
 

 

 

  

Abstract— Controlling robot vehicles has become one of the 

most important applications in our automated world. Many 

control algorithms have been applied and used to accomplish 

the control task. Yet some of these robust algorithms still face 

stability and nonlinearity problems. In this paper we build a 

back propagation-based neural controller to do the control job. 

The said neural controller is trained according to the data 

collected from a controller that was pre-designed according to 

Lyapunov second theorem on stability. The neural controller is 

used to control a two-drive robot vehicle in such away to track a 

moving target in the plane and keep a fixed distance between 

the two. The trained neural controller is tested for shapes of 

target motion that were not seen during training.  

 
Index Terms— Neural Controllers, Back Propagation 

Neural Networks, Robust Control Systems, Nonlinear Control 

Systems. 

 

I. INTRODUCTION 

Back propagation neural networks [1] [2] [3] are known 

for their ability to recognize patterns. The concept of pattern 

recognition could be further expanded beyond the idea of 

identifying faces and images. It could be expanded to cover 

other important fields in our life. Control applications are 

examples of these important fields [4]. In this paper we build 

a neural system capable of imitating another system in such a 

way that both of the systems will do approximately the same 

job in response to the same input. The original system we are 

talking about is a controller designed according to Lyapunov 

second method [5] [6] of stability and will be referred to as 

Lyapunov controller. The plant to be controlled is a robot 

vehicle that tries to track a moving target in the plane. The 

control action is divided into two sub-actions. The first is to 

control the vehicle speed in such away to keep a fixed 

distance between the vehicle and the moving target.  The 

second is to govern the vehicle steering in order to keep the 

target tracking. These two actions could be thought of as 

independent or related actions. Consequently, we can have 

either one neural controller to control both steering and 

distance simultaneously, or we have two different controllers 

one for distance and the other for steering.    

 

II. BACK PROPAGATION NEURAL NETWORKS 

The basic structure of a back propagation neural network 

is shown in fig. 1. It simply consists of a group of 

mathematically identified modules called neurons shown in 

fig. 2. These neurons are distributed in layer forms and 

interconnected with each others via weights, which means

 

that each neuron receives a signal from the neurons in the 

previous layer, and each of those signals is multiplied by a 

separate weight value. The weighted inputs are summed, and 

passed through a limiting function which scales the output to 

a fixed range of values. The output of the limiter is then 

broadcast to all of the neurons in the next layer. So, to use the 

network to solve a problem, we apply the input values to the 

inputs of the first layer, allow the signals to propagate 

through the network, and read the output values. 

 

 
 

 

 Stimulation signal is applied to the input layer neurons 

and the response of the said layer propagates through the 

middle layers. Middle layers are referred to as hidden layers. 

Each connection between neurons has a unique weighting 

value. Fig. 2 shows the neuron structure. It simply receives 

input from the previous layer neurons. These inputs are 

weighted and summed to come up with a value to be applied 

to a nonlinear threshold function.  
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Fig. 1. General structure of a back propagation neural network. 

Fig. 2. Typical neuron structure in back propagation neural network.   
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The said nonlinear function is usually an exponential 

function that ranges between two levels: 0 and +1 and the 

output value is passed on to the neurons in the next layer [7].  

The connection weights in the neural network need to be 

tuned (adjusted) to obtain an overall response to certain 

stimulation in such a way to solve a particular problem. What 

makes each network different from another is the value of its 

weights. The process of adjusting the weights to come up 

with a response that is perfect or close to perfect is referred to 

as training. The training algorithm used in this paper is 

called back propagation (BP). It is an iterative process and 

based on collecting input/output data from a certain system 

we aim to imitate. The idea here is to adjust the weights to 

bring the response of the neural network close to the response 

of the original system, whenever the same stimulation is 

applied to the both.    

 At the beginning of the process of training, the weights 

are initialized to random values. The corresponding output is 

compared to the known-good output, and a mean-squared 

error signal is calculated. The error value is then propagated 

backwards through the network, and small changes are made 

to the weights in each layer. The weight changes are 

calculated to reduce the error signal for the case in question. 

The whole process is repeated for each of the example cases, 

then back to the first case again, and so on. The cycle is 

repeated until the overall error value drops below some 

pre-determined threshold. At this point we say that the 

network has learned the problem "well enough", yet the 

network will never exactly learn the ideal function, but 

rather it will asymptotically approach the ideal function. The 

mathematical derivation for the BP training algorithm is 

beyond the scope of this paper. 

