
 
 

 

 
Abstract—The performance of the basic GPS system has been 

augmented by the technique of Differential GPS (DGPS) for 
military as well as civilian uses. Performance evaluation of a 
DGPS system requires the availability of DGPS corrections as 
functions of time. In many parts of the world, a lack of base 
stations and other infrastructure makes it impossible to have 
the desired quality and quantity of data. Thus, it is useful to 
develop a system, which can generate GPS measurements for an 
arbitrary number of truth points. In this paper, Wavelet Neural 
Network (WNN) is used to online predict the corrections for 
Selective Availability (S/A) on and off. Gradient Descent (GD) 
and Particle Swarm Optimization (PSO) are used to train and 
optimize the weights of WNN. Experimental results for the 
errors real-time prediction show the feasibility and 
effectiveness of WNN-PSO. The results prove that the proposed 
WNN-PSO method has better accuracy in a low cost GPS 
receiver. 
 

Index Terms—Wavelet Neural Network, Prediction, Particle 
Swarm Optimization, Gradient Descent, DGPS.  
 

I. INTRODUCTION 

The overall quality of precise point positioning results is 
dependent on the quality of the Global Positioning System 
(GPS) measurements and user processing software. Dual 
frequency, geodetic-quality GPS receivers are routinely used 
both in static and kinematic applications for high accuracy 
point positioning. However, use of low-cost, 
single-frequency GPS receivers in similar applications 
creates a challenge because of how the ionosphere, multipath, 
and other measurement error sources are handled [1].  

During past several years, the main problem in improving 
of the positioning measuring accuracy was Selective 
Availability (S/A) error. S/A was produced to degrade the 
achievable navigation accuracy when non-military single 
frequency GPS receivers are used. Although it is removed 
now, we investigated the system performance also under this 
limitation.  

Other significant error sources for low cost receivers are 
signal delays from ionospheric and tropospheric effects, 
satellite clock drift, satellite orbital position errors, signal 
multi path, and noise generated within the receiver itself. 
Table I shows the common errors of GPS system in meters. 
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TABLE I. AVERAGE ERROR INTRODUCED PER SATELLITE 

Error Sources Error Value (m) 
Receiver Noise 0.4 

Troposphere 0.5 
Signal Multi-path 0.6 
Satellite Clocks 1.5 

Orbit Errors 2.5 
Ionosphere 5.0 

Selective Availability 30 

 
GPS accuracy can be improved over with Differential GPS 

(DGPS), where a reference station broadcasts corrections on 
common view satellites on a regular basis to the remote GPS 
receiver, which provides a corrected position output. A 
reference station calculates differential corrections for its 
own location and time then send the corrections to receivers, 
which are not far from it. Any interrupt of DGPS service will 
cause loss of navigation guidance, which has possibility of 
developing into a vehicle accident, particularly in the phase 
of precision approach and landing. Thus, achievement of 
corrections in any second is impossible for ordinary users [2]. 

There are two approaches to provide continuity 
performance of the DGPS corrections; one is to make the 
receivers hardware utilities more sophisticated and 
complicated. This solution could increase the accurate 
receivers cost. Consequently, non-military users would not 
benefit from low cost high–precision positioning. Another 
solution is to use software programs to improve the quality of 
positioning. In this paper, one of the soft computing 
techniques, improved Wavelet Neural Network, is used to 
predict the future corrections. 

In order to improve the precision of the corrections 
forecasts, a Wavelet Neural Network (WNN) model, based 
on Particle Swarm Optimization (PSO), has been proposed. 
Corrections time series analysis requires mapping complex 
relationships between inputs and output, because the 
forecasted value is mapped as a function of patterns observed 
in the past. The DGPS corrections future value is represented 
by the previous data, as given in (1): 

 
        1,,1,1ˆ  MkxkxkxFkx                       (1) 

 
Proposed method validity is verified with experiments on 

collected real data. This paper is organized as follow. Section 
II describes Wavelet Neural Network with GD learning rule. 
In section III, a brief introduction of PSO, then the proposed 
method for DGPS corrections prediction using WNN based 
on PSO will be described. In section IV, the experimental 
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results with real data are reported, before and after S/A error. 
Conclusions are presented in section V. 
 

II. WAVELET NEURAL NETWORK STRUCTURE AND 

GRADIENT DESCENT LEARNING METHOD 

Recently, a new kind of Neural Networks known as the 
Wavelet Neural Networks (WNNs) have been proposed, 
which combine feed-forward neural network with the 
wavelet theory. It can provide better performance in function 
learning than conventional feed forward neural networks [3], 
[4]. 

