
 

 

 

  

Abstract— P300 evoked potential is an 

electroencephalographic (EEG) signal obtained at the 

central-parietal region of the brain in response to rare or 

unexpected events. In this work, an experiment on the detection 
of a P-300 rhythm for potential applications on brain computer 

interfaces (BCI) using an Adaptive Neuro Fuzzy algorithm 
(ANFIS) is presented. The P300 evoked potential is obtained 

from visual stimuli followed by a motor response from the 
subject. The EEG signals are obtained with a 14 electrodes 
Emotiv EPOC headset. Preprocessing of the signals includes 

denoising and blind source separation using an Independent 

Component Analysis algorithm. The P300 rhythm is detected 

using the discrete wavelet transform (DWT) applied on the 
preprocessed signal as a feature extractor, and further entered 
to the ANFIS system. Experimental results are presented. 

 

 
Index Terms—ANFIS, brain computer interface, P-300 

signal, wavelet. 

I. INTRODUCTION 

Brain Computer Interfaces (BCIs) are systems which allow 

people to control computer applications using their brain 

signals. In the last years, there has been a growing interest in 

the research community on signal processing techniques 

oriented to solve the multiple challenges involved in BCI 

applications [1-3]. An important motivation to develop BCI 

systems, among some others, would be to allow an individual 
with motor disabilities to have control over specialized 

devices such as computers, speech synthesizers, assistive 

appliances or neural prostheses. A dramatic relevance arises 

when thinking about patients with severe motor disabilities 

such as locked-in syndrome, which can be caused by 

amyotrophic lateral sclerosis, high-level spinal cord injury or 
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brain stem stroke. In its most severe form people are not able 

to move any limb. BCIs would increase an individual’s 

independence, leading to an improved quality of life and 

reduced social costs. Among the possible brain monitoring 

methods for BCI purposes, the EEG constitutes a suitable 

alternative because of its good time resolution, relative 

simplicity and noninvasiveness when compared to other 

methods such as functional magnetic resonance imaging, 
positron emission tomography (PET), 

magnetoencephalography or electrocorticogram systems.  

     There are several signals which can be extracted from the 

EEG in order to develop BCI systems, including the slow 

cortical potential [4], µ and β rhythms [5,6], motor imagery 

[7], static-state visually evoked potentials [8,9], or P300 

evoked potentials [10-12]. P300 evoked potentials occur with 

latency around 300 miliseconds in response to target stimuli 

that occur unexpectedly. In a P300 controlled experiment, 

subjects are usually instructed to respond in a specific way to 

some stimuli, which can be auditory, visual, or 

somatosensory. P300 signals come from the central-parietal 
region of the brain and can be found more or less throughout 

the EEG on a number of channels. The P300 is an important 

signature of cognitive processes such as attention and 

working memory and an important clue in the field of 

neurology to study mental disorders and other psychological 

disfunctionalities [13]. 

     In this work, an experiment on P-300 rhythm detection 

using wavelet-based feature extraction, and an ANFIS 

algorithm is presented. The experiment has been designed in 

such a way that the P300 signals are generated when the 

subject is exposed to some visual stimuli, consisting of a 

sequential group of slides with a landscape background. 

Images of a ship are inserted using a controlled non-uniform 

sequence, and the subject is asked to press a button when the 

ship unexpectedly appears.  The EEG signals are 

preprocessed using an Independent Component Analysis 

(ICA) algorithm, and the P300 is located in a time-frequency 

plane using the Discrete Wavelet Transform (DWT) with a 

sub-band coding scheme. The rest of the paper is organized as 

follows: Section 2 presents the theory associated to the 

wavelet sub-band coding algorithm. Section 3 describes 

Independent Component Analysis (ICA) as part of the 

pre-processing stage. Section 4 reports the evoked potential 

experiment and the proposed method on P300 signal 

detection. Section 5 describes the ANFIS model and its 

application to the EEG signals. Section 6 presents obtained 

results, and section 7 presents some concluding remarks, 

perspectives, and future direction of this research oriented to 

the implementation of a BCI system. 
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II. DISCRETE WAVELET TRANSFORM (DWT) 

