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Abstract—Matrix-vector multiplication is a computationally 

intensive and kernel operation used in many image processing 
applications. This paper presents a preliminary Field 
Programmable Gate Array (FPGA) design and implementation 
of dense matrix-vector multiplication for use in an image 
processing application. The design is optimized for speed which 
is the main requirement for such applications. The design has 
been implemented on Virtex-4 FPGA using Xilinx ISE 9.2i and 
the performance is evaluated by computing the execution time 
on FPGA. FPGA implementation results demonstrate that it can 
provide a maximum throughput of 16970 frames per second 
utilizing only 14% Virtex-4 slices and 57% DSP48 blocks which 
is quite adequate for most real-time image processing 
applications. 
 

I. INTRODUCTION 
  Computationally intensive algorithms used in image and 
signal processing, multimedia, telecommunications, 
cryptography, networking and high performance computing 
(HPC) domains in general were first realized using software 
running on Digital Signal Processors (DSPs) or General 
Purpose Processors (GPPs). Significant speed–up in 
computation time can be achieved by assigning complex 
computation intensive tasks to hardware and by exploiting the 
parallelism in algorithms [1]. 

Recently, Field Programmable Gate Arrays (FPGAs) have 
emerged as a platform of choice for hardware implementation 
of computation intensive algorithms [1]–[13]. Especially, 
when the design at hand requires very high performance, 
designers can benefit from high density and high performance 
FPGAs instead of costly multicore Digital Signal Processing 
(DSP) systems. FPGAs enable a high degree of parallelism 
and can achieve orders of magnitude speedup over GPPs [7]. 
This is as a result of the increasing embedded resources on 
FPGA.  

FPGA have the benefits of the hardware speed and the 
software flexibility; also they have a price/performance ratio 
much more favorable than Application Specific Integrated 
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Circuits (ASICs). Since the major resources for implementing 
computation intensive algorithms are embedded on FPGA, 
latency associated with device communication has been 
eliminated. However, these embedded resources are limited 
hence it is important to use these resources efficiently.  

The last decade has seen ever increasing application areas 
for FPGAs. Modern FPGAs currently accommodate more 
than ten million gates with clock rates up to 600 MHz [13]. 
Example application areas include single chip replacements 
for old multichip technology designs, DSP, image processing, 
multimedia applications, high–speed communications and 
networking equipment such as routers and switches, the 
implementation of bus protocols such as Peripheral 
Component Interconnect (PCI), microprocessor glue logic, 
coprocessors and controllers [13]. 

Most of the computation intensive algorithms such as those 
used in image processing application involve dense or sparse 
matrix–vector multiplication as the kernel operation. It has 
been implemented using novel algorithms and technologies to 
achieve high performance [14]–[16]. In this paper, we present 
a preliminary design and FPGA implementation of dense 
matrix–vector multiplication for use in an image processing 
application. 

The remainder of this paper is organized as follows. 
Section II presents a brief overview of the FPGA technology. 
The mathematical formulation of the design is presented in 
section III. Section IV presents the hardware design and 
FPGA implementation results of the matrix–vector multiplier. 
Finally, concluding remarks and scope for future work are 
discussed in section V. 

 

II. FPGA TECHNOLOGY OVERVIEW 
FPGAs are digital integrated circuits (ICs) that belong to a 

family of programmable logic devices (PLDs). An FPGA chip 
includes Input Output Blocks (IOBs) and the core 
programmable fabric. The IOBs are located around the 
periphery of the chip, providing programmable I/O 
connections and support for various I/O standards. The core 
programmable fabric consists of programmable logic blocks 
also called Configurable Logic Blocks (CLBs) and 
programmable routing architectures [17].  

Many different architecture and programming technologies 
have evolved to provide better designs that make FPGAs 
economically viable and an attractive alternative to ASICs. 
Modern FPGAs have superior logic density, low chip cost and 
performance specifications comparable to low end 
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microprocessor. With multimillion programmable gates per 
chip, current FPGAs can be used to implement digital systems 
capable of operating at frequencies up to 600 MHz. In many 
cases, it is possible to implement an entire system using a 
single FPGA. This is very economical for specialized 
applications that do not require the performance of custom 
hardware [17]. 