 

III. TWO WHEEL ROBOT VEHICLE  

 The block diagram of the robot vehicle to be controlled is 

shown in fig. 3. The said vehicle is equipped with a necessary 

set of sensors that provides the controller with the necessary 

information about the vehicle location (x and y coordinates) 

and the vehicle heading. It is also equipped with radar that 

gives information about the target location. This information 

is used to calculate both distance and heading error signals. 
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 The original controller is the above mentioned Lyapunov 

controller.  The design details of the said controller are 

beyond the scope of this paper.  

 The data used to train the BP neural network are all 

collected from Lyapunov controller. The error signal vector 

and control signal vector are both the input/output data to be 

used in training process.  

 Fig. 4 shows the overall system that contains the robot 

vehicle as a plant and Lyapunov controller as a plant 

governor.  
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 The target is simulated by a cross in the plane. It takes its 

motion from two independent signal generators for x and y 

axes.  

 Fig. 5 shows the Lyapunov controlled vehicle tracking the 

moving target. 

 

 
 

 

IV. LYAPUNOV CONTROLLER DATA 

 Fig. 6 shows Lyapunov controller and sensor block 

diagrams. Both the distance and steering error signals are 

applied to the controller. The controller generates two output 

control signals, one for distance control and the other for 

steering control. It is important to mention that the design of 

Lyapunov controller is based on a second order reference 

model [8].  The main purpose of Lyapunov controller here is 

to build a control system that generates control signals in the 

same way a linear second order reference system generates. 

Accordingly, the cost function we try to minimize is the error 

difference between the second order controller and its 
Fig. 3. Robot vehicle block diagram. 

Fig. 4. Lyapunov controller for the robot vehicle. 

Fig. 5. The controlled robot vehicle tracks the moving target. 
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corresponding Lyapunov one. As a result, this method makes 

the nonlinear system behave like a linear system whose 

control parameters (like overshoot and steady state error) are 

design values to be set by the designer. 
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  Figs. 7-10 show Lyapunov controller data. These data are 

collected in response to a sinusoidal target motion in the 

plane. In this experiment we desire to make the vehicle track 

the target and keep three feet of distance between the two. 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 

 
 

 

 Figs. 11 and 12 show the overall vehicle response to the 

target motion. One can easily tell that Lyapunov controller 

just does the right control job. One can also see that the 

distance between the two is almost kept constants and close to 

3 feet.  

 

 

 
 

 

 

 

 
 

 

 

V. MIXED SIGNAL-BASED NEURAL CONTROLLER RESULTS 

 The data given in figs. 7-12 are used as training data for 

the BP neural controller. Distance and heading error signals 

are considered as stimulation data, and the corresponding 

distance and steering control signals are considered as 

response data. In this section, both of the distance and 

heading error signals would be treated as members of one 

stimulation vector. The said vector is refereed to as error 

vector. In the same sense, the distance and steering control 

signals are considered as members of the same response 

vector and referred to as control vector.  

The network structure is shown in fig. 13. It is a two layer 

network and this is one of many possible structures. In our 

design, we choose 15 TANSIG neurons for the first layer and 

one PURLIN neuron for the second layer. The first layer 

weight matrix is W115X2. W22X15 is the second layer matrix.  
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 W1 matrix dimensions give indication to the number of 

neurons and input variables applied to the network. 15 is the 

number of neurons, whereas 2 is the number of variables 

applied. B115X1 is the bias matrix for the first layer. 

Fig. 6. Robot vehicle Lyapunov controller 

 
Fig. 7. Lyapunov controller distance error signal. 

 

Fig. 8. Lyapunov controller distance control signal. 
 

 
Fig. 9. Lyapunov controller heading error signal. 

 

Fig. 10. Lyapunov controller heading control signal. 

 

Fig. 11. Robot vehicle tracking the moving target (x-axis tracking). 

 

Fig. 12. Robot vehicle tracking the moving target (y-axis tracking). 

 

Fig. 13. Back propagation neural controller for the robot vehicle.  
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  B21X1 is the second layer bias. The training epoch number 

is chosen to be 50. Increasing the epoch number may result in 

reducing the training mean square error.  

 The trained network replaces the original Lyapunov 

controller and the experiment is rerun. Fig. 14 shows the 

overall control system with the BP neural network as the 

system controller. Notice how the distance error and heading 

error signals are combined in one vector.  Also, the control 

signals for distance and heading are both combined in one 

control vector. 
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 Figs.  15-20 show the neural system performance when 

exposed to the same operational conditions that the original 

controller has witnessed.   

