

Median Filter in Agriculture

A.Senthil Rajan, E. Ramaraj

Abstract: Noise is caused by malfunctioning pixels in
camera sensors, faulty memory locations in hardware, or
transmission in a noisy channel. Two common types of
impulse noise are the salt-and-pepper noise and the
random-valued noise. There are many works on the
restoration of images corrupted by impulse noise. The
median filter was once the most popular nonlinear filter for
removing impulse noise, because of its good denoising
power and computational efficiency. Open MP is an
extensive and powerful Application Programming
Interface (API) that supports much functionality required
for median filter. Median filter using OpenMP, the
corrupted insect pest in paddy field can be analyzed and
effective measures can take immediately to eradicate the
harmful insect.

Keywords: insect, median filter, noise, openMP

I. OPENMP

Open Multiprocessing (OpenMP) for the use of open
multithread median filter applications to take advantage of
multicore general-propose CPUs. Open MP is an extensive
and powerful Application Programming Interface (API)
that supports much functionality required for parallel
programming. More sophisticated applications could be
build on similar principle.

A key challenge in parallel computing has been the
lack of a broadly supported, simple to implement parallel
programming model. Software programmers subsequently
found it difficult to adapt applications to take advantage of
multicore hardware advances OpenMP was designed to
bridge this gap, providing an industry standard, parallel
Application Programming Interface API for shared
memory multiprocessors, including multicore processors.
Support for OpenMP is currently available in most modern
Fortran and C/C++ compilers as well as numerous
operating systems, including Microsoft Windows, Linux
and Apple Macintosh OS X. Version 1.0 of OpenMp.
OpenMp is certainly not the only way of achieving
parallelism on multicore systems. Other implementation
models, such as CLICL, Pthreads, and MPI[3][4] exist and
may be a good choice depending on the hardware,
application, and the preference of the programmer.

A. Senthil Rajan is the Head of the Department Master of
Computer Application, Jyoti Nivas College, Bangalore, India.
IEEE and IAENG Member.
(e-mail: agni_senthil@yahoo.com) .

E. Ramaraj is the Director, Computer Department, Alagappa
University, Karaikudi, India.

A. USING OPENMP

OpenMp works as a set of preprocessor directives,
run-time library routines, and environment variables
provided to the programmer, who instructs the complier
how a section of code can be multithreaded. FORTRAN,
the directives appear as comments, while in C/C++ they
are implemented as pragmas. In this way, compilers that do
not support the standard will process and potentially
optimize the codeMP API is independent of the
machine/operating system, properly written OpenMP code
for one platform can easily be recompiled and run on
another platform.

An open MP application always begins with a single
thread of control, called the master thread. Which exists
for the duration of the program? The set of variables
available to any particular thread is called the thread’s
execution context. During execution, the master thread
may encounter parallel regions, at which the master thread
will fork new threads, each with its own stack and
execution context. At the end of the parallel region, the
forked threads will terminate, and the master thread
continues execution. Nested parallelism, for which forked
threads further threads, is supported.

B. LOOP LEVEL PARALLELISM

Parallelism is added to an application by including
pragmas, which, in C++, have the following form:

#pragama omp < directive > [clauses]

There are numerous directives, but here we focus on
the parallel for directive, which offers a simple way to
achieve loop-level parallelism, often existing in signal and
image processing algorithms. The optional clauses modify
the behavior of the directive.

 The parallelization of loops is the most common use of
OpenMP.

C. VARIABLE SCOPE

Every thread has its own execution stack that contains
variables in the scope of the thread. When parallelizing
code, it is very important to identify which variables are
shared between the threads, and which are private. In the
parallelized sine wave example above, the variables
x,A,w, N were shared, while n was private, that is each
thread has its own n but shares all the other variables.

OpenMp provides explicit constructs to specify
shared and private variables in the execution stack. By
default, all variables are shared except

1) The loop index.
2) Variables local (declared within) the

loop.
3) Variables listed in private clauses.

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

Sharing the private variables using directive clauses.