A.  Structure of WNN and Forward Calculation 

This WNN consists of three layers: an input layer, a hidden 
layer, and an output layer. The input layer has M nodes. The 
output layer also has only one neuron whose output is the 
signal represented by the weighted sum of several wavelets. 
The hidden layer is composed of a finite number of wavelets 
representing the signal. 

 

 
Fig. 1. Structure of a (M, N, 1) Wavelet Neural Network. 

 
Consider a network consisting of a total of N neurons in 

hidden layer with M external input connections (Fig. 1). Let 
x(n) denotes the M-by-1 external input vector applied to the 
network, y(n) denotes the output of the network, Wjk(n) 
presents the weight between the hidden unit j and input unit k, 
Wij(n) denotes the connection weight between the output unit 
i and hidden unit j, aj(n) and bj(n) present dilation and 
translation coefficients of wavlon in hidden layer at discrete 
time n, respectively. 

The net internal activity of neuron j at time n, is given by: 
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Where vj(n) is the sum of inputs to the j-th hidden neuron, 

xk(n) is the k-th input at time n. The output of the j-th neuron 
is computed by passing vj(n) through the wavelets ψa,b j( ּ◌), 
obtaining: 
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The sum of inputs to the output neuron is obtained by: 
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The output of the network is computed by passing vj(n) 

through the nonlinear function σ( ּ◌), obtaining: 
 

)]([)( nvny                                                                                  (5) 

 

B.  Gradient Descent learning rule 

GD learning rule is central to much current work on 
learning in artificial NN. GD provides a computationally 
efficient method of changing the weights in a feed forward 
network, with differentiable activation function units, to 
learn a training set of input-output examples. 

The instantaneous sum of squared error at time n as: 
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 Where d(n) denotes the desired response of output at time 

n. To minimize of above cost function, the method of steepest 
descent is used. The weight between the hidden unit j and 
input unit k can be adjusted according to: 
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Where, η is a learning rate. The connection weight 

between the output unit i and hidden unit j is updated as 
follow: 
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The translation coefficient of the j-th wavlon in hidden 

layer can be adjusted according to: 
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The dilation coefficient of the j-th wavlon in hidden layer 

is updated as follow: 
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The wavelet function is “Gaussian-derivative” function as:  
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The usual sigmoid function of used in this research is as 

follow [5], [6]: 
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III. PARTICLE SWARM OPTIMIZATION AND TRAINING WNN 

A.  Introduction to PSO 

Particle Swarm Optimization (PSO), first introduced by 
Kennedy and Eberhart in the mid 1990s. PSO employs a 
population of possible solutions to identify promising regions 
of the search space. The population is called swarm and the 
members of the population are called particles. Each particle 
represents a possible solution to the optimizing problem at 
hand. During an iteration of the PSO, each particle 
accelerates independently in the direction of its own personal 
best solution found so far, as well as the direction of the 
global best solution discovered so far by any other particle. 
Therefore, if a particle finds a promising new solution, all 
other particles will move closer to it, exploring the solution 
space more thoroughly [7]. 

A swarm consists of a set of particles moving around the 
search space, each representing a potential solution (fitness). 
Each particle has a position vector (ωi(t)), a velocity vector 
(vi(t)), the position at which the best fitness (pbesti) 
encountered by the particle, and the index of the best particle 
(gbest) in the swarm [8].  

In each generation, the velocity of each particle is updated 
to their best-encountered position and the best position 
encountered by any particle using (13): 
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The parameters c1 and c2 are called acceleration 

coefficients namely called self-cognitive and social 
parameter, respectively. r1(t) and r2(t) are random values, 
uniformly distributed between zero and one. The values of 
r1(t) and r2(t) are not same for every iteration. w is called 
inertia weight and is employed to control the impact of the 
previous history of velocities on the current one. Shi and 
Eberhart [9] have found a significant improvement in the 
performance of PSO with the linearly decreasing inertia 
weight over the generations, time-varying inertia weight that 

is given in (14): 
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Where w1 and w2 represent the initial and final values of w, 

respectively, maxiter is the maximum number of 
optimization steps and iter represents the current iteration 
number. The position of each particle is updated every 
generation. This is done by adding the velocity vector to the 
position vector, as in (15): 
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The algorithms output is the gbest particle, which contains 

final trained weights and thresholds.   
 

IV. SIMULATIONS AND RESULTS 

Computer simulation was performed to evaluate the 
correction prediction performance using WNN both with GD 
and PSO algorithms. The choice of the algorithms parameters 
is also very important. In this paper, the proposed methods 
parameters selection was based on the test data. The 
parameters of the proposed algorithms are listed in Table II. 

