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   Abstract— This paper contributes to the ongoing studies 
on Genetic Algorithms applied to problems of feature 
selection in fuzzy modeling. The optimization scheme of 
Genetic Algorithms to reduce the dimensionality of input 
space is legitimate as the problem itself is of 
combinatorial nature. Fuzzy clustering realized through 
Fuzzy C-Means (FCM) is carried out in the reduced 
input space and the information granules obtained 
therein are used to form a series of local models of the 
rule-based fuzzy model. Our ultimate objective is to form 
a way of an efficient reduction of the input space leading 
to the enhanced interpretability of the fuzzy models and 
investigate possibilities of optimization of fuzzy models 
with respect. The experimental studies highlighting the 
numerical aspects of the design comprise synthetic data 
and data sets publicly available at several data sites. 
 

Index Terms— interpretability, fuzzy models, feature 
reduction, genetic algorithm 
 

I. INTRODUCTION 
   Feature Reduction is indispensable in system modeling 
which otherwise being carried out for high-dimensional data 
make the development of the models highly inefficient and 
may lead to models that are of lower quality in particular 
when it comes to their generalization capabilities. For 
instance, in fuzzy rule-based models, the number of features 
determines the size of the condition part: the larger the 
number of features, the poorer readability and interpretability 
of the rules. In this scenario, choosing discriminative features 
become a key stage in constructing models. Feature selection 
can make the modeling more efficient and at the same time 
keep similar model accuracy. This is critical when faced with 
massive data.  
  The solution to the feature selection problems is not unique. 
According to the criteria used to assess the quality of the 
resulting (reduced) feature space, there are two general 
categories of methods, namely filters and wrappers. Using 
filters we consider some criterion that pertains to the 
statistical characteristics of the selected attributes and 
evaluate them with this respect. In contrast, when dealing 
with wrappers, we are concerned with the effectiveness of the 

features as a vehicle to carry out classification so in essence 
there is a mechanism which effectively evaluates the 
performance of the selected features with respect to their 
discriminatory capabilities.  
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  Admittedly, optimality of a feature subset can only be 
guaranteed by exhaustive evaluation. However, this is only 
feasible as long as the number of inputs is small. 
Alternatively, evolutionary methods can be used to search for 
a better performance subset of features in the feature space. 
GAs [1] are one of the effective vehicle and they have been 
successfully applied to optimize parameters in both the 
antecedent and consequent part of fuzzy rules. Also, GAs 
have been combined with other techniques like fuzzy 
clustering [2], [3], neural networks [4], [5], [6-7], Kalman 
filters [8], and others. Another population based search 
method is Particle Swarm Optimization (PSO) [9-11] in 
which individuals representing possible solutions carry out a 
collective search by exchanging their individual findings 
while taking into consideration their own local experience 
and evaluating their own performance through comparing a 
performance index value. 
  The architecture of the fuzzy model dwells upon a 
collection of information granules, which are formed in the 
input space. These information granules form a nonlinear 
transformation of the input space into the c-dimensional unit 
hypercube where any input x results in a vector of activation 
levels – membership grades of information granules A1, 
A2, …, Ac.  The choice of these fuzzy sets forms a suitable 
cognitive perspective at which the model is being formed.  
With the information granules we associate a local linear 
model fi(x, ai) = ai

Tx with ai being the vector of the 
parameters of the i-th local model. The aggregation of these 
models to form an overall input –output relationship is 
governed by the well-known relationship. 
  This paper discusses the use of GAs as a vehicle of 
searching a subset of features, which contains essential 
discriminatory information for fuzzy modeling. Fuzzy 
C-Means is adopted to form a set of information granules in 
the reduced space and then the associated local linear models 
are constructed. We envision a general flow of design as 
portrayed in Figure 1. In contrast to the standard 
development of fuzzy models, the essential phase present 
here deals with dimensionality reduction of input (feature) 
space.  
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Figure 1. An overall flow of design of the fuzzy model and its 

association with its underlying architecture and ensuing 
mechanisms of unsupervised and supervised learning 

 
The structure of this paper is as follows. Next section 
discusses in detail of the application of genetic algorithms to 
feature selection problems in fuzzy modeling. In section 
three, a brief description of fuzzy modeling employed here is 
provided. Next, in section four, our approach is tested on 
synthetic and real world data sets.  

