
 
 

 

 
Abstract— Hydrocracking technology plays an important 

role in petroleum refining industry. This work developed an 
artificial neural network (ANN) model to estimate the catalyst 
activity based on the weighted average bed temperature 
(WABT) and the normalized time of operation (BPP) in the 
hydrocracker reactor. ANN was designed to define the relations 
between WABT and BPP, and the catalyst activity was 
subsequently calculated using the experimental data of the 
WABT and a theoretical equation for activity in terms of 
WABT. In three different cycles of catalyst operation, a 
perceptron ANN model with two hidden layers was 
consequently used to estimate WABT and catalyst activity. In 
conclusion, an empirical model was developed and the results 
demonstrated good agreement between experimental data and 
ANN predictions. 
 

Index Terms— Catalyst activity, hydrocracker reactor, 
weighted average bed temperature (WABT), normalized time 
(BBP), perceptron ANN model.  
 

I. INTRODUCTION 

 Artificial neural networks (ANN) are extensively used in 
different aspects of science and technology. An ANN can be 
considered to be a black box that accepts a series of input 
data and produces one or more outputs. The transformation 
of the data is done through several basic processing units, 
called artificial neurons, which perform identical tasks. The 
neurons are connected into networks through synapses or 
connecting links. The programs carried out by ANNs may 
be quite varied; one of the most important programs is 
modeling—namely, the search for an analytical function or 
procedure that gives a specified n-variable output for any m-
variable input. The ANN does not require the knowledge of 
mathematical functions and relations like any standard 
modeling techniques: The nonlinearity of a single unit 
transformation and a sufficiently large number of variable 
parameters (e.g., weights and biases) ensure enough 
“freedom” to adapt the neural network to any relation 
between input and output data [1].  

In modeling a chemical process, all phenomena present in 
the process have to be identified and properly described. 
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The mathematical description of the process usually 
involves conservation laws, and processes are expressed 
using a set of deterministic (algebraic, differential, or 
integral) equations. However, a neural model includes two 
general methods in modeling: a global neural model 
(GNM), in which the whole model is represented with a 
single ANN, and a hybrid neural model (HNM), in which 
only the unknown part of the model is replaced by the ANN. 
Since its introduction in the early 1990s [2].  

Hydrocracking technology is an important conversion 
technology for producing high-value naphtha or middle-
distillate products from a wide range of a refinery’s heavy 
feedstocks. Various technologies, such as fixed-bed, 
moving-bed, or ebullated-bed reactors, are available for 
hydroprocessing heavy oil fractions. The major selection 
criterion between each type of technology is based on the 
catalyst deactivation rate [3]. Among all the commercially 
proven technologies for heavy fraction hydroprocessing, 
those using fixed-bed reactors in a series loaded with 
catalysts with different functionalities are the most 
commonly used process configurations [4]. The main 
disadvantage of fixed-bed reactors is the loss of catalyst 
activity over time as a result of premature catalyst 
deactivation, which drastically reduces the length of 
operation [3]. 

In the current work, an HNM was used to model the catalyst 
activity of the hydrocracker reactor. All of the experimental 
results and correlations were obtained under limited 
conditions in the hydrocracker unit, making it very difficult 
to extrapolate the correlations to a wide range of operating 
conditions. Hence, it is important to develop a general 
correlation for predicting temperature increases under 
different operating conditions. 

 

II. MATHEMATICAL MODEL FOR CATALYST DEACTIVATION 

A good catalyst is defined according to three characteristics: 
activity, selectivity, and life. Catalysts have a highly active 
surface, and a layer of the reactants are adsorbed on the 
active sites that lead to decreases in the activation energy of 
the reaction or to increases in the reaction rate. The 
efficiency of entire catalytic systems decreases gradually, 
making it necessary to monitor and control the catalyst 
activity in order to determine when catalyst regeneration 
and optimal conditions occur.  

Two aspects of catalyst are used to observe catalyst activity: 
surface activity and reactor pressure drop. The activity of 
catalyst particles at each time is given by: 
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(1) 
catalyst fresh  withrate reaction

catalyst  withrate reaction
activity  

Kinetics can determine the key properties of a 
hydrocracking catalyst—namely, initial activity, selectivity, 
stability, and product quality. In hydrocracking, activity is 
defined as the temperature required to obtain fixed 
conversion under conditions associated with certain 
processes. 

Equation 2 defines a simple reaction, such as ( AProduct 
), and an n-order reaction rate: 
 

(2) aCeKaCKr n
A

RTEn
AA .... /

0


 
 where CA is the feed concentration in the reactor effluents. 
Since the K.a is constant, the conversion can be maintained 
at the same level, if the temperature increases as the catalyst 
activity gradually decreases. 
At the initiation of operations (when the catalyst is fresh), 
the activity is considered equal to 1 and temperature is T0.  

(3) 
 

cteeKaK RTE   1.. 0/
0  

After time t, the temperature (WABT) is T, and catalyst 
activity is a; meanwhile, the K.a remains constant. Thus: 

(4) 
 

cteaeKaK RTE   .. /
0  

Based on (3) and (4), a final relation for activity is obtained 
in terms of weighted average bed temperature (T) as 

follows: 

(5) 
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where E is the activation energy of the hydrocracking and a 
is the catalyst activity function. Equation (5) is obtained 
based on the assumption of constant conversion when the 
temperature gradually increases. The average hydrocracking 
activation energy for the feed of the hydrocracker unit in the 
Arak Refinery Company is approximately 277,545 (J/mol) 
[5]. 
 