 
TABLE II. PARAMETERS VALUES OF GD AND PSO 

Algorithm Parameter name Parameter value 

GD 
Number of Training Epochs 7 

Learning Factor Value 15 
Momentum 0 

PSO 

Swarm Size 120 
Self-recognition coefficient 2 

Social coefficient 2 
Inertia weight 0.9 → 0.4 

Number of Iterations 50 

 
We tested both methods for one thousand times. Precise 

positioning needs X, Y, and Z, thus we executed the 
algorithms for these three time series. Fig. 2 to Fig. 5 show 
Ex, Ey, and Ez prediction errors (the difference between the 
predicted and real values) for 1000 test data.  

 

 
Fig. 2. 1000 Ex, Ey, and Ez prediction errors by using WNN-GD and 
S/A=off. 
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Fig. 3. 1000 Ex, Ey, and Ez prediction errors by using WNN-GD and 
S/A=on. 
 

 
Fig. 4. 1000 Ex, Ey, and Ez prediction errors by using WNN-PSO and 
S/A=off. 
 

 
Fig. 5. 1000 Ex, Ey, and Ez prediction errors by using WNN-PSO and 
S/A=on. 

 
Six statistical measures (Min, Max, Average, Variance, 

Standard Deviation, and Root Mean Square) are used to 
evaluate prediction results for 1000 test data. Tables III to VI, 
show prediction errors statistical significance characteristics. 

 
 

TABLE III. RESULTS OF WNN-GD METHOD WITH S/A OFF. 
Parameters Ex Ey Ez 

Min -1.9665 -1.6186 -1.4473 
Max 1.4934 1.5420 1.4976 

Average -0.0001 0.0104 0.0046 
STD 0.0112 0.0128 0.0112 

Variance 0.0001 0.0001 0.0001 
RMS 0.3546 0.4055 0.3547 

 
TABLE IV. RESULTS OF WNN-GD METHOD WITH S/A ON. 

Parameters Ex Ey Ez 
Min -6.0472 -2.1593 -1.4908 
Max 4.4234 1.6632 1.6296 

Average -0.0456 0.0740 0.0057 
STD 0.0284 0.0175 0.0153 

Variance 0.0008 0.0003 0.0002 
RMS 0.8991 0.5599 0.4858 

 
TABLE V. RESULTS OF WNN-PSO METHOD WITH S/A OFF. 
Parameters Ex Ey Ez 

Min -1.4895 -1.6552 -1.3857 
Max 2.0434 1.6334 2.3861 

Average 0.0020 -0.0007 -0.0072 
STD 0.3291 0.3655 0.3274 

Variance 0.1083 0.1336 0.1071 
RMS 0.3289 0.3654 0.3273 

 
TABLE VI. RESULTS OF WNN-PSO METHOD WITH S/A ON. 
Parameters Ex Ey Ez 

Min -4.4234 -2.2396 -2.8039 
Max 2.8414 3.2295 1.5808 

Average 0.0510 -0.0630 -0.0108 
STD 0.5693 0.5309 0.5078 

Variance 0.3241 0.2818 0.2578 
RMS 0.5713 0.5343 0.5076 

 
As shown in Tables III to VI, accuracy in Tables V and VI 

are higher than that in Tables III and IV. To clearly compare 
the results, total RMS errors are reported in Table VII. 

 
TABLE VII. COMPARISON OF PREDICTION ACCURACY BY USING GD AND 

PSO IN TRAINING WNN PREDICTOR. 

Algorithm 
Total RMS error in 

S/A off 
Total RMS error in 

S/A on 
GD 0.6449 1.1654 
PSO 0.5906 0.9324 

 

V. CONCLUSION 

Learning with GD is normally slow due to the characteristics 
of the error surface on which the weights are navigating. PSO 
has been proposed for training in order to speed the 
convergence up, and to avoid local minima in the error 
surface. Some of the attractive features of the PSO include 
ease of implementation and the fact that no gradient 
information is required. In this paper, corrections prediction 
in single-frequency GPS receivers using WNN trained by a 
PSO algorithm is presented. The Conventional way of 
training WNN, GD was less effective compared to PSO. The 
results are analyzed. Experimental results for the errors 
real-time prediction showed the feasibility of the WNN, 
trained by the PSO algorithm, which was able to reduce RMS 
errors to 0.9324 meter with S/A on and 0.5906 meter with 
S/A off.  
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