
 
 

 

 
Abstract—The homogeneous equilibrium model improved 

(HEMI) is for determining the mass flux of all fluids in piping 
systems. Existing homogeneous equilibrium models tend to 
underpredict overall pressure drops in piping systems as the 
flow length is increased. HEMI has corrected the fundamental 
defect and the associated flow equation is both mathematically 
and physically satisfactory. The HEMI can also be extended to 
account for non-equilibrium effects. The resulting calculation 
sets are compared with experimental data. 
 

Index Terms— Homogeneous equilibrium model improved,  
nonequilibrium effects, pipe flows, pressure relief system.  
 

I. INTRODUCTION 

    This article presents an improved homogeneous 
equilibrium model for estimating the mass flux of all fluids in 
piping systems. Piping systems mean fluids flow in pipes, 
tubes or ducts at a constant diameter or changing diameters, 
elevations, and directions. Determining accurate flow 
capacities and pressure drops in piping systems is important 
in designing pressure relief systems.  The goal of pressure 
relief systems is to prevent excessive pressure accumulation  
in a pressure vessel for all credible emergency scenarios. An 
improperly designed relief system may result in catastrophic 
failures. Therefore the pressure relief system should be sized 
with as much certainty as possible for proper protection of 
the pressure vessel or system. Currently, a homogeneous 
equilibrium model (HEM) is used extensively in designing 
the pressure relief system because it  gives conservative 
results (smallest flow capacity). However, the existing 
homogeneous equilibrium model tends to underpredict 
overall pressure drops in piping systems as the flow length is 
increased.  The homogeneous equilibrium model improved 
(HEMI) has corrected the fundamental defect which caused 
this underprediction. 
 
    HEMI requires an accurate correlation of 
pressure–specific volume. This greatly enhances calculation 
capabilities when handling compressible fluids in piping 
systems. The correlation of pressure-specific volume can be 
obtained by flash calculations.  The flow path can be either 
isenthalpic or isentropic. For two-phase flow, the difference 
between isenthalpic and isentropic is not significant. HEMI 
provides accurate and  conservative results because the 
associated flow equation is mathematically and physically 
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satisfactory.  Additionally, HEMI can be extended to account 
for nonequilibrium effects for flashing flow. The resulting 
calculation sets are compared with  experimental data. 

II. UNCERTAINTIES OF EXISTING PIPE FLOW MODELS 

    Sozzi and Sutherland [1] performed extensive tests for 
high pressure saturated and subcooled water.  The test data 
for low stagnation quality (0.001 < x0 < 0.005, mass fraction 
of vapor in two-phase) saturated water on Nozzle 2 are of 
particular interest. Nozzle 2 had a well-rounded entrance (no 
entrance loss). The test data shown in Table I (selected out of 
25 tests in Table V) are for a 1.778 m straight horizontal long 
run of 12.7 mm diameter tubing. Isenthalpic flash 
calculations were performed to generate correlations of 
pressure-specific volume. This is to ensure that the 
calculation results would be conservative since the 
isenthalpic flow path yields a lower bound estimate of mass 
flux. The existing HEM results are obtained using a computer 
program called CCflow, a flow capacity calculation program 
for use with the CCPS Guidelines book “Pressure Relief and 
Effluent Handling Systems” [2]. AIChE Design Institute for 
Emergency Relief Systems (DIERS) recommends the use of 
the homogeneous equilibrium model in the pressure relief 
system calculations.   
 
    The experimental data  in Table I show that the existing 
homogenous equilibrium model  predicts less conservative 
mass flux results than expected. In addition, the calculated 
exit pressures deviate significantly from the observed ones. 
One could easily calculate the critical or choked mass flux Gc 
using equation (3) if the exit pressure is known. The 
difference between the observed mass flux and the calculated 
critical mass flux at observed exit pressure is, as expected, 
significant. Generally nonequilibrium results in appreciable 
mass flux increase.  The calculated mass flux values at 
observed exit pressures support the nonequilibrium 
hypothesis. Consequently, it is obvious that the significant 
difference in exit pressures is an indication of 
nonequilibrium. 
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Table I 
 Sozzi and Sutherland Nozzle 2 Test Data vs. HEM Predictions  