 
      The Discrete Wavelet Transform (DWT) is a 

transformation that can be used to analyze the temporal and 

spectral properties of non-stationary signals. The DWT is 

defined by the following equation [14]: 
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     The set of functions )(, nkjψ is referred to as the family of 

wavelets derived from )(nψ , which is a time function with 

finite energy and fast decay called the mother wavelet. The 

basis of the wavelet space corresponds then, to the 

orthonormal functions obtained from the mother wavelet 

after scale and translation operations. The definition indicates 

the projection of the input signal into the wavelet space 

through the inner product, then, the function ����  can be 

represented in the form: 
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where �	�
�  are the wavelet coefficients at level j. The 

coefficients at different levels can be obtained through the 

projection of the signal into the wavelets family as: 
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    The DWT analysis can be performed using a fast, 

pyramidal algorithm described in terms of multi-rate filter 

banks. The DWT can be viewed as a filter bank with octave 

spacing between filters. Each sub-band contains half the 

samples of the neighboring higher frequency sub-band. In the 

pyramidal algorithm the signal is analyzed at different 

frequency bands with different resolution by decomposing 

the signal into a coarse approximation and detail information. 
The coarse approximation is then further decomposed using 

the same wavelet decomposition step. This is achieved by 

successive high-pass and low-pass filtering of the time signal, 

and a down-sampling by two as defined by the following 

equations [15]: 
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     Figure 1 shows a two-level filter bank. Signals aj(k), and 

dj(k) are known as approximation and detail coefficients, 

respectively. This process may be executed iteratively 

forming a wavelet decomposition tree up to any desired 

resolution level. In this work the analysis was carried out up 

to the 11 decomposition level (16 second windows with 

sampling frequency of 128 sps) applied on the signals 

separated from the ICA process described in the next section. 

 

Fig. 1. Two-level wavelet filter bank in the sub-band coding 

algorithm 

      

III. INDEPENDENT COMPONENT ANALYSIS (ICA) FOR THE 

PREPROCESSING OF THE EEG SIGNALS 

 

      Independent Component Analysis (ICA), an approach to 

the problem known as Blind Source Separation (BSS), is a 

widely used method for separation of mixed signals [16]. The 

signals )(txi are assumed to be the result of linear 

combinations of the independent sources, as expressed in 

equation 7. 

 

     
)()()()( 221 tsatsatsatx niniiii L++= ,                   (7) 

or in matrix form: 

 

     Asx =  ,                       (8) 
where A is a matrix containing mixing parameters and S the 

source signals. The goal of ICA is to calculate the original 

source signals from the mixture by estimating a de-mixing 

matrix U that gives: 

 

     Uxs =
)

 .                                                            (9) 

 

     This method is called blind, because little information is 

available, i.e. both the mixing matrix A and the matrix 

containing the sources S are unknown. The de-mixing matrix 

U is found by optimizing a cost function. Several different 

cost functions can be used for performing ICA, e.g. kurtosis, 

negentropy, etc., therefore, different methods exist to estimate 

U. For that purpose the source signals are assumed to be 

non-gaussian and statistically independent. The requirement 

of non-gaussianity stems from the fact that ICA relies on 

higher order statistics to separate the variables, and higher 

order statistics of Gaussian signals are zero [17].  

     EEG consists of measurements of a set of N electric 

potential differences between pairs of scalp electrodes. Then 

the N-dimensional set of recorded signals can be viewed as 

one realization of a random vector process. ICA consists in 

looking for an overdetermined (N × P) mixing matrix A 

(where P is smaller than or equal to N ) and a P-dimensional 
source vector process whose components are the most 

statistically independent as possible. In the case of the P300 

experiment described in this paper, ICA is applied with two 

objectives; denoising the EEG signal in order to enhance the 

signal to noise ratio of the P-300, and separating the evoked 

potential from some artifacts, like myoelectric signals derived 

from eye-blinking, breathing, or head motion. 
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IV. EXPERIMENTAL SETUP AND PROPOSED METHOD FOR 

P-300 SIGNAL DETECTION 

 

      In this work the EPOC headset, recently released by the 

Emotiv Company, has been used [18]. This headset consists 

of 14 data-collecting electrodes and 2 reference electrodes, 

located and labeled according to the international 10-20 

system [19]. Following the international standard, the 

available locations are: AF3, F7, F3, FC5, T7, P7, O1, O2, P8, 

T8, FC6, F4, F8 and AF4. The EEG signals are transmitted 

wirelessly in the frequency of 2.4 GHz to a laptop computer. 