The percentage of relative error in estimation of WABT was 
calculated using the following equation: 
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The training process requires a proper set of data (i.e., input 
and target output). During training, the weights and biases 
of the network were iteratively adjusted to minimize the 
network performance function [4]. The typical performance 
function used for training feed-forward neural networks is 
the network Mean Squares Errors (MSE). Both MSE and 
average absolute relative deviation (AARD) are defined as 
follows: 
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weighted average bed temperature vs. catalyst life in cycle 1
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weighted average bed temperature vs. catalyst life in cycle 2
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weighted average bed temperature vs. catalyst life in cycle 3
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Figure 1: Weighted average bed temperature vs. normalized time 
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III. RESULTS AND DISCUSSIONS 

For our catalyst in the hydrocracking reactor, the WABT 
versus the normalized time was plotted in three cycles of 
catalyst operations. As evident in Fig. 1, the average bed 
temperature gradually increases as the catalyst is deactivated, 
thereby maintaining the conversion at the same level.    
 
A study of general trends in Fig. 1 shows that changes in 
three cycles are constant. The following equation for 
defining the relation between WABT and normalized time is 
obtained from curve fitting: 
 

(9) 2/ xcbxaTWABT 
 

where a, b, and c are determined by curve fitting (listed in 
Table I) and x is the BPP. The values of a, b, and c in Table 
I for all three cycles are very close to one another and 
indicate the accuracy of (9).  

 
Table I: Constants of (9) 

 
 Cycle 1 Cycle 2 Cycle 3 

A 394.3487300 395.6206000 398.53994 
B 0.166857500 0.120427 0.0886568 
C -16.2683080 -20.2158420 -23.60243 

 
Several neural networks were trained using specific parts of 
the experimental data in these three cycles. Finally, a neural 
network with two hidden layers was chosen as the optimum 
neural network. This optimum neural network has two 
hidden layers with nine and six neurons, respectively. The 
transfer functions are tansig and logsig. The neural network 
structure is shown in Fig. 2.  
 

 
 
Figure 2: The schematic diagram of feed-forward Multi-layer 
ANN with two hidden layer. 
  
 

Fig. 3 shows the deviation of ANN results against the used 
experimental data for these three operation cycles.  
 
A quantitative comparison of experimental data and the 
neural network predictions is presented in Table II. Activity 
is subsequently calculated in terms of WABT based on (5). 
Fig. 3 depicts the comparison between experimental activity 
and ANN activity predictions. As evident in Fig. 4, good 
agreement exists between experimental and ANN model 
activity.  
 
To understand the empirical relation between catalyst 
activity and the age of catalyst (BPP), the calculated activity 
from (5) was plotted versus the BPP. Fig. 5 illustrates the 
catalyst activity versus normalized time in the three cycles 
of catalyst operation. 

 
 
After the end of each cycle, the catalyst activity increases by 
regeneration operation. At the beginning of the second 
cycle, the catalyst activity is about 85% of the fresh catalyst 
activity; at the start of the third cycle, this amount is about 
69%. The trend of catalyst deactivation in these three cycles 
indicates that the changes in three cycles are constant while 
the overall function for catalyst activity and its parameters 
are determined from curve fitting as follows: 
 

(10) 2/ xcbxaactivity   
 
where a, b, and c are the model parameters and x is the 
normalized time (BPP). The parameters of (10) are 
summarized in Table III. Therefore, the performance of the 
hydrocracking catalyst can be estimated using  (10), with 
the assumption that—except for temperature—other 
operation conditions affecting the catalyst activity remain 
constant during a cycle of catalyst operation.  
 

Table III: Constants of (10) 
 

 Cycle 1 Cycle 2 Cycle 3 

a 0.7117811200 0.7577796700 0.76897246 

b -0.006973351 -0.0052748349 -0.00424660 

c 1.0895077000 1.4325603000 1.59082020 

 

IV. CONCLUSION 

This paper studied the catalyst activity in a hydrocracker 
unit by using the industrial data of three different operation 
cycles. It demonstrated that data normalization must be 
carried out in order to monitor hydrocracking operation 
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properly. To normalize the catalyst bed temperature, the 
WABT was used; to normalize the time of unit operation, 
the processed feed barrels per pound of catalyst (BPP) were 
used in the equations and calculations. 

An ANN model was subsequently developed to predict the 
WABT in terms of BPP. The best ANN structure was 
determined by minimizing the network MSE. Finally a 
feed-forward back propagation ANN model with two hidden  
layers was chosen as the optimum neural network. Thus, BPP 
is the ANN model input and WABT is the output.  

Two models were developed for catalyst activity: a 
theoretical model in terms of WABT (T) and an empirical 
model in terms of catalyst age (BPP). The result of 
theoretical catalyst activity model was compared with the 
ANN model predictions of activity, indicating very good 
agreement between ANN predictions and experimental data.   

This work has clearly demonstrated the ability of ANN in 
calculating the weighted average bed temperature and 
catalyst activity based on the experimental data and 
theoretical model. 
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Figure 5: catalyst deactivation vs. the normalized time 

Figure 3: Percent error of ANN results against the used experimental data 

Figure 4: Comparison between the ANN activity predictions and Exp. Data 
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