 Test #1 Test #2 Test #3 
Tube Diameter (m) 0.0127 0.0127 0.0127 
Tube Length (m) 1.778 1.778 1.778 
Stagnation Pressure (MPa) 6.722 6.826 6.826 
Stagnation Quality (x0) 0.0035 0.00455 0.0024 
Observed Mass Flux (kg/m2·s) 17528 17577 17870 
Observed Exit Pressure (MPa) 2.379 2.337 2.330 
Calculated Mass Flux (kg/m2·s) 
with HEM 

17518 17611 17782 

Calculated Exit Pressure (MPa) 
with HEM 

3.882 3.923 3.944 

Calculated Gc (kg/m2·s) at 
Observed Exit Pressure  

12602 12465 12489 
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The HEM results in Table I were also in good with the 
observed values. Therefore, the mass flux of the HEM was 
definitely overpredicted since equilibrium conditions gave 
more conservative results.  

III. HOMOGENEOUS EQUILIBRIUM MODEL 

    HEM uses the following pipe flow equation for horizontal 
pipe flows [3], [4]: 
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where G is the mass flux in pipe flows,   is the density of 

the fluid, P is the pressure in pipe flow systems, N is the 
overall loss coefficient, and v  is the specific volume of the 
fluid.  dP , Pavgarithmetic  , is satisfactory mathematically, 

but not physically since actual average density is computed 
for n data points of density over a constant interval of 
pressure as the following:     
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The HEM provides only a mathematical solution. This means 
that the HEM does not represent the true compressible flow 
behavior in piping systems.  The  arithmetic average density 
should not be used in the pipe flow equation for compressible 
flow. But  dP  can easily be seen in textbooks for flow 

equations for compressible flows. Using the arithmetic 
average density in the pipe flow equation signals 
overprediction in mass flux. Therefore, the HEM 
significantly underpredicts overall pressure drop in the 
piping system for two-phase flow as shown in Table I. The 
underprediction in overall pressure drop increases with 
increasing flow lengths (overall loss coefficient).  Also if the 
back pressure of a pressure relief valve is also to be 
determined for a given rated capacity of the pressure relief 
valve, then the homogeneous equilibrium method will 
underestimate the back pressure. Pressure relief valves are 
the most commonly used relief device. The pressure relief 
valve performance and stability are affected by the back 
pressure. Therefore, a mandatory requirement of ASME - 
Pressure Vessel Code [5] is that the outlet piping of the relief 
valve be such that the developed back pressure will not 
reduce the relieving capacity below the flow required to 
protect the equipment.  

IV. HOMOGENEOUS EQUILIBRIUM MODEL IMPROVED 

      On the other hand, HEMI uses the following pipe flow 
equation for horizontal pipe flows: 
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Gc 2                                 (3)

     
 G2  – Gc

2 = ~ 0 at choked conditions         (4)   
 
      
The pipe flow equation (1) is derived from the Bernoulli 
equation with proper manipulation not to include  dP . 

HEMI predicts accurate and conservative estimates of 
homogeneous equilibrium flow conditions because 

 vdP , avgarithmeticv  P , is both mathematically and 

physically satisfactory. The actual average specific volume is 
computed for n data points of specific volume over a constant 
interval of pressure as the following:   
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To illustrate the improved homogenous equilibrium model, 
the calculation procedure shown in Fig. 1 will be explained in 
detail below.  Fig. 2 is a typical configuration of a pressure 
relief piping system. The pressure relief piping system often 
includes a rupture disk. A rupture disk is a non-reclosing 
pressure relief device actuated by the inlet static pressure. 
 
 

 
 

          Calculate G2 and Gc
2 at P3 

           G2 < Gc
2 

          Calculate G2 and Gc
2 at P2 

           G2 - Gc
2 = ~ 0 

        End    

Block 1 

 Block 2 

Block 5 

 Block 4 

 Block 3 

 Block 8 

 Block 6 

 Block 7 

          No (Choked) 

          Yes 

  No  

          Create Pressure – Specific Volume Model   

Increase/Decrease P2, New Choked Pressure 

          Calculate Mass Flux 

Estimate Preliminary P2, Choked Pressure 

          Yes (Unchoked) 

     Start      

