

Abstract— The goal of this paper is to present a tool for

automatic implementation of Timed Automata model in a
real-time operating system. The purpose of this tool is to make
design, implementation and verification of real-time control
systems easier because human resources will be concentrated
more on the area of specification and verification than
implementation issues. In the paper are described developed
modules enabling automatic implementation of Timed Automata
models from UPPAAL into the real-time operating system
extension RTX. The software tool is being developed as an
open-source project with support from the National Grant
Agency at the Department of Control and Instrumentation,
Brno University of Technology.

Index Terms— Timed Automata, Temporal Logic, UPPAAL,
RTX.

I. INTRODUCTION

 Control systems play an important role in everyday life.
People and the systems themselves are surrounded by
hundreds of different devices consisting of one or more
control system: cellular phones, PDAs, televisions, cars,
buildings etc. They usually help us, but in the case of incorrect
operation they can be a threat to us or other systems [1], [2],
[3]; therefore it is necessary to ensure their reliable and safe
behaviour. To produce such reliable and safe systems via a
standard (and proved) approach is and arduous task requiring
a lot of time, skill, and human effort; however, the human
work is mainly concentrated in the area of implementation
(writing routines and programs, designing HW, debugging,
etc.) and not in the area of specification and verification.
Formal methods help to concentrate human resources on the
specification and verification and it significantly improves
final reliability and safety of the control systems.

Timed Automata are often used for description, modelling
and verification of different systems in almost all branches of
engineering. Today, they are an interdisciplinary tool
facilitating work on product and system design from HW to
SW parts of applications. Many articles and papers are
published every year; they show Timed Automata as a useful

Manuscript received July 16, 2010.
This work has been supported in part by the Grant Agency of the Czech

Republic GA1890030 (Implementation of Timed Automata into real-time
operating systems), Ministry of Education, Youth and Sports of the Czech
Republic Research Intent MSM0021630529 (Intelligent systems in
automation), and Project 1M0567 (Centre for applied cybernetics).

Authors are with the Department of Control and Instrumentation, Brno
University of Technology, Kolejní 4, 612 00 Brno, Czech Republic. (phone:
+420-541141113; e-mail: {kucera, hyncica, honzikp}@feec.vutbr.cz).
 This work was supported in part by the U.S. Department of Commerce
under Grant BS123456

tool in many areas of human activity such as aviation [5],
economy [6], industry [7], communication [4], control
systems [8], etc.
 Complexity of today's control systems forces system
developers to often utilize operating systems in the control
engineering applications. It is because the complexity and
computational power demands of the operating system
becomes less important due to higher performance of the
processors while their advantages are indisputable. However,
developing control application with or without operating
system support is a totally different task. Techniques,
methods and strategies that are used in implementations
without operating systems cannot be used if implementing the
same control task in the target platform with the operating
system support. This is because control system application
must be separated into less or more independent tasks
(processes, threads) and with such independent tasks
difficulties arise around exclusive access to shared resources;
memory locations and hardware elements. Moreover, a
general-purpose operating system cannot be used because
control task is a strictly time-constraint process and it's
deadlines must be complied with at all time. This is why a
real-time operating system must be used; however difficulties
arise related to the time behaviour of the tasks.

II. FORMAL APPROACH

The formal approaches used for designing the real-time
control systems such as: UML, ROPES, etc., concentrate
predominantly on theoretical solutions of the appropriate
interactions of the blocks to provide real-time behaviour in
terms of time-constraints and synchronism, however,
practical experiences show that a fair amount of failures in
real-time control systems are not only caused by flaws in the
design, but also by underestimation of the efficiency of the
particular point-to-point connection. Having designed proper
Timed Automata, synchronization points of processes, and
employing further measures to diminish the compromising of
timeliness is crucial if the control system is to be transferred
into practice.

Utilization of Timed Automata and real-time operating
system can solve many of the aforementioned problems.
Timed Automata can be used not only for formal description
of the control task but also for verification of it's correctness
and time behaviour. Real-time operating systems can be used
for proper implementation of this formal model in the target
platform. Transformation from the Timed Automata
specification into the real-time operating system application
can be done automatically without human intervention; it

Implementation of Timed Automata in a
Real-time Operating System

Pavel Kučera, Ondřej Hynčica, and Petr Honzík

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

significantly improves reliability and safety parameters of the
final application.

This transformation can be done by a development strategy
that has been previously presented by the authors [9]. The
simplified model of this strategy can be described by a state
diagram shown in Fig. 1.

