
 
 

 

  
Abstract—The flow of particles suspended in fluids and 

transported through different geometries is a process with 
numerous industrial applications ranging from chemical 
processing to bio-analytic separation. A filtrate particle flowing 
through the channel may be trapped by the geometric constraint 
or other adhesive mechanisms. Realistic filters have 
randomly-interconnected channel space with a complex flow 
path. However, in micro-fluidic systems, channel space may 
resemble two-dimensional tessellation. Here we adopt the 
network flow concept to analyze two-dimensional micro-filters 
and study the filter efficiency (effective conductibility) and the 
clogging time i.e. the time until a filter becomes clogged due to 
the trapping of suspended particles 
 

Index Terms—clogging time, filter efficiency, microfilter.  
 

I. INTRODUCTION 

The geometrical properties of networks have attracted 
much attention due to progress in the fields of computer 
science, mathematical biology, statistical physics and 
technology. Especially, the microfluidic systems are built 
with the use of methods borrowed from the semiconductor 
industry [1]. Such methods generally employ the fabrication 
of highly ordered microscale structures. 

Molecular filtration using nanofilters is an important 
engineering problem, with very diverse applications ranging 
from chemical processing to biological applications. 
Biochemical analysis of aqueous solutions involves the flow 
of particles of different shapes suspended in fluids and 
transported through different geometries. A filtrate particle 
flowing through the pore space may be trapped by the 
geometric constraint or other adhesive mechanisms. Realistic 
filters have randomly-interconnected channel space with 
complex flow path. However, in microfluidic systems, 
channel space may resemble two-dimensional tessellation [1]- 
[5]. Here, the term “channel” refers to a conduit of any 
desirable shape through which liquids may be directed and the 
term “microfluidic” refers to the structure wherein one or 
more dimensions is less than 10-5 m.  

The problem we consider is the clogging process of a 
hypothetical microfilter with the channel space built up  
according to a given two dimensional tessellation. The 
objective of our investigation is to determine the role played 
by the network geometry in this process provided that the flow 
of liquid and suspended molecules is laminar. We focus our 
analysis on two quantities: (i) the time until a filter becomes 
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clogged by particles captured inside the network due to the 
size exclusion mechanism and (ii) the filter efficiency 
represented by a drop in filter permeability [6]-[10]. The 
results of our numerical computations give some insight into 
the question how resistant to clogging are the filters with 
two-dimensional channel spaces. 

 

II.  MATHEMATICAL MODEL 

A. Technological and Physical Aspects 

Microfluidic devices are constructed in a planar fashion. 
Typically, they comprise at least two flat substrate layers that 
are mated together to define the channel networks. Channel 
intersections may exist in a number of formats, including 
cross intersections, “T” intersections, or other structures 
whereby two channels are in fluid communication [1], [4].  

Due to the small dimension of channels the flow of the fluid 
through a microfluidic channel is characterized by the 
Reynolds number of the order less than 10. In this regime the 
flow is predominantly laminar and thus molecules can be 
transported in a relatively predictable manner through the 
microchannel.  

B. Channel Space Geometry 

In the context of artificial filter-channel space architectures 
the lattices of main interest have edges and vertices formed by 
a regular tiling of a plane, so that all corners are equivalent.  

There exist exactly 11 lattices known in the literature as the 
Archimedean lattices [5]. Three of them: triangular, square 
and hexagonal are drawn in a plane such a way  that all faces 
are the same whereas the remaining 8 lattices need more than 
one type of a face. The former lattices belong to the  regular 
tessellations of the plane and the latter ones are called 
semiregular lattices. Another important group of lattices 
contains dual lattices of the Archimedean ones. The given 
lattice G can be mapped onto its dual lattice DG in such a way 
that the center of every face of G is a vertex in DG, and two 
vertices in DG are adjacent only if the corresponding faces in 
G share an edge. The square lattice is self-dual, and the 
triangular and hexagonal lattices are mutual duals. The dual 
lattices of the semiregular lattices form the family called 
Laves lattices [5]. Finally, there are 19 possible  regular 
arrangements of fluid conduits.  

