
 
 

 

 
Abstract—Spiking Learning vector quantization (S-LVQ) is 

trained by supervised learning vector quantization algorithm. In 
this network, instead of using the common neuron, spiking 
neurons are used as the processing elements. A spiking neuron is 
a simplified model of the biological neuron. This paper reports 
on the application of spiking neurons networks to perform the 
classification of wood defects. Experiments conducted with 
S-LVQ networks have shown that they are capable of doing 
better discrimination between the various types of defects. . 
Moreover, they can perform the defect classification better in 
terms of classification time. However, they still lack of good 
learning algorithm for classification. 
 

Index Terms— Spiking Neural Networks, Wood Data, and 
Learning Vector Quantization, and S-LVQ.  
 

I. MOTIVATION                                                        

  Wood veneer boards are manufactured on fast production 
lines where boards can move at speeds exceeding 20m/s. 
Inspecting the boards for surface defects that can cause 
downstream quality problems is thus a task that is taxing for 
human operators. A number of studies have been carried out 
on various types of techniques for wood defect classification. 
Techniques ranging from human operators to automated 
systems have been studied in order to address the huge 
problems in wood defect. Inspection by human operators is 
difficult to achieve. This is not reliable because production 
rates in a plywood factory are high, with the wood sheets 
being conveyed at speeds of 2-3m/s. Polzleitner and 
Schwingshakl [1] have reported that quality inspection by 
human could only obtain up to 55 per cent accuracy in wood 
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sheet inspection. 
Early work aimed at automating these tasks by introducing 

computer-controlled visual inspection systems has involved 
the use of conventional signal processing and pattern 
recognition techniques.  

This paper addresses the issue of automating the 
classification tasks of wood defects. There has been a growing 
interest in research and development of automatic wood 
detection and classification techniques and systems, 
especially in wood-rich countries, such as Malaysia. 
Automated visual inspection systems with neural network 
classifiers have been widely applied to word defect 
classification [2]. Table 1 shows the classifiers used for wood 
defect using neural networks classifiers.  

 
Table 1: Comparisons of different neural networks techniques 
 for wood defect classification 
 

Classifiers Number of  

features 

Number of 

classes 

Performance

 (%) 

Multilayer Perceptrons  

(MLPs) 

     26        9       89.4 

Single MLPs      17     13      88 

Modular Neural Networks 

 (MNNs) 

     17     13      96 

Laerning Vector Quatization 

 (LVQ) 

     17     13      98.5 

 
Pham and Sagiroglu [5] claimed that LVQ networks 

provide a high degree of discrimination between the different 
types of defects and potentially can perform defect 
classification in real time. These results together with other 
good reports on LVQ networks [6-7] have motivate the 
authors to applied S-LVQ networks for wood defect 
classification. In addition, S-LVQ networks have showed 
good classification performance for control chart pattern 
recognition [8].  

II. SPIKING NEURAL NEYWORKS 

 

This paper presents a more plausible network employing a 
Spiking Learning Vector Quantization (S-LVQ) network as 
pattern recognition. S-LVQ is usually trained by supervised 
learning vector quantization algorithm. In this network, 
instead of using the common neuron, spiking neurons are used 
as the processing elements. A spiking neuron is a simplified 
model of the biological neuron. It is, however, more realistic 
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than the threshold gate used in perceptrons or sigmoidal gates 
(employed in MLPs). A clear justification of this is that, in a 
network of spiking neurons, the input, output, and internal 
representation of information, which is the relative timing of 
individual spikes, are more closely related to those of a 
biological network. This representation allows time to be used 
as a computational resource. It has been shown that networks 
of spiking neurons are computationally more powerful than 
these other neural network models [4]. However, spiking 
neural networks still lack good learning algorithms and 
architecture suitably simple for time series application such as 
control chart pattern recognition. As far as the author is 
concern, there is no application of spiking networks on wood 
defect classification. The aim of this work was to test whether 
S-LVQ networks could achieve good classification accuracy. 
The S-LVQ networks focus on the learning procedures and 
architecture of spiking neural networks for classifying wood 
defect.  

The remainder of the paper is organized as follows. Section 
2 describes the wood surface defect pattern recognition 
problem. Section 3 provides information on spiking neural 
network architecture. Section 4 describes the supervised 
S-LVQ Algorithm to train the network on wood veneer 
boards. Section 5 presents the results obtained and section6 
discuss the paper. 

 

III. WOOD DEFECT CLASSIFICATION PROBLEMS 

Fig.1 shows twelve common types of defects on wood 
veneer surfaces together with a photograph of defect free 
(clear) wood. Features were first extracted from different 
wood images containing known defect types or no defects. As 
in previous work [5], the classification experiments conducted 
in this work, the same 232 feature vectors representing clear 
wood and defective wood images were employed. Seventeen 
features were extracted from the wood images and used to 
train the S-LVQ classifier. The wood defect classification 
problem thus reduces to that of mapping a given set of 
seventeen features extracted from an image onto one of the 
image categories shown in Fig.1. 