Significant technological advancements have led to 
architectures that combine FPGA’s logic blocks and 
interconnect matrices, with one or more microprocessors, 
embedded Intellectual Property (IP) cores, memory blocks, 
DSP blocks integrated on a single chip to facilitate the 
implementation of Programmable System–on–a–Chip 
(PSoC) designs [18]–[19].  

Examples of PSoC are the Xilinx Virtex–II Pro, Virtex–4, 
Virtex–5 and Virtex–6 FPGA families, which include one or 
more hard-core PowerPC processors embedded along with 
the FPGA’s logic fabric [20]–[22]. Alternatively, soft 
processor cores that are implemented using part of the FPGA 
logic fabric are also available. Many soft processor cores are 
now available such as: Xilinx 32–bit MicroBlaze [23] and 
PicoBlaze, and the Altera Nios and the 32–bit Nios II 
processor [17].  

 

III. MATHEMATICAL FORMULATION 
Matrix–vector multiplication is computationally intensive 

and typical routine used in many image processing 
applications. It requires several multiply and accumulate 
(MAC) units. In DSPs, the overall performance is limited by 
the number of multiplications and additions that could be 
done in parallel. DSPs take several clock cycles to perform all 
the necessary MAC operations. However, modern FPGAs, on 
the other hand are equipped with large number of hardware 
resources embedded in the FPGA fabric itself such as DSP48 
blocks, multipliers, Block RAMs, etc [17]. It can provide 
higher and more efficient processing rates required by such 
applications if the algorithm is coded in a way to utilize these 
embedded resources efficiently. The objective of this paper is 
to realize a large and dense matrix–vector multiplier for an 
image processing application [24]. 

We represent the vector C as (C1, C2...Cm)T and vector G 
which represents the image data. According to the 
application, we want to multiply matrix S with vector C 
represented by the following equation 

                                    C=SG                                           (1) 
where, S is a Jacobian matrix. In the discrete form, it is 
required to find the unknown vector G from the known vector 
C, while S is treated as a constant matrix for simplicity. We 
can represent G by the following relationship 

                                     G=STC                                        (2) 
where, ST is the transpose of S. Replacing ST by A, 
mathematically; the above equation is approximated by the 
following relationship 

                                     G=AC                                         (3) 
The key idea here is to calculate G using (3). The dimension 
of the given matrices depends on the application, which, in 
this case is summarized in table 1. 

Table 1: Matrix Dimensions 

Matrix Symbol  Matrix Dimension 

A 1024×28 

C 28×1 

G 1024×1 

 

IV. HARDWARE DESIGN AND FPGA IMPLEMENTATION 
In this section, we present the details of the hardware 

design for implementing matrix–vector multiplication on 
FPGA. As can be seen from (3), the image processing 
algorithm reduces to matrix–vector multiplication. For 
efficient implementation and maximum speed-up, integer 
arithmetic is utilized. Since the floating–point arithmetic unit 
consumes more silicon real estate of FPGA and are slower as 
compared to integer arithmetic, we used integer arithmetic for 
the design.   

The design involves the computation of G = AC, where A is 
a matrix, C and G are vectors as summarized in table 1. It is 
required to calculate vector G. The matrix–vector 
multiplication is performed by broadcasting rows of matrix A 
and multiplying the corresponding column elements of vector 
C [25]. The sequence of operations involved in the 
computation of matrix–vector multiplication is as follows: 
1) Reading the individual row elements of matrix A and the 

individual column elements of vector C. 
2) Storing them in internal buffers row and column wise 

respectively. 
3) Multiplying the row and column elements. 
4) Accumulating the multiplier output and writing back the 

results to the output buffers. 
The input and output buffers are implemented on the 

FPGA. The matrix–vector multiplication typically involves 
MAC operations. The MAC unit consists of a multiplier and 
accumulator. The row and the column elements are supplied 
as the two inputs to the multiplier. The output of the multiplier 
is directly given to the accumulator as one of the inputs. The 
previous output of the accumulator is fed back as the second 
input. 