The lattices are labeled according to the way they are 
drawn [5]. Starting from a given vertex, the consecutive faces 
are listed by the number of edges in the face, e.g. a square 
lattice is labeled as (4, 4, 4, 4) or equivalently as (44). 
Consequently, the triangular and hexagonal lattices are (36) 
and (63), respectively. Other, frequently encountered lattices 
are (3, 6, 3, 6) − called Kagomé lattice and its dual 
D(3, 6, 3, 6) - known as Necker Cube lattice. In some ways 
these 5 lattices serve as an ensemble representative to study  
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Fig. 1. Examples of two dimensional tessellations used in this work. 

 
filtration problems in two dimension. They form pairs of 
mutually dual lattices and also share some local properties as 
e.g. the coordination number z being the number of edges with 
common vertex. One of the most interesting lattices in two 
dimension is the Kagomé lattice. Each its vertex touches a 
triangle, hexagon, triangle, and a hexagon. Moreover the 
vertices of this lattice correspond to the edges of the 
hexagonal lattice, which in turn is the dual of a triangular 
lattice. The Kagomé lattice is also related to the square lattice, 
they have the same value, z = 4, of the coordination number. 
Besides the above mentioned lattices, in this paper we have 
also analyzed other regular tiling, namely (4, 82), D(4, 82), 
(33, 42), and D(33, 42). Some of these lattices are presented in 
Fig. 1. 

C. Filter Blockage 

We consider a hypothetic flow of particles transported by 
fluid through the network of channels arranged according to  
the positions of the edges of the chosen lattice. All channels 
are characterized by their radii r which are quenched random 
variables governed by a given probability distribution. This 
distribution will be specified later. 

In order to analyze the filter clogging process we employ a 
cellular automata model with the following rules [8]. Fluid 
and a particle of a radius R enter the filter and flow inside it 
due to an external pressure gradient. The particle can move 
through the channel without difficulty if r > R, otherwise it 
would be trapped inside a channel and this channel becomes 
inaccessible for other particles. At an end-node of the 
channel, the particle has to choose a channel out of the 
accessible channels for movement. If at this node there is no 
accessible channel to flow the particle is retained in the 
channel. Otherwise, if the radius of the chosen channel r’  > R 
the particle moves to the next node. The movement of the 
particle is continued until either the particle is captured or 
leaves the filter. Each channel blockage causes a small 

reduction in the filter permeability and eventually filter 
becomes clogged.  

D. Effective Conductibility of the Filter 

The next problem we consider is the conductibility of the 
filters with different channel-network geometries. We apply 
the network flow language. In this framework, all channels are 
characterized by their capacitances C. As previously, these 
capacitances are quenched random variables governed by a 
uniform probability distribution defined in the range [0, 1] to 
assure C = 0 for the clogged channel and C = 1 for the fully 
opened channel. 

We define the filter’s effective conductibility as follows  
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where Φ(C1, C2, …, Cn) is the flux transmitted by the filter 
whose channels have restricted possibilities to maintain the 
flow and Φ0 = Φ(C1 = 1, C2 = 1, …, Cn = 1). Equation (1) 
permits to compare performance of different lattice 
geometries in their job as a potential filtering network. 
 

III.  NUMERICAL MODELING AND RESULTS 

The cellular automata approach constitutes the effective tool 
for numerical computations of particles transfer. For the filter 
blockage investigation a minimalist description requires two 
assumptions: (i) injected particles are identical spheres with 
the radius R and (ii) the channel radius is drawn from a 
discrete two-point probability distribution function, whereas 
P(r > R) = p is the only model parameter. Thus, the channel 
space is represented by a network of interconnected, wide (W) 
and narrow (N), cylindrical pipes (Fig. 2). Fluid containing 
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Fig. 2. Examples of two-dimensional model filters:  
N channels – thin lines, W channels – thick lines.  