II. GENETIC ALGORITHMS FOR FEATURE 
SELECTION 

  In order to deal with feature searching space’s explosion 
problem when the number of features is large, some feature 
dimensionality reduction approaches have been proposed. 
For many practical problems, the original data sets are 
obtained without professional analysis and this makes the 
noisy features’ existence. Our experiments show that only 
subset features may have the same or similar performance 
(accuracy) with using all the features on regression problems.  
  In this paper, we do the data preprocessing (feature 
selection) with evolutionary algorithms (EA) and genetic 
algorithms (GAs), in particular. EA has already been used for 
structural and parameter optimization in fuzzy modeling. 
Real-code GA is adopted as the technique to select essential 
features. In order to decide the number of subset features, we 
have done experiments from one feature to all features on 
some benchmark data sets. All the results show the same 
tendency that there exits a critical drop on output error and 
after which the error just fluctuates in a very small range. In 
this way, we can say that this point or its next point (or we can 
give a criterion to decide the point) is the number we would 
like. At the same time we also know which features are 
selected. At this point, the preprocessing has been completed. 
The subset features can be used as the input in the next step in 
fuzzy modeling. 
  Given a certain number of subset of features, the selection 
procedure is as follows. 

1. Randomly generate n population (chromosome) in 
which each element is a real number between 0 and 
1.  

2. For each chromosome, there is a corresponding 
subset of features. Build a fuzzy model by using 
each subset of features and evaluate the 
performance of this model with a certain criterion.  

3. Keep the subset with the best performance of the 
associated model and put it into next generation (by 
replacing the first chromosome in the population 
after crossover and mutation). Execute crossover 
and mutation given the crossover rate and mutation 
rate on all chromosomes.  

4. Go to step 2 until meeting stop condition. 
 
Finally we have a subset of features with its performance 
index under a certain number of features. Do this from one 
feature space to all feature space. Use a criterion to select a 
number of subset features, with which we realize fuzzy 
modeling.   

III. RULE-BASED FUZZY MODELS 
Rule-based models play a vital role in fuzzy modeling. A 
multi-input one-output fuzzy rule-based system, in which the 
experimental data set is given as (xk, yk), k = 1, 2, …, N,  is a 
system whose rule base is made up of a set of fuzzy rules of 
the form [82] 

Ri: If X1 is Ai, X2 is Bi, …, then y is fi   i = 1, 2, …, c 
where X1, X2 … are linguistic variables whose values are 
information granules (here we use fuzzy sets as information 
granules) Ai, Bi, …, fi, defined in the corresponding input and 
output spaces. The local linear models f(x, ai) are constructed 
in a straightforward way as the optimization problem can be 
handled analytically. With the squared error treated as the 
underlying performance index, the optimal coefficients of the 
models are derived in a standard fashion.  Let us rewrite the 
model in an explicit way by using the activation levels of the 
individual rules.  For the i-th local model we have 
 

fi(x,ai) =a0 +a1
ix1 +a2

i x2 + ...+ap
i xp = aj

ixj
j=1

p

∑ +a0 

(1) 
The aggregation of the local models is realized in the form 

yk

∧

= Aikfi (x k ,a i )
i=1

c

∑  

(2) 
where we use a shorthand lik notation  to denote  

Aik = ui
m (xk ) ui

m (xk )
i=1

c∑ , with being the 

ik-th element of the partition matrix.  
i ku (x )

  We optimize the structure of this fuzzy model by 
minimizing the squared error of the differences between the 
output of the model and the data.  
  Note higher order local models (say 2nd order polynomials) 
can be constructed in the same manner.  

 

IV. EXPERIMENTAL STUDIES 
  Through the series of experiments reported in this section, 
we quantify the performance of the model and analyze the 
resulting structure as well as draw several observations 
pertaining to the overall design process and discuss an impact 
of various parameters of the model on its performance. 
  The structural optimization of the model (selection of a 
subset of input variables) is realized through the use of the 
floating-point version of Genetic Algorithm (GA). The 
values of the crossover and mutation rates are equal to 0.8 
and 0.05, respectively. They are in line of the values being 
encountered in the literature.   