 

  
Fig 1: Categories of veneer wood images 

IV. A TYPICAL SPIKING NEURAL NETWORKS 

Spiking neural networks have a similar architecture to 
traditional neural networks. Elements that differ in the 
architecture are the numbers of synaptic terminals between 
each layer of neurons and also the fact that there are synaptic 
delays. Several mathematical models have been proposed to 
describe the behaviour of spiking neurons, such as the 
Hodgkin-Huxley model [10], the Leakey Integrate-and-Fire 
model (LIFN) [11] and the Spike Response Model (SRM) 
[11]. Fig. 2 show the network structure as proposed by 
Natschlager and Ruf [13]. 

 
 
 
 
 
 
 
 
 
 

Fig 2: Feed forward spiking neural network 
 
This structure consists of a feed forward fully connected 

spiking neural network with multiple delayed synaptic 
terminals. The different layers are labeled H, I, and J for the 
input, hidden, and output layer respectively as shown in Fig. 
3. The adopted spiking neurons are based on the Spike 
Response Model to describe the relationship between input 
spikes and the internal state variable. Consider a neuron j , 
having a set Dj of immediate pre-synaptic neurons, receiving a 

set of spikes with firing times ti , . It is assumed that 

any neuron can generate at most one spike during the 
simulation interval and discharges when the internal state 
variable reaches a threshold. The dynamics of the internal 

state variable are described by the following function:  

 

                     
        

     (1) 

   

       

 

Helpful  

 is the un-weighted contribution of a single synaptic 

terminal to the state variable which described a pre-synaptic 
spike at a synaptic terminal k as a PSP of standard height with 

delay . 
 

            (2) 
 
 

The time  is the firing time of pre-synaptic neuron i , and 

 the delay associated with the synaptic terminal k. 
Considering the multiple synapses per connection case, the 

state variable of neuron j receiving input from all 
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neurons i is then described as the weighted sum of the 
pre-synaptic contributions as follows: 

        (3) 

 
 
The effect of the input spikes is described by the function 

 and so called the spike response function and  is the 

weight describing the synaptic strengths. The spike response 

function  , modelled with an -function, thus 
implementing a leaky- integrate-and fire spiking neuron, is 
given by: 

 

   (4) 

 

 is the time constant which defines the rise time and the 
decay time of the postsynaptic potential (PSP). The individual 
connection, which is described in [12], consists of a fixed 
number of m synaptic terminals. Each terminal serves as a 
sub-connection that is associated with a different delay and 

weight see Fig.3. The delay  of a synaptic terminal k is 
defined as the difference between the firing time of the 
presynaptic neuron and the time when the postsynaptic 

potential starts rising. The threshold  is a constant and is 
equal for all neurons in the network. 

 

V. SPIKING LEARNING VECTOR QUANTIZATION 

(S-LVQ) ARCHITECTURE IN WOOD CLASSIFICATION 

 

A. Learning Vector Quantization (LVQ) 

 
LVQ was developed by Kohonen [6]. This method has been 
implemented in an eponymous neural network.LVQ networks 
are simple, but accurate and fast classifiers [6-7]. They have 
been applied successfully to a variety of tasks in 
manufacturing engineering, including control chart pattern 
recognition [9] but so far only a few to the problem of wood 
defect classification. Fig. 3 shows an LVQ network 
comprising three layers of neurons: an input buffer layer, a 
hidden layer and an output layer. The network is fully 
connected between the input and hidden layers and partially 
connected between the hidden and output layers, with each 
output neuron linked to a different cluster of hidden neurons. 
 

 

 
Fig 3: Standard learning vector quantization architecture 

 

 
 

B. Proposed S-LVQ Architecture  

 
This paper proposes a new architecture for spiking neural 
networks for wood defect classification The proposed 
architecture consists of a feed forward network of spiking 
neurons which is fully connected between the input and 
hidden layers with multiple delayed synaptic terminals (m ) 
and partially connected between the hidden and output layers, 
with each output neuron linked to different hidden neurons. 
An individual connection consists of a fixed number of m 
synaptic terminals, where each terminal serves as a 
sub-connection that is associated with a different delay and 
weight between the input and hidden layers. The weights of 
the synaptic connections between the hidden and output 
neurons are fixed at 1. Experiments were carried out with a 
number of network structures with different parameters and 
learning procedures. The networks finally adopted had 17 
input neurons in the input layer. One input neuron was 
therefore dedicated for each mean value. There were 13 output 
neurons, one for each defect category, and thirteen hidden 
neurons (the number of hidden neurons here depends on the 
number of classes). Table 2 show the configurations of the 
networks used.Fig.4 and 5 shows the structure of the networks 
and the multi-synapse connections respectively. 
 At the beginning of training, the synaptic weights were set 
randomly between 0 and +1. The input vector components 
were scaled between 0 and 1. Using a temporal coding 
scheme, the input vector components were then coded by a 
pattern of firing times within a coding interval and each input 
neuron allowed firing once at most during this interval. 
 

Table 2: Details of the proposed S-LVQ network 
used for wood defect 

 

Number of inputs = 17 Number of outputs = 13 

Number of hidden neuron for each 
output 

category = 13 

Initial weights range = 0 to 1 

Scaling range = 0 to 1 Coding interval = 0 to 100 

Learning rate = 0.0075 Delay intervals = 15 (ms) in 10 
(ms) 

interval 

Synaptic delays = 1 to 16 (ms) Time constant = 120 (ms) 

 

Output 
layer 

Hidden  
layer 

Input layer 
Input vector (Feature vector) 
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Fig. 4: A structure proposed for the spiking neural network 

 
             
 
 
 
 
 
 
 
Fig.5: Multi-synapse terminals for the spiking neural network 

 
In this work, the coding intervals T were set to [0-100] ms 
and the delays  to {1,…,15} [ms] in 10 ms intervals. The 
available synaptic delays were therefore 1-16 ms. The PSP 
was defined by an  function with a constant time  =170 ms. 
Input vectors were presented sequentially to the network 
together with the corresponding output vectors identifying 
their categories as done in [2]. Unlike the network structure 
used in [11], the proposed structure helps to reduce the 
complexity of the connections where the multiple synaptic 
delays only exist between the input and hidden neurons. Only 
single connections between the hidden and output neurons 
and the weights were fixed to 1. This reduced the number of 
weights that had to be adjusted since only the connections 
between the input and hidden neurons had multiple synaptic 
terminals. The adopted spiking neurons were based on the 
Spike Response Model with some modification to the spike 
response function in order for the networks to be applied to 
wood veneer classification. The spike response function used 
in this architecture has been modified to: 
 

 
      (5) 

 
In this spike response function, tce and tci represent the 
maximum and minimum time constants respectively and 
tce=170 (ms) and tci=20 (ms). Here, st is equal to 

 where t is the simulating time (0 to 300),  is 
the firing time of presynaptic neurons and k d represents the 
delay with k =16. With this proposed spike response function, 
the spiking neural network technique worked well or at least 
at the standard level for wood defect classification.. Bohte et 
al [4] have stated that“Depending on the choice of suitable 

spike response functions, one can adapt this model to reflect 
the dynamics of a large variety of different spiking neurons.” 
 

C. S-LVQ Learning Procedures 

 
 

In this work, a supervised learning equation was employed 
using the following update equations. If the winner is in the 
correct category, then: 

 

           (6) 
 

     (7) 

 

     (8) 

 If the winner is in the incorrect category, then 
 

           (9) 
 

(10) 
 
In the simulation, the parameter values for the learning 

function L (  ) were set to be: 
 

 = 0.0075,  = 35, λ =  

 
 = [0-100],  = 0.8, wnew is the new value for the weight 

and wold is the old weight value. The parameter n is the 
constant learning rate. Parameter  sets the width of the 
positive part of the learning window and  denotes the time 
difference between the onset of a PSP at a synaptic terminal 
and the time of the spike generated in the winning output 
neuron. Parameter  was used because in supervised learning 
there is a priori information about the training sets. For this 
supervised learning procedure, the Winner-Takes-All 
learning rule modifies the weights between the input neurons 
and the neuron first to fire (winning neuron) in the hidden 
layer. The winner will be activated to 1 and the others to 0. In 
this learning procedure, only if the winning neuron is in the 
correct category and the start of the PSP at a synapse slightly 
precedes a spike in the target neuron, is the weight of this 
synapse increased, as it exerts a significant influence on the 
spike-time by virtue of a relatively large contribution to the 
membrane potential. 

 

VI. CONCLUSION 

The results obtained with the proposed architecture and the 
supervised learning procedure for wood veneer  classification 
are presented in Table 3 against the results reported previously 
with standard LVQ network [5]. 
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Table 3: Results comparing Standard LVQ and Spiking LVQ 

Classifiers Numb.  

of epochs

Numb. of  

features 

Numb. of  

classes 

Performance 

Spiking Learning  

Vector  

Quantization  

(S-LVQ) 

    30       17      13       89.6% 

Learning Vector  

Quatization 

 (LVQ) 

    40      17     13       97.8% 

 
 
 
Experiments yielded that S-LVQ with its simple 

configuration as showed in Table 2 give a standard level of 
performance for wood defect. As stated earlier, the spiking 
neural network still lack of good learning algorithm. So there 
are still a lot of research needs to be carried out in order to find 
the suitable one for an application. Although the performance 
accuracy is 89.6, the number of epochs it takes to achieve the 
accuracy is decrease These mean that the networks have the 
potential to perform defect classification in terms of better 
speeds of operation. This makes the S-LVQ system highly 
suitable for on-line real-time implementation in wood 
industries. 

Previously, neural networks have proved capable of data 
smoothing and generalization. This paper has shown that 
spiking neural networks also have a good capability in data 
smoothing and generalization. This permits them to recognize 
noisy wood veneer defects and also other industrial automated 
inspection applications such quality control or specifically 
wood defect classification as indicated by the results 

presented in the paper.  
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