic
value in figure 1 is specified by homogeneously partitioning the
domain of each attribute into symmetric triangular fuzzy sets. We
use such a simple specification in computer simulations to show
the high performance of our fuzzy classification system, even if
the membership function of each antecedent fuzzy set is not
tailored. However, we can use any tailored membership functions
in our fuzzy classifier system for a particular pattern classification
problem.
ACO learns the rules associated to each class separately.
Therefore, if we have c classes then we will have c rule sets, each
one corresponding to its related class. All these rule sets make our
final classification system. Figure 2 shows the training stage of
Fc-AntMiner.

3.1 Fuzzy Rule Generation by ACO
The ACO algorithm applies the artificial ants to explore among
the training patterns and gradually deriving fuzzy rules. The ants
learns the rules related to each class separately, that is, for each

Figure 1. The used antecedent fuzzy sets in this paper. a) 1: Small, 2:
medium small, 3: medium, 4: medium large, 5: large. b) 0: don’t care.

Figure 2. The ACO algorithm is applied to generate a set of fuzzy
rules related to each class separately, via training samples.

class such as k a function is called to learn the corresponding
fuzzy rules. Figure 3 shows the stages of fuzzy rule generation by
ACO. At first, the output rule set is empty and to learn the fuzzy
rules associated with each class, Rule-Learner function (figure 4)
is called. This function learns the fuzzy rules corresponding to
each class and returns them to main learning algorithm. All of the
learned rules for each class could be used as our final
classification system.
In Rule-Learner function (figure 4), the list of discovered rules is
empty and the training set consists of all the training cases. In
outer loop of Rule-Learn, the pheromone is initialized in a way
that all cells in the pheromone table are initialized according to
equation (1) [4]:

Then, the first ant (ant0) constructs rule Rj randomly by adding
one term (each triple <attribute, operator, value> called a term) at
a time and in the next iterations (t≥1) the ants modify rule Rj. The
maximum terms that each ant can modify in each iteration (t≥1) is

S MS M ML L

Membership

a) Attribute Value
0.0

1.0

1.0

Membership

b) Attribute Value
0.0

1.0

1.0

DC

Training Stage

τ�,��t � 0	 �

∑ �
�
��

 �1	

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

Figure 3. The stages of fuzzy rule learning by ACO

1- J=0;

2- TrainingPatterns= {all training samples};
3- DiscoverdRulesk= {};
4- Repeat

4.1- t=0, Set Pheromone Table;
4.2-Update Heuristic matrix (Hk);
4.3- Antt makes Rule Rj;
4.4- While (t<Max_ants)

4.4.1- Antt modifies Rj;
4.4.2- Computing the quality of Rj;
4.4.3- Updating the pheromone;
4.4.4- t++;

4.5-The ant that has the best modification augments its
rule to DiscoverdRulesk;
4.6- Remove the cases correctly covered by the selected
rule from the TrainingPatterns;
4.7- J++;

5- Until (Stopping Conditions are satisfied)
6- Return DiscoverdRulesk;
7- End.

Figure 4. Rule_Learner Function.

determined by a parameter named Max_change. Max_change can
be the number of attributes at most.

Each ant chooses termi,j to modify (or add to current rule in the
first iteration) with following probability:

Where, ηi,j is a problem-dependent heuristic value for termij . The
function that defines the problem-dependent heuristic value will
be discussed in section (3.1.1)

τi,j is the amount of pheromone currently available(at time t) on
the path between attribute i and value j.

a and bi are the total numbers of values in the domain of attributei

and is the total number of attributes respectively. I is the set of
attributes that are not yet used by the ant

The number of ants that modify the rule Rj in inner loop of FC-
AntMiner is determined by user-defined parameter, named
Max_ants.

While a rule modified by an ant, the quality function calculates
the quality of modified rule. The quality of a rule such as Rj is
computed according to equation (5) [13].

f� �
∑ �� µ�
 �|����

���	

∑ ��
�|����

 �3	

f� �
∑ w� µ�
 �| �!

�x�	
∑ w�

�| �!

 �4	

Q = wpfp – wnfn (5)

Where

FP: rate of positive training samples covered by the rule Ri.

FN: rate of negative training samples covered by the rule Ri

Wk: a weight which reflects the frequency of instance xk in the
training set.

WP: the weight of positive classification.

WN: the weight of negative classification.