 
Synthetic data  
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  A two-dimensional synthetic data set is generated from the 
nonlinear relationship of the form f(x1, x2) = 0.8*sin(x1) + 
0.2*sin(2*x2) with the inputs assuming values in-between -4 
and 4 (x1) and 10 and 18 (x2). The training and testing data 
comprise 240 and 160 input-output data being uniformly 
distributed throughout the input space.  
  As we have only two input variables, there is no need to 
carry out genetic optimization to select a subset of input 
features. Fig. 2 shows that there is a clearly visible minimum 
of Q in a series of m (from 1.5 to 10 with a step of 0.1) by 
using two features when c is equal to four. 
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Figure 2. Performance index Q as a function of “m” – 

results shown for the training and testing data (c = 4) 
Machine Learning data- Auto MPG data set 
  We present the results for one Machine Learning data set by 
focusing on the performance of the fuzzy models being 
treated as functions of the granularity of the architecture (c) 
and the dimensionality (p) of the reduced feature (input) 
space.  
  In auto-MPG data set, the automobile’s fuel consumption 
expressed in miles per gallon is to be the output of the model. 
The dataset includes 392 input–output pairs (after removing 
incomplete instances) where the input space involves 6 
features. 10 fold cross-validation is adopted to quantify the 
performance achieved on the training and testing data. The 
results are visualized in Figure 3 where we show the values of 
the performance index for the training and testing data (both 
in terms of the mean value and standard deviation) for 
selected values of “m”. 

0 1 2 3 4 5 6 7 8
6

8

10

12

14

16

18

20

22

No. of features

Q

 

 

training data
testing data

 
 

Figure 3. Performance index (mean value and standard 
deviation) versus the dimensionality of the successively 

reduced feature space for c = 2, m = 1.5  
  It becomes apparent that the set of input variables can be 
significantly reduced by retaining only 2 or 3 inputs and this 
reduction is possible irrespective of the values of the 
fuzzification coefficient.  

  The results being reported in a tabular format in Table 1 
focus on the details of the feature space by showing subsets 
of input variables (features), which  form the reduced feature 
space; these relationships are reported for selected values of 
“m”. The notation used here shows combinations of inputs 
which appear most often (results contained in the first 
brackets) which is followed by frequency it appeared (the 
result in the second bracket). For instance, for p = 3 and m = 2, 
the reduced subset of inputs is (3, 4, 6) and in the 10 fold 
cross validation it appeared 10 times out of 10 times. We can 
observe that the subsets of features are stable (viz. they 
appear quite consistently over all repetitions of the 
experiments) and the increase of the dimensionality of the 
input space results in adding new features while retaining the 
smaller subset that has been already identified. With this 
regard, the growth of the input space results in the sequence 
of the inputs. 
p = 1: weight (4) 
p = 2: weight (4), model year (6) 
p = 3: weight (4), model year (6), horsepower (3) 
p = 4: weight (4), model year (6), horsepower (3), 
displacement (2) 
p = 5: weight (4), model year (6), horsepower (3), 
displacement (2), number of cylinders (1) 
  These subsets of inputs are intuitively appealing and reveal 
an interesting relationship between fuel consumption and the 
main characteristics of vehicles. If only a single input is to be 
considered then the weight comes into the play. For higher 
dimensionality of input spaces, the year of the model is to be 
considered and next horsepower and displacement start to 
appear in the realization of the model.  

 
 

V. CONCLUSIONS 
  The interpretability of the fuzzy model relates to the 

dimensionality of the input space and thus its reduction 
becomes one of the efficient ways of increasing the 
transparency of the model. The reduction problem is of 
combinatorial nature, in which we can resort ourselves to the 
methods of Evolutionary Computing and swarm optimization. 
The level of reduction varied from data to data and this could 
have been anticipated.  
In some cases it was shown that the reduced space led to the 
better performance of the models in terms of the resulting 
accuracy.  We also demonstrated that the optimization of the 
fuzzification coefficient impacts the quality of the model. 
Furthermore the fuzzification coefficient relates to the 
interpretability of the rules considering that the level overlap 
between information granules translates into the level of 
interaction between the rules. Further investigations can 
include nonlinear local models in which case we may 
envision the ability to use a lower number of rules (local 
models) by accommodating more sophisticated (nonlinear) 
local models. 
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