#pragma omp parallel for

Private (n)

Shared(A, x, w)

for((int n=0; n< N; n++)

x[n] = A * sin (w *n);

copies of the variables in the private clause will be
placed in to each thread’s execution context

D. SCHEDULING

Earlier static scheduling, which divides work of the
loop evenly among the different threads. Static scheduling
is the default work sharing constructs and works well for
balanced loops that have a relatively constant cost per
iterations. However, some loops are unbalanced, with
some iterations taking much longer than others. For such
loops, static scheduling is not ideal, as fast threads will
complete their work early and block until slow threads
have completed their work. With OpenMP, it is possible to
specify the scheduling mechanism example using the static
and dynamic clause. In dynamic schedule, the numbers of
iterations for each thread can be vary depending on the
workload. When free, each thread requests more iteration
until loop is complete. Dynamic scheduling is more
flexible but does add additional overhead in coordinating
the distribution of work amongst the threads.

By default, the system will decide how many threads
to fork during run time. The number of spawned threads
can be retrieved using

Integer omp_get_num_threads(void).

In addition, the number of threads may be set using
omp_set_num_threads (integer)

II. MEDIAN FILTERING

Median filtering is a commonly applied nonlinear
filtering technique that is particularly useful in removing
speckle and salt-and-pepper noise [1][2]. Simply put, an
image neighborhood surrounding each pixel is defined,
and the median value of this neighborhood is calculated
and is used to replace the original pixel in the output
image.

[,] ([,], , [,])
med origI x y median I i j i j nbor x y  (1)

In this example, a square neighborhood around each
pixel, defined using the half width of the neighborhood,
i.e., for a half width of n, the number of pixels in the

neighborhood would be 2(2 1)n  . At each pixel, the
functions GetNbors retrieve the neighbors; neighbors
some that lies outside the image domain are assigned to be
that of the nearest pixel within the image boundary. These
neighbors are then sorted using the shear sort or quick sort
in C++ program and the median selected.

On a 512 X 512 insect image, and using a quad-core
2.4 GHz CPU, the result of median using half width of

three, i.e., the number of neighbors= 2(2*3 1) 49 

III. SYSTEM EVALUATION

The experiment was carried out on a Intel core TM
core Processor Q6600 2.40 GHZ system with 2 GB shared
RAM, 500GB SATA hard disk , and double D-link
1Gbps network adapters. The normal application is a
PC-based Linux router function to forward packets at
above 50Mbps. The performance of this application is
maintained throughout the whole experiment. We use the
image data sets which are replayed at controlled
transmission rate.

The system needs to capture the incoming image from
the network adapter and analyze these images or compare
the image without any noise (Processing speed), and the
speed of incoming images (network speed), the system
may be able to process all images, or have to drop some
images. If the processing speed is slower than the network
speed (this may happen when the system is under DDoS
attack), the system may drop some images thus may lose
some attacking information, which will increase false
positive and negative rate.

 Figure 1 Error rate by different number of course

False positive and negative rate by different number

of cores used

The figure1 shows the error rate when different
numbers of cores are used when the transmission interval
is 0.001 second. The trend in this figure also shows when
the parallelized in to different cores, the error rates can be
significantly reduced. As a large portion of images are
dropped with errors in a single core scenario, the false
negative rate is high as 54.3 % and false positive rate is
high as 5.49%. If more cores are utilized, the images with
errors are reduced. For examples, a 4 core scenario, the
false negative rate can be reduced to 11.8% and the false
positive rate can be reduced to 1.09%

Parallelized code for median filtering using a half
width of three

int x y, halfwidth, nborSize;

PixelType nbors[MAX_NBOR_SIZE];

halfWidth = 3;

nborSize = 2*halfwidth +1;

nborSize *=nborsize;

#pragma omp parallel for

\Shared(inputImage,outputImage,structuring
Element, width, height)\

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

Private(x,y,nbors)firstprivate(halfwidth,nborsize)
schedule (static)

for (y=0; y<height; y++){

for (x=0; x<width; x++){

GetNbors(inputImage,x,y,width,height,halfwidth,nbors);

 Sort(&nbors[0],&nbors[nborSize]);

int index = x + y * width;

outputImage[index]= nbors[nborSize/2];

}

)

Parallel algorithm using
Multiprogramming

0

50

100

150

200

250

300

1 5 9 13 17 21 25 29

Structuring Element Size
(Pixels)

T
im

e
(m

s)

Single threaded

Multi threaded

Figure 2: Parallel algorithm using multi programming

IV. PADDY PEST

Paddy is the most staple crop in many countries and
many insect pests cause great damage to this crop by
attacking the roots, stem, leaves and even the young grains
when they are in milk stage.

 As yellow stem borer (Tryporyza incertulas),
swarming caterpillar (Spodoptera mauritia), Pamripoka
(Dicladispa armigera) etc. are important major pests of
paddy. As green bug (Schizaphis graminum) becomes
minor pest of paddy in some exceptional cases.