 

 

 
 

 

 

 
 

 

 

 

 
 

 

 

 

0 50 100 150 200
-10

0

10

Time (s)

T
a

rg
e

t 
m

o
ti

o
n

 a
n

d
  

  
v

e
h

ic
le

 t
ra

c
k

 s
ig

n
a

ls

x-target motion

x-vehicle motion

 
 

 

 

 

0 50 100 150 200
-5

0

5

Time (s)

T
a

rg
e

t 
m

o
ti

o
n

 a
n

d
  

  
v

e
h

ic
le

 t
ra

c
k

 s
ig

n
a

ls y-target motion

y-vehicle motion

 
 

 

VI. SEPARATE SIGNAL-BASED NEURAL CONTROLLER 

RESULTS 

 In this section, we break the neural controller introduced 

in the previous section into two different controllers. One for 

distance, and the other, for heading control. Each one of 

these two controllers is trained independently from the other. 

This gives us some flexibility in choosing different training 

parameters for the two controllers. The importance of this 

measure is represented by the ability of selecting certain 

range of training data for one controller and selecting 

another range for the other. Even the epoch number and 

number of neurons per layer of one of the controllers could be 

completely different from those of the other. We have trained 

the distance controller based on the data collected from the 

original controller while tracking the target that moves in a 

sinusoidal shape. On the other hand, the heading controller is 

trained based on the data collected from the original 

controller while tracking the target whose motion is of step 

shape. The reason we went with two different types of 

training data, is to ensure the maximum stability of the 

neural controller. Our experiments have shown that choosing 

any other set of training data did always cause an unstable 

behavior of the robot vehicle.  

 Figs. 21-26 show the performance of the separate signal 

controller. One can easily notice that the three systems 

(Lyapunov, separate, and mixed signal controllers) have 

almost the same response to the same excitation. It is obvious 

that the three systems show stable behavior for a sinusoidal 

target motion. The three controllers succeed in keeping a 

fixed distance of 3 feet between the vehicle and the target.  

Fig. 14. Back propagation neural controller for the robot vehicle. 

 

Fig. 16. BP neural controller distance control signal. 
 

 

Fig. 17. BP neural controller heading error signal. 

 

Fig. 18. BP neural controller heading control signal. 

 
Fig. 19. BP neural controller overall tracking signals (x-axis motion).  

 
Fig. 20. BP neural controller overall tracking signals (y-axis motion).  

Fig. 15. BP neural controller distance error signal. 
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VII. GENERALITY OF BP NEURAL CONTROLLERS 

 Generality of any neural system is represented by its ability 

to respond to the excitations that were not seen during 

training [6] [9]. In this section we test the BP mixed signal 

controller for special types of target motion. A mixture of 

step and sinusoidal Target motion is an example of these 

excitations that were not seen during training. The neural 

controller behavior is compared with that of Lyapunov 

controller (Figs. 27 and 28). It is obvious that Lyapunov 

controller shows a very poor performance. It completely 

diverges away from the target after few seconds of relative 

stability. On the other hand, we can see that the mixed signal 

neural controller retains its stability and tries to reduce the 

sudden error caused by the target   step   motion (figs.  29 and 

30). This   error reduction is affected by the robot vehicle 

moment of inertia. 
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VIII. CONCLUSIONS AND FUTURE WORK  

 Lyapunov controllers  could be substituted with back 

propagation neural controllers. The neural controllers show 

stable behavior and accurate tracking. Mixed signal 

Fig. 21. Separate signal BP neural controller distance error signal. 

Fig. 22. Separate signal BP neural controller distance control signal. 

Fig. 23. Separate signal BP neural controller heading error signal. 

Fig. 24. Separate signal BP neural controller heading control signal. 

Fig. 25. Separate signal BP neural controller x-axis tracking signals. 

Fig. 26. Separate signal BP neural controller y-axis tracking signals. 

 

Fig. 27. Lyapunov controller overall tracking signals (x-axis target step  
motion).  

 

Fig. 28. Lyapunov controller overall tracking signals (y-axis target sinusoidal 

motion).  

 

 

Fig. 29. BP mixed signal neural controller overall tracking signals (x-axis 

target step motion).  

 

Fig. 30. BP mixed signal neural controller overall tracking signals (y-axis 
target sinusoidal motion).  
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controllers could be also replaced with their separate signal 

counterparts. Signal separation enables us to use different 

sets of training parameters for the independent controllers. It 

also makes it easy for us to use different sets and 

combinations of training vectors. We still get the system to 

work and perform well.  

 The future work would highly concentrate on optimizing 

the length of training data chains and studying the effect of 

selecting certain parts of data other than using the whole data 

chain. This is to be done by eliminating the redundant parts 

of data and retain the part that conveys core and 

non-repetitive information.   This would result in reducing 

the training time and the hardware size needed to realize the 

network. Neural network optimization is considered as one of 

the most challenging research topics.  
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