     This experiment consists of presenting a non-persistent 

image to cause a P300 response from the user. The block 

diagram of the system to evoke and capture P300 signals, and 

a picture of the described setup are shown in Figures 2 and 3, 

respectively. The subject is resting in a comfortably position 

during the testing. A simple graphical application shows in 

the screen a starship attacking a neighborhood in a fixed time 

sequence not known by the subject, as represented in Table I.  

 

 

 

Stimulus
application

Subject using
EEG headset

Capture
System

Serial
Comm

Bluetooth

 
 

Fig. 2. Block diagram of the experimental setup used during 
the P300 signals detection 

 

 

 
 

Fig. 3. Headset and stimulus used for the experiment on 

P300 signal detection. 

 

     Recognition of the ship by the subject, when it suddenly 

appears in the screen, is expected to generate a P300 evoked 

potential in the brain central zone. The serial port is used for 

sending time markers to the Emotive testbench, in synchrony 

with the moments when the ship appears in the screen. The 

Testbench application provided by Emotiv System Co., is 

used to capture raw data from the 14 electrodes, as shown in 

Figure 8. The operations proposed to detect the P300 rhythm 
are summarized in the block diagram of Figure 4. First, a 

band-pass filter selects the required frequency components 

and cancels the DC value. Then, ICA blind source separation 

is applied with the purpose of denoising the EEG signal and 

separating the evoked potential from artifacts, like 

myoelectric signals derived from eye-blinking, breathing, or 

head motion, as well as cardiac signals. 

 

Table I. Event time sequence examples. 

 
Event Time difference Time(ms) 

1 4000 4000 

2 3000 7000 

3 4000 11000 

4 3000 14000 

5 5500 19500 

6 3000 22500 

7 4000 26500 

8 4500 31000 

 

The P300 is further located in time and scale through a 

wavelet sub-band coding scheme. This information is further 

fed into an ANFIS system, as described in the next section. 

 

 
 

Fig. 4. Block diagram of the proposed system for 

ANFIS-based P-300 signal detection. 

V. ADAPTIVE NEURO FUZZY INFERENCE SYSTEM AS 

CLASSIFIER  

 
     Adaptive Neuro Fuzzy Inference Systems (ANFIS) 

combine the learning capabilities of neural networks with the 

approximate reasoning of fuzzy inference algorithms. ANFIS 

uses a hybrid learning algorithm to identify the membership 

function parameters of Takagi-Sugeno type fuzzy inference 

systems. In this work, the ANFIS model included in the 

MATLAB toolbox has been used for experimentation 

purposes. A combination of least-squares and 

backpropagation gradient descent methods is used for training 

the FIS membership function parameters to model a given set 

of input/output data. ANFIS systems have been recently used 
for optimization, modeling, prediction, and signal detection, 

among others [20-23]. In this paper, the ANFIS system is 

proposed to be used for the detection of the P-300 rhythm in 

an EEG signal, for BCI applications. Frequency bands with 

the most significant energy content, in the range of the P-300 

signal, are selected from the wavelet decomposition, as the 

input for the ANFIS system. These bands are 8-4, 4-2, 2-1, 

and 1-0.5 Hertz, which are considered as the linguistic 

variables B1, B2, B3 and B4, respectively. The ANFIS 

structure is depicted in Figure 5. Figure 6 shows the input 

Gaussian membership functions for input B1. The ANFIS is 

used to map the P300 signal composition to a triangle pulse 
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occurring simultaneously during the training stage. Figure 7 

shows the ANFIS output following triangle pulses after a 400 

epochs training. A trained ANFIS is further used during a 

verification stage, using the EEG signals obtained from 8 test 

subjects performing  the same experiment with 10 trials of 16 

seconds each. 