Stem borer and leaf folder are major insects whose are
affecting paddy productivity by attacking the crop at
vegetative and reproductive stage. In some cases, impact
of stem borer and leaf folder attack is so severe that it
reduces paddy yield by 35-40 per cent. Farmers are
applying unidentified and sub-standard chemicals, which
do not control stem borer and leaf folder very effectively.
Application of recommended doses of insecticides for
control of stem borer and leaf folder will increase the
productivity and returns from paddy.

Methods

1. Getting the image of the affected paddy crops or
getting the image of the insects using the cell phones
and sent to the administrator analyzer.

2. The administrator receives the image and removes the
noise portion of the image using median filter Open
MP.

3. Analyze the image using the image comparer and with
database.

4. Extract the solution to solve the problem.

5. Sending back the solution to the user.

6. Get back the feedback from the user for every ten days.

The following table shows the successful results for one
acre.

 TABLE 1: Results for one acre

Paddy
Type

Amount
Spent for

cultivation
in (Rs.)

Total Amount
gain by

traditional

Total Amount
gain by
Median
Filters

ADT 45 12,000 18,900 28,000
Culture 13,000 27,000 38,000
IR20 12,500 14,700 27,000

Deluxe
Poni

15,500 30,000 45,000

V. CONCLUSION

Open MP is an extensive and powerful application
programming interface (API) that supports much
functionality required for median filter. Multicore
processor using the parallel algorithm, median filter filters
the noise efficiently with less processing time. Median
filter using OpenMP, the corrupted insect pest in paddy
field can be analyzed and effective measures can take
immediately to eradicate the harmful insect.

REFERENCES

[1]. Dr. Ramaraj and A. Senthiil rajan “High density
impulse noise removal in color images using
ROIMCAR weighted median filter.
IAENG,March.,vol2,pp.1481-1485,2010.

[2]. Dr. Ramaraj and A. Senthiil Rajan,” Using multi-core
processor to support network parallel image
processing application”,”IEEE signal processing,
May.,vol1, pp232-235,2009

[3]. G.Blake,R.G.Deslinski,and T.Mudge,”A Survey of
multicore processors; Areview of their common
attributes,”IEEE Signal Processing
Mag.,vol.26,n0.6,pp.26-37,2009.

[4]. H.Kim and R.Bond,” Multicore software
technologies: Asurvey,”IEEE Singnal Processing
May., vol26,n0.6,pp.80-89,2009.

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

[5]. R.Chandra,l.Dagum,D.Kohr,D.Maydan,J.McDonald
, and R.Menon,Parallel Programming in OpenMp, 1st
ed. San Mateo,CA;Morgan Kaufmann,2001.

[6]. C.Johnson and J.Welser, “Future Processors:Flexible
and Modular”, Proceeding of 3rd IEEE/ACM/IFIP
International Conference on Hardware/Software
Codesign and System Synthesis, pp.4-6,2005

[7]. H.Sutter and J.Larus,”software and Concurrency
Revolution”, ACM Queue, vol.3, no 7, pp.54-62,
2005.

[8]. O.Villa, D.P.Scarpazza and F.Petrini, “Accelerating
Real-Time String Searching with Multi-core
Processors “.IEEE Computer, Vol.41, no.4,oo.42-50,
2008.

[9]. S.Dhamaparikar,P.Krishnamurthy, T.S.Sproull,
J.W.Lockwood, “Deep packet Inspection Using
Parallel Bloom Filters “ , IEEE Micro, vol.24, no. 1 ,
pp.52-61, 2004.

[10]. H.Liu, .Zheng,B.Liu,X.Zhangand Y.Liu, “A
Memory-Efficient Parallel String Matching
Architecture for High-Speed Intrusion Detection”,
IEEE Jouranl on Selected Areas in Communications,
vol.24, no.10,pp.1793-1804, 2006.

[11]. C. L. Hayes and Y.Luo, ” DIPICO: A High Speed
Deep Packed Inspection Engine Using Compact
Automata ” , Proceedings of ACM/IEEE ANCS “07,
pp. 195-203, 2007.

[12]. Preap,V ,GC Jahn, K.Hin,N.Siheng, 2005. Fish and
rice management system to enable agricultural
diversification. Paper presented at the 5th Asia Pacific
Congress of Entomology, 18-21 October 2005, Jeju,
Korea.

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