After each ant modifies the terms of a rule according to Max-
change parameter, pheromone updating is carried out. We have
defined a new simple method to update pheromone, in a way that
whenever each ant modified the terms of rule Rj, quality of rule Rj
is calculated. If the quality of rule Rj is increased then pheromone
of this rule is increased according to value of quality that has been
improved. Our experiments have shown that by this new update
strategy, in each iteration, the pheromone helps the ants to
improve the quality of rule effectively. Pheromone updating is
carried out according to equation (7).

∆Q = Qi
After Modification – Qi

Befor Modification (6)

Where

∆Q shows difference between the quality of the rule Ri after and
before modification. C is a parameter to regulate influence of
improved quality to increase the pheromone (in our experiment C
is 0.5).

It is necessary to decrease the pheromone of terms that have not
participated in the construction of rules. For this purpose,
pheromone evaporation is simulated. To simulate the pheromone
evaporation in real ant colony, the amount of pheromone
associated with each termij that does not occur in the constructed
rule must be decreased.The pheromone of unused terms is
decreased by dividing the amount of the value of each τij by the
summation of all τij [4].

Stopping condition in outer loop of Rule-Learner (figure 4)
function refers to any condition that user has defined to terminate
the loop. In our experiments, when minimum uncovered instances

$%,& �
'%,&�(.*%,&

∑ ∑ '%,&�(.*%,& ,+%,-
.%
&

/
%

 �2	

τ�,��t 1 1	 � τ�,��t	 1 τ�,��t	. 2∆4. C6 �7	

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

are remained or fairly all ants travel in the same path, the learning
process is finished.

For each class independently, the above operations will be done
iteratively and finally a set of rules would be discovered. These
rules could be used as our classifier.

3.1.1 Heuristic Information
The ants modify the terms of the rules according to heuristic
information and amount of pheromone. Fc-AntMiner has used a
set of two-dimensional matrixes, named H, as heuristic
information so that H= {H1, H2, …, HnumClass}. For each class such
as k we have matrix Hk which rows and columns indicate the
attributes and fuzzy values respectively. Hk shows the distribution
of the values of data set in class k. Each time a rule is discovered
and correctly covered patterns are removed, set H is updated and
it won't be changed in the inner loop of Rule-Learn function.
Therefore, the computation overhead to calculate the heuristic
information is significantly reduced. Also these matrixes help the
ants to choose more relevant terms and make strong rules. Each
member of set H such as Hk is represented as follow:

Fig.5.Matrix Hk shows the distribution of data set values (class k)

An entry of matrix Hk such as hi,j (j>1) shows the number of
uncovered patterns that labelled with class k and value of attributei
is equal to jth fuzzy value, j=1,2,...,6 (DC is 1th fuzzy value, S is
2th fuzzy value, …).

First column (hi,1 i=1,2,..,n) includes the don't care (DC)
probability of features. Saniee et al [14] used a constant value to
determine DC probability of the features value which was
calculated with trial and error. FC-ANTMINER to determine the
don’t care value of each attribute such as attributei uses the
uniformity measurement of domain values of attributei. The lesser
value of DC shows the more uniformity distribution of the
attribute values are and vice versa. So, if DC value of attributei is
equal to 1 and 0, it means that the domain values of attributei have
completely uniform distribution and none-uniform distribution
respectively. For each attribute, DC value is measured in terms of
the entropy. Therefore, the first column of matrixes in set H is
updated by the following equations:

hi,1=1-Ei,1 (9)

Where

sumhi is the summation of none-DC values of attributei and p
(hi,j|sumhi) is the empirical probability of observing the hi,j.

It is essential to normalize the entries of matrixes set H to
facilitate its use in Equation (5). The following normalization

 function has been applied to normalize the matrixes entry:

Where Max2h�,�6 is maximum value in column j and η�,� is
heuristic information (this value is used in equation (5)).

3.2 Fuzzy Inference
Let us assume that our pattern classification problem is a c-class
problem in the n-dimensional pattern space with continuous
attributes. We also assume that M real vectors xp= (xp1, xp2, …,
xpn), p=1,2, …, m are given as training patterns from the c classes
(c<<M).
When ACO-learning algorithm, corresponding to each class,
generated a set of fuzzy rules using M patterns, a fuzzy inference
engine is needed to classify test patterns (figure 6). For this
purpose, certainty grade must be computed. The following steps
are applied to calculate the certainty grade of each fuzzy if-then
rule: [6]
Step 1: Calculate the compatibility of each training pattern xp=
(xp1, xp2, …, xpn) with the fuzzy if–then rule Rj by the following
product operation:
 <=2>?6 � <=
2>?
6 @ … <=B2>?C6, D � 1,2,3, … , E �11	
Where <=F2>?F6 is the membership function of ith attribute of pth
pattern and M denotes the total number of patterns.
Step 2: For each class, calculate the relative sum of compatibility
grades of the training patterns with the fuzzy if–then rule Rj:

GHIJKKL2M=6 � N <=2>?6
OHIJKKLPQRHIJKKL

, S � 1,2, … , T �12	

Where GHIJKKL2M=6 is the sum of the compatibility grades of the
training patterns in Classh with the fuzzy if–then rule Rj and
OHIJKKL is the number of training patterns which their
corresponding class is i.

Step 3: The grade of certainty CFj is determined as follows [13]:

UV= � GHIJKK LW 2M=6 X GY
∑ GHIJKK L 2M=6 ZL[

 �13	

Where

Figure 6. the testing Stage

 DC S MS M ML L

 \

 Att1

 Att2

 Attn-1

]
^
^
^
_ S1,1 S1,2 S1,3 S1,4 S1,5 S1,6

S2,1
\

SbX1,1
c \

Sb,1 Sb,2 Sb,3 Sb,4 Sb,5 Sb,6d
e
e
e
f

E�,
 � X N P2h�,�isumh�6
m

�[n
. log P2h�,�isumh�6 , i � 1,2, … , n �8	

η�,� � h�,�
Max2h�,�6, + i � 1,2,3, … , n �10	

Hk=

Testing Stage

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

GY �
∑ GHIJKK L 2M=6L!Luv

�T X 1	 �14	

Now, we can specify the certainty grade for any combination of
antecedent fuzzy sets. The task of our fuzzy classifier system is to
generate combinations of antecedent fuzzy sets for generating a
rule set S with high classification ability. When a rule set S is
given, an input pattern xp= (xp1, xp2, …, xpn) is classified by a
single winner rule Rj in S [6], which is determined as follows [6]:

<=2>?6. UV= � Ew>xy<=2>?6. UV=iM=z �15	

That is, the winner rule has the maximum product of the
compatibility and the certainty grade CFj.

4. EXERIMENT RESULTS
For evaluating performance of Fc-AntMiner, five data sets from
UCI data repository [26] such as Pima Indian Diabetes (Pima),
Wisconsin Breast Cancer (Wisconsin), Lung Cancer (Lung),
BUPA Liver (BUPA) and Heart Disease (Heart) were used
(table.1).

Table 1. Data Sets Description

Data Set Instances Attributes classes

Lung 32 56 3

Pima 768 8 2

Wisconsin 699 10 2

BUPA 345 7 2

Heart 270 13 2

We have normalized the data sets, where each numerical value in
the data set is normalized between 0.0 and 1.0. For this purpose,
the below function is applied to normalize the data set.

O{|Ew}~����	 � �������	
�P����P���	 (16)

Table 2 shows parameters specification that we have used in our
computer simulations for Fc-AntMiner.
Comparative performance of Fc-AntMiner is evaluated using ten-
fold cross-validation test [1] which data set is divided into ten
partitions, and Fc-AntMiner is run ten times, using a different
partition as test set each time, with the other nine as training set.

The classification rate is being calculated according to equation
(17).

U}w��~�~Tw�~{b Mw�� � ������	
������������	 (17)

Where
TP: true positives, the number of cases in our training set covered
by the rule that have the class predicted by the rule.

FP: false positives, the number of cases covered by the rule that
have a class different from the class predicted by the rule

FN: false negatives, the number of cases that are not covered by
the rule but that have the class predicted by the rule.

TN: true negatives, the number of cases that are not covered by
the rule and that do not have the class predicted by the rule.

Table 2. Parameter specification in computer simulation

Parameter Description Value

Max_ant Maximum ants that can modify a rule
in each iteration

30

Wk the frequency of instance xk in the
training set

1

WP the positive weight classification 0.3

Wn the negative weight classification 0.7

Max_change

Specifies the
maximum term per
rules that ants can
modify. Since each
dataset has different
number of attributes,
we have set this
parameter for each
data set separately.

Lung 12

Pima 3

Wisconsin 4

BUPA 3

 Heart 8

Also, precision measures of how many of the correctly classified
samples are positive samples and Recall measures the of how
many of positive sample are correctly classified. Precision and
Recall are computed by following equations:

Precision � ��
����� �18	

Recall � ��
����� �19	

Precision and Recall stand in opposition to one another [22]. As
precision goes up, recall usually goes down (and vice versa). F-
Measure is a trade-off between Precision and Recall. It is the
harmonic-mean of Precision and Recall and takes account of both
measures. It is computed according to equation (20).