Fluid with suspended particles is injected on the left side  
of the filter and exits the right side. 

 
suspended particles flows through the filter according to the 
previously stated rules (see Section II.C). 

We present the results of the numerical simulations of the 
above specified filter. Every time step particles enter the filter 
- one particle per each accessible entry channel and we count 
the time t required for the filter to clog. For each analyzed 
geometry and for several values of p from the range [0.05, pc] 
we performed 103 simulations and then we have built 
empirical distributions of the clogging time t. Here pc is the 
fraction of W channel for which the network lost its filtering 
capability. It is because of sufficiently high p values that there 
exist statistically significant number of trajectories formed 
only by W channels and spanned between input and output of 
the filter.  

Our simulations yield a common observation: the average 
time required for the filter to clog can be nicely fitted as 
 

( )[ ]cppt 2/tanπ≈  (2) 

 
where the values of pc are in excellent agreement with the 
bond percolation thresholds of the analyzed networks (see 
Table I). Fig. 3 shows t  as a function of p for selected 
lattices, 3 lattices out of 9 lattices we have analyzed. 
 

 
 

Fig. 3. Average clogging time for regular lattices: solid line, 
triangular lattice; dash-dotted line, square lattice; dashed line, 
hexagonal lattice. The lines are drawn using (2) and they are 

only visual guides. 

Table I. Bond percolation thresholds and coordination 
numbers for 9 networks analyzed in this work. 

 
Lattice Bond percolation 

threshold pc 
(36) triangular 0.3473 
(44) square 0.5000 
(63)  hexagonal 0.6527 
(3, 6, 3, 6) 0.5244 
D(3, 6, 3, 6) 0.4756 
(4, 82) 0.6768 
D(4, 82) 0.2322 
(33, 42) 0.4196 
D(33, 42) 0.5831 

 
 

 
 

Fig. 4. Average filter’s effective conductibility, defined by (1) 
 computed for different values of length (LX) and width (LY)  
of the filter for the hexagonal lattice. The lines are drawn 

using (3) and they are only visual guides. 
 

As was pointed out in Section II.D we are also interested in 
the filter’s effective conductibility defined by (1). For our 9 
lattices we have computed the average values of φ  for an 
ample set of values of length (LX) and width (LY) of the filter. 
As an example, in Fig. 4 we present φ for the hexagonal 
lattice. We have found that for all lattices φ  has the following 
form:  
 

( ) ( ) ( )[ ]YXXYX LLLaaLL ⋅ψ+=φ −δ 1
21 tan/,  (3) 

 
where: a1, a2, δ are the parameters and ψ(LX) is the function, 
all dependent on the lattice symmetry.  
 

IV.  CONCLUSION 

In this paper we have studied a minimalist model for 
particle flow through the microfluidic filter with an artificial 
geometry of the channel space. We have exploited two 
extreme pictures: a cellular automata microscopic-like picture 
and a completely statistical approach to an operating filter 
considered it as the network supporting the flow trough a 
collection of randomly conducting channels. Even though the 
cellular automat rules for the movement of particles are too 

0 1 2 3 p 5 6 7

20

40

t 
− 

80

 

0 4 8 L Y 12 16 20 

0.20 

0.22 

ϕ 

0.24 

0.26 
L x= 4 

L x= 6 
L x= 8 

L x= 10 

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol II 
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-18210-0-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010



 
 

 

simple to capture the detailed interactions of real particles this 
approach enable us to see how the system becomes clogged. 
Also the network flow concept is useful to study the interplay 
between geometry and transport properties of ordered lattices. 
Its main advantage relays on a very simple representation of 
the inner filter’s structure yet keeping a bridge between the 
conductibility, the geometry (lattice’s symmetry, coordination 
number) and the statistical global property (bond percolation 
threshold).  
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