 

Fig. 5. ANFIS structure. 

 

 
Fig. 6. Gaussian membership functions corresponding to the 

input B1 

 

 

 
 

Fig. 7. ANFIS output and triangle pulses. 

VI. RESULTS 

 
     The captured signals were analyzed using a time window 

of 16 seconds, with a sampling frequency of 128 samples per 

second. Figure 8 shows the 14 electrodes raw signals 

obtained from the emotive headset. As described before, a 

band-pass filtering stage is applied to the raw data. Figure 9 

shows information from the electrodes T8, FC6, F4, F8 and 

AF4 signals, after the filter is applied. 

 

 
Fig. 8. Raw data from the EEG headset. 

 
Fig. 9. Prefiltered EEG signals. 

 

 
     The P300 signals are predominant in the brain central 

area, thus the P300 is typically measured from the Pz, Cz, Fz 

electrodes. The Emotive headset does not include specific 

electrodes over the brain central area, however, the headset 

can be positioned in such a way that the electrodes AF3, 

AF4, F3, and F4, are able to collect the EEG signals relevant 

to the P300 experiment described in this work. The EEG 

signals obtained from the 14 electrodes are then processed 

through the ICA algorithm. The 14 channels are shown in 

Fig. 10. Typically, the P300 signals are embedded in 

artifacts, and they appear in two different channels; in this 
case channel 2 and 3. After the blind source separation 

applied to electrodes AF3, AF4, F3, and F4 signals, it can be 

noticed that P300 signals are visible on channel 2, while the 

others separated channels show some artifacts such as the 

myoelectric signal from blinking, which is predominant in 

AF3 and AF4 electrodes, cardiac rhythm, and system noise. 

The signals obtained after the ICA separation, are shown in 

Figure 11.  

 

 
Fig. 10. 14 channels entered to the ICA algorithm. 

 

 
Fig. 11. Separated signals obtained from the ICA algorithm. 

 

 

     A time-scale analysis in the wavelet domain was then 

performed in order to locate the energy peaks corresponding 

to the P300 rhythm. DWT sub-band coding with 11 

decomposition levels, using a Daubechies-4 wavelet was 

applied to channel 2, as shown in Fig. 12. It can be seen that 

the P300 peaks are easily distinguished in the wavelet 

domain. The energy peaks in the scalogram of Fig. 12, are 

located in the bands 0.5-1Hz and 1-2Hz, as expected. It was 
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noted that P300 rhythms were distinguished better in the 

EEG signals corresponding to the 8 first events in the 

experiment. After that time lapse, the experiment became 

tedious for most of the users, with the consequence of 

generating low-level P300 signals, undetectable in the 

experiments. Figure 13 shows a typical obtained signal, 

corresponding to the detection of P300 rhythms, as the 

output of the ANFIS system. Table II summarizes the total 

detection accuracy obtained with the proposed system. 

 

 

 
 

Fig. 12. Scalogram of signal from channel 2. 

 

 

 
 

Fig. 13. ANFIS output showing detection of P-300 events 

 

 

Table II. Results obtained on the P300 rhythm detection. 

 
Detected 85% 

Undetected 15% 

Detected taking account false positive events 60% 

 

VII. CONCLUDING REMARKS 

This paper presented an experiment on P300-rhythm 

detection based on ICA-based blind source separation, 

wavelet analysis, and an ANFIS model. The results presented 

in this paper are part of a project with the ultimate goal of 

designing and developing brain computer interface systems. 

These experiments support the feasibility to detect P300 

events using the Emotiv headset, through an ANFIS 

approach, which can be used as information control for 

external devices in BCI applications. The proposed method is 

suitable for integration into a brain-computer interface, under 

a proper control paradigm. DWT coefficients could be used 

further as input to a variety of classifiers using different 

techniques, such as distance-based, k-nearest neighbor or 

Support Vector Machines (SVM).  
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