F X Measure � 2 @ Precision @ Recall
Precision 1 Recall �20	

Tables 2-6 show the mean classification rate, Precision, Recall
and F-Measure for the generated rules by Fc-AntMiner and
several well-known methods.

Table 3. Wisconsin Breast Cancer data set.

Method
Classification

Rate
Precision Recall F-Measure

SVM 0.967096 0.967 0.967 0.967

NaiveBayes 0.959943 0.962 0.96 0.96

C4.5 0.945637 0.946 0.946 0.946

NN 0.958512 0.959 0.959 0.959

KNN 0.951359 0.951 0.951 0.951

Decision
Table

0.95422 0.954 0.954 0.954

BayesNet 0.959943 0.962 0.96 0.96

Fc-
AntMiner

0.97511 0.978 0.978 0.978

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

Table 4. Pima Indian Diabetes data set.

Method
Classification

Rate
Precision Recall

F-
Measure

SVM 0.77343 0.769 0.773 0.763

NaiveBayes 0.76302 0.759 0.763 0.76

C4.5 0.73828 0.735 0.738 0.736

NN 0.753906 0.75 0.754 0.751

KNN 0.70182 0.696 0.702 0.698

Decision
Table 0.71224 0.706 0.712 0.708

BayesNet 0.74349 0.741 0.743 0.742

Fc-
AntMiner 0.83333 0.848 0.831 0.839

Table 4. Lung cancer data set.

Method
Classification

Rate
Precision Recall

F-
Measure

SVM 0.481481 0.466 0.481 0.471

NaiveBayes 0.703704 0.704 0.704 0.704

C4.5 0.48148 0.342 0.481 0.400

NN 0.518519 0.528 0.519 0.522

KNN 0.481481 0.421 0.481 0.444

Decision
Table

0.518519 0.494 0.519 0.502

BayesNet 0.592593 0.575 0.593 0.58

Fc-
AntMiner

0.62963 0.736 0.732 0.739

Table 5. BUPA Liver data set.

Table 6. Heart Disease data set.

It can be seen Fc-AntMiner has the considerable results and its
performance is competitive with famous methods such as SVM,
NN.

The following table shows the mean number of effective features
in each data set. Fc-AntMiner detected these attributes by using
the new heuristic information which we have proposed

 (Section 3.1.1). The other features are recognized as don’t care
features.

Table 7. Effective features.

Data set
Number of
attributes

Number of effective
Attributes

Lung 56 18.354

Pima 8 3.240

Wisconsin 10 4.179

BUPA 7 3.196

Heart 13 7.2

Also, table 8 shows the computation time to build each classifier.
Table 8. time taken to build classifier

Data Set Non-Parallel Parallel
Wisconsin 6.72 3.74

Pima 10.78 6.64
Bupa 11.45 7.93
Heart 5.73 3.01
Lung 4.69 2.69

5. CONCLUSION
This paper presents a mixture of Ant Colony Optimization and
Fuzzy Logic to medical classification, named Fc-AntMiner. In
training stage, we have proposed a cooperative ACO algorithm for
fuzzy rule learning. Then in testing stage, a fuzzy inference engine
is used to classify test patterns. The main new features of the
presented algorithm are as follows:

Method Classification
Rate

Precision Recall F-
Measure

SVM 0.582609 0.757 0.583 0.432

Naïve
Bayes

0.565217 0.623 0.565 0.555

C4.5 0.686957 0.683 0.687 0.680

NN 0.715942 0.714 0.716 0.711

KNN 0.628986 0.63 0.629 0.629

Decision
Table

0.576812 0.561 0.577 0.558

BayesNet 0.562319 0.535 0.562 0.522

Fc-
AntMine

r

0.678261 0.675 0.678 0.675

Method Classification
Rate

Precision Recall F-
Measure

SVM 0.84074 0.841 0.841 0.840

NaiveBayes 0.83333 0.833 0.833 0.833

C4.5 0.76666 0.766 0.767 0.767

NN 0.78148 0.784 0.781 0.782

KNN 0.75185 0.753 0.752 0.752

Decision
Table

0.84814 0.848 0.848 0.848

BayesNet 0.81111 0.811 0.811 0.811

Fc-
AntMiner

0.796296 0.818 0.817 0.817

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