The MAC unit takes each element of the matrix A in row 
major format and each element of vector C, multiplies them 
and adds the result to the running total. This process is 
repeated till the last element of row A and column C. The 
values are fed in a sequential manner. If the reset signal is 
asserted high, the contents of registers A and C are cleared.  

After a delay, as determined by the implementation results, 
the first element of vector G is available at the serial output 
and this output is stored in on–chip memory as shown in 
figure 1. This operation is repeated and the process continues 
until all the rows of matrix A are processed. Finally, the 
output vector G is available with all the elements stored in the 
memory locations. A simplified diagram of the processing 
element for matrix–vector multiplication is shown in figure 1.  
Figure 2 presents the simulation result for matrix–vector 
multiplication using Xilinx edition ModelSim XE III 6.4b 
simulator. 

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I 
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010



 
 

 

 

X 

+ DFF 
 

R 
E 
G 

a28    ..…………………… a2     a1 

1 
 
2 
 
3 
 

. 

. 

. 

. 

. 

 

1024 

 

 

 

c1  ………………………      c27     c28 

       CLK  RST 

A C 

G 

RAM 

Figure 1:  Matrix-vector multiplication processing architecture 

 

 

Figure 2:  FPGA simulation results of matrix-vector multiplication  
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In order to evaluate the performance of FPGA–based 
implementation, the algorithm was coded in VHDL and 
implemented on Virtex–4 (xc4vlx200ff1513, speed grade: 
–11) family using Xilinx ISE 9.2i tool. The design was 
synthesized into Virtex–4 FPGA optimized for speed. The 
hardware resource utilization is summarized in table 2. 

As shown in table 2, 14% of the slices and 57% DSP48s are 
utilized leaving a plenty of room to implement more parallel 
processors on the same FPGA chip. The results listed in table 
2 were obtained using Xilinx ISE 9.2i tool. The optimization 
setting for ISE is for maximum clock speed. The total 
processing time using Virtex–4 FPGA is found to be 58.93 
µs; this is equivalent to a throughput of 16970 frames per 
second. The results indicate the feasibility of using FPGA for 
real–time high speed image processing applications using this 
matrix–vector multiplication. 

Table 2: FPGA Resource Utilization 

Resources Used/Available Utilization 

Slices 1,3010 out of  89088 14% 

Four-input  LUTs          9612 out of 178176    5% 

DSP48s 55 out of 96 57% 

Maximum Frequency  17.376 (MHz) - 

 

V. CONCLUSIONS AND FUTURE WORK 
Most of the algorithms which are used in DSP, image and 

video processing, computer graphics and vision and high 
performance supercomputing applications have matrix 
operation as the kernel operation. In this paper, we have 
presented a preliminary design of dense matrix–vector 
multiplication. The design has been implemented on a Xilinx 
Virtex–4 FPGA device and the performance is evaluated by 
computing its execution time on FPGA. Hardware 
implementation results demonstrate that it can provide a 
throughput of 16970 frames per second which is sufficient for 
many real–time image and video processing applications. 

Some recommendations to continue this work in future are 
outlined below: 
1) Implementing the architecture of matrix–vector 

multiplication using floating point arithmetic instead of 
integer. This will further enhance the design by making it 
suitable for other high performance computing 
applications, where the current trend is to use double 
precision floating point numbers. 

2) FPGA–based standalone module is presented to enhance 
the computation time of the matrix–vector multiplication. 
However, the communication time between the FPGA 
coprocessor and host PC is not taken into consideration. 
The introduction of parallel and/or pipelined coprocessor 
along with an embedded processor of FPGA can reduce 
the computational time depending on the level of 
parallelism introduced. 

3) Exploration of domain–specific Coarse Grained 
Reconfigurable Architecture (CGRA) for implementing 
computationally intensive matrix–vector multiplication. 
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