Fig. 1: State diagram of the development strategy

 The state diagram of the proposed development strategy
consists of 4 important steps. In the step: Formal Model, a
Timed Automata model of the control task is created. As soon
as the model is created it's verification phase can be carried
out in the step: Verification. When the verification step is
finished, the development procedure can either move back
into the Formal Model step, because the verification failed, or
into the step: Implementation, where automatic
implementation of the model is built.
 The formal model can be incorrect if deadlock or livelock
is observed during the verification step. In this case, we must
return to the Formal Model step and another appropriate
Timed Automata model of the system must be created. The
Implementation step is followed by the Tests step. In this step
all necessary tests of the final application are made. If any of
the performed tests fail, the development strategy must return
back into the Formal Model and changes in the Timed
Automata model must be carried out. If the tests of the system
were successfully then the development procedure ends.

III. TIMED AUTOMATA MODEL

 For the purposes of the formal description of the task, timed
automaton and temporal logic have been chosen as an
appropriate description method. The main advantage of this
formal method is that there exists an integrated tool
environment for modelling, simulation, and verification of
real-time systems called UPPAAL. UPPAAL was developed
jointly by BRICS at Aalborg University and the Department
of Computer Systems at Uppsala University [10]. It is the
appropriate tool for a system that can be modelled as a
collection of non-deterministic processes with a finite control
structure and real-valued clocks, communicating through
channels or shared variables. Typical application areas
include real-time controllers, communication protocols and
embedded systems control. UPPAAL consists of three main
parts: a description language, a simulator, and a
model-checker [18].

1. The Description Language

 The description language is a non-deterministic guarded
command language with simple data types; unbounded

integers, arrays, etc. It serves as a modelling or design
language to describe system behaviour as networks of
automata extended with clock and data variables [18].

1. The Simulator

 The simulator is a validation tool that enables examination
of possible dynamic executions of a system during early
design or modelling stages and thus, provides an inexpensive
means of fault detection prior to verification by the
model-checker, which covers the exhaustive dynamic
behaviour of the system [18].

1. The description language

3. The model-checker is used to check invariant and bounded
liveness properties by exploring the symbolic state-space of
the system, i.e., reachability analysis in terms of symbolic
states represented by constraints [18].

 The theory of timed automaton is well described in [11]. A
number of verification tools have been developed for timed
systems in the past year. UPPAAL is one of them as described
in [12], [13], or [10]. The other tools are well described in
[14].
 The goal of UPPAAL has always been to serve as a
platform for the tool to provide a flexible architecture that
allows experimentation. It should allow orthogonal features to
be integrated in an orthogonal manner to evaluate various
techniques within a single framework and investigate how
they influence each other [15].
 The formal model is represented by Timed Automata
diagram(s) created in UPPAAL. The model is stored in a
XML file. This formal model can be automatically converted
into the objects that are easy to implement into real-time
operating systems and these objects result in an executable
code.

IV. REAL-TIME OPERATING SYSTEM

 There are many real-time operating systems available.
Some of them are free, some are available under GPL or BSD
license and some of them are proprietary. Decision process of
choosing the right one is a painful work and many aspects
must be considered [16]. However practical experiences show
that the selection of the suitable real-time operating system is
often the question of experiences of the developers.
 Authors are very well experienced with the real-time
extension RTX. It is not a stand-alone real-time operating
system because it requires the presence of the Microsoft
operating system on the target platform. But it provides
almost all features and properties like standard real-time
operating system for x86 platforms [17].
 RTX is a real-time extension based on Win32 Application
Interface (API). It provides precise control of IRQs, I/O, and
memory. It operates in Ring 0 with the highest performance
and sustained interrupt rates of 30 KHz with an average IST
latency of less than one microsecond. This is why RTX
becomes more and more popular in control systems,
especially in the area of diagnostic systems and real-time
control systems. Another advantage of this real-time
extension is a close cooperation with the Windows operating
system. It makes possible to create outstanding graphics user
interface (GUI) without any additional costs or effort because
this GUI is created under standard Windows API and with the

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

real-time extension core is connected by a shared memory
mechanism. Moreover, RTX is available for free in the
evaluation edition.
 Basic concept of RTX is based on so-called processes slots.
Slot is an execution unit (task) that can be started or stopped
independently to the other RTX processes. Each task consists
of at least one thread. Threads in the same task run in the same
environment (memory, CPU core) however threads from
different tasks are planned by the same scheduler. Priority
system consists of 128 independent priority levels and two or
more threads can share the same priority level.

V. IMPLEMETATION TOOL

 Implementation of the Timed Automata model in RTX can
be carried out automatically in the step: Implementation in
Fig. 1. The relationship between UPPAAL, implementation
tool, RTX, x86 target platform and control technology is
shown in Fig. 2.

Fig. 2: Relationship between the designing tool, target

platform and technology

 The Model of the control system is created and verified in
the UPPAAL tool. If the verification is passed then the
implementation tool reads the Timed Automata model saved
in XML file and creates a Visual C++ project for the RTX
application. The RTX application creates one task consisting
of one or more threads. Each thread in the RTX process is
equivalent to UPPAAL process assignment. The RTX
process has a direct connection to the Hardware Abstraction
Layer (HAL) of the Target Platform and it can directly control
hardware in the Technology. Mapping of the model variables
into the hardware must be completed by a human in Visual
C++ project. However internal behaviour of the RTX process
and its threads are generated automatically by Timed
Automata model.
 Many problems must be solved before the Timed Automata
model can be successfully transferred into the RTX
structures. The most important one is a time concept.
UPPAAL time is an integer value passing from –∞ to +∞.
RTX time is based on a HAL timer period that is a minimum
time quantum that can be used for timers and sleep functions.
This HAL timer period can be one of the fixed value; 100,
200, 500 and 1000 µs and this value is the same for all
processes and its threads. The corresponding value must be
chosen before the implementation of the Timed Automata in
RTX as the implementation tool should be aware of it.
 Another problem can be with the Urgent Channels. Urgent
channels are similar to synchronisation channels, except that
it is not possible to delay in the source state if it is possible to
trigger a synchronisation over an urgent channel. It cannot be
successfully realized in symmetric architecture with one
available CPU (with just one core) in the target platform.
Therefore, urgent synchronization is carried out by a
supervising thread using the maximum priority. This thread is

attached to the control process and controlled via the HAL
timer period.

VI. EXAMPLE

 Let us consider a simple system that represents the JK
flip-flop device:

 (1)

 Where J and K are inputs of the device and Qn and Qn+1 are
its outputs before and after the synchronization clock. A
simplified model of this device in UPPAAL is shown in
Figure 3.

Fig. 3: Simplified model of the JK flip-flop

 The system is a Mealy state machine with two states and
four transitions. Anytime the system enters the state:
STATE_1, its output is set to 1 and if the system enters the
state: STATE_0, the output is set to 0. Transition between the
states corresponds with the equation 1. For simplicity the time
and invariant conditions are not considered here.
 The implementation of this system in RTX is carried out by
the process JK_TEST consisting of 3 threads. The structure of
the process is shown in Fig.fi 4.
 Thread sync is responsible for the proper synchronisation
of signals J and K. Function mutex ensures an exclusive
access to the signals J and K because the threads inout and
state_machine also share them. Function event then
represents calling of the corresponding event handling of the
synchronization channel; standard, urgent or broadcast
channel. This thread has the highest priority in the process.
This thread is completely generated by the implementation
tool.
 Thread inout is responsible for communication with the
HAL. Implementation is strictly dependent on the target
platform hardware and it cannot be generated automatically
from the Timed Automata model. The implementation tool
creates only a skeleton and the developer must implement the
correct read and write function. However the developer must
not solve problems with synchronisation or unique access to
the shared variables; it is already carried out by the skeleton
and the other thread(s) in the process. Priority of this thread
must be lower than the priority of the sync thread.
 The thread state_machine is a core of the task. It generates
the logical behaviour of the system. It consists of one or more
case-switch statements where transitions among states are
performed. All the conditions that fire the transitions for each

�
�+1 = ��

�
����+ ���

�

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

state are encapsulated in a Condition to Leave function. For
instance, function CL_STATE_1() has an implementation:

CL_STATE_1() {
 if ((J&&K) || (J&&!K)) {
 Q = 1;
 state = STATE_1;
 return;
 }
 if ((!J&&K) || (J&&K)) {
 Q = 0;
 state = STATE_0;
 return;
 }
}

 This thread is also completely generated by the
implementation tool and its priority can be the same as inout
thread but must be lower than sync thread.

Fig. 4: Implementation of the JK flip-flop in RTX

VII. CONCLUSION

 A suggested tool for automatic transferring of the Timed
Automata model into the real-time operating system brings
several advantages into the area of system control design.
 Routine implementation work of the software engineer will
be replaced by automatic implementation; it significantly
increases safety and reliability of the control systems, while
its verification demand will be lower.
 Verification of the system will be based on its formal
specification; it brings the possibility to verify the project
during a specification process and final verification can be
automated or semi-automated: without human intervention.
 Total design time will be reduced, whilst safety and
reliability parameters will be preserved or improved with
lower costs.
 However, several issues remain unresolved regarding the
tool. As was aforementioned, the challenging problem with

urgent channels was solved by a special thread sync that
controls the synchronisation between channels. The minimal
delay between synchronization events rely on the HAL timer
period. This period can be in the range from 100 to 1000 µs;
and it can be too long for time-critical application. Thus
another approach must be found.
 Another issue deals with Committed Locations. The
Committed Location is a location (state), where no delay pass
is allowed. If a broadcast synchronisation is sent to different
locations (state) then it is difficult to ensure constant delay
pass among the states.
 Finally, the invariant conditions can be used in the future
version of this tool for time-checking behaviour of the model,
during real-time execution of the control system.

ACKNOWLEDGEMENT

 This work has been supported in part by the Grant Agency
of the Czech Republic GA1890030 (Implementation of
Timed Automata into real-time operating systems), Ministry
of Education, Youth and Sports of the Czech Republic
Research Intent MSM0021630529 (Intelligent systems in
automation), and Project 1M0567 (Centre for applied
cybernetics).

REFERENCES
[1] NTSB, “Annual Report to Congress“, National Transportation Safety

Board, NTSB, 1 Jul 2010. Web. 1Jul2010,
<http://www.ntsb.gov/Publictn/2010/SPC1001.pdf>.

[2] Leveson, N. “Computers and Risk”. Chapter 2 of “Safeware: System
Safety and Computers”, Addison-Wesley, 1995.

[3] Neumann, P., G., „Computer Related Risks“, Reading, Mass.:
Addison-Wesley, 1995.

[4] Petalidis, N, “Verification of a fieldbus scheduling protocol using
timed automata”, Computing and Informatics, Volume 28, Issue 5,
2009, Pages 655-672.

[5] Glässer U., Rastkar S., Vajihollahi M., “Modeling and validation of
aviation security“, Studies in Computational Intelligence, Volume 135,
2008, Pages 337-355.

[6] Kristoffersen, K. J., Pedersen, C., Andersen, H. R., “Runtime
verification of timed LTL using disjunctive normalized equation
systems“, Electronic Notes in Theoretical Computer Science,
Volume 89, Issue 2, October 2003, Pages 215-230.

[7] Zhou, M., He, F., Gu, M., Song, X., “ Translation-based model
checking for PLC programs“, Proceedings - International Computer
Software and Applications Conference Volume 1, 2009, Pages
553-562.

[8] Wardana, A.N.I., Folmer, J., Vogel-Heuser, B., “Automatic program
verification of continuous function chart based on model checking“,
IECON Proceedings (Industrial Electronics Conference), 2009, Pages
2422-2427.

[9] Kucera, P., Honzik, P., “Automation of Real- time Embedded System
Design“, The13th World Multi-Conference on Systemics, Cybernetics
and Informatics. WMSCI. Orlando: WMSCI, 2009, Pages 23-26.

[10] Larsen, K.G., Pettersson, P., Yi, W., ”UPPAAL in a Nutshell”.
Interantional Journal on Software Tools for Technology Transfer, Vol.
1, Number 1-2, 1998, Pages 134-152.

[11] Alur, R., Dill, D.L., ”A theory of timed automata”, Theoretical
Computer Science, Vol. 126, 1994, Pages 183-235.

[12] Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W. “Uppaal
- a Tool Suite for Automatic Verification of Real Time Systems”,
Proceedings of Workshop on Verification and Control of Hybrid
Systems III, number 1066 in Lecture Notes in Computer Science,
Springer Verlag, October 1995.

[13] Hune, T., Larsen, K.G., Pettersson, P., ”Guided Synthesis of Control
Programs Using UPPAAL”, Proceedings of the IEEE ICDCS
International Workshop on Distributed Systems Verification and
Validation, April 2000, Pages 15-22.

Process: JK_TEST

thread: sync

do
 {

mutex(J);
event(J);
mutex(K);
event(K);

 }
while (!terminated)

thread: inout

do {

mutex(J);
read(J);
mutex(K);
read(K);
mutex(Q);
write(Q);

} while (!terminated)

thread: state_machine

do {

case (state) {
switch STATE_1: CL_STATE_1();break;
switch STATE_0: CL_STATE_0();break;

}

} while (!terminated)

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

[14] Yovine, S., “A verification tool for real time systems” International
Journal on Software Tools for Technology, Vol 1, October 1997,
Pages 123-133.

[15] David, A., Behrmann, G., Larsen, K.G., Yi, W., “A tool Architecture
for the next generation of UPPAAL”, Technical report, Uppsala
University, Sweden, February 2003.

[16] Barr, M., “How to Choose a Real-Time Operating System“, Netrino
The Embedded Systems Experts, 1Jul 2010. Web. 1Jul2010, <
http://www.netrino.com/Embedded-Systems/How-To/RTOS-Selectio
n/>.

[17] IntervalZero, “ Hard Real-Time with IntervalZero RTX on the
Windows Platform“, IntervalZero, 10Jun2010. Web.10Jun2010, <
http://www.intervalzero.com/pdfs/RTXWhitePaper-6-09.pdf>.

[18] UPPAAL, “About”, Department of Information Technology at Uppsala
University, 1 Jul 2010. Web. 1Jul2010,
<http://www.it.uu.se/research/group/darts/uppaal/about.shtml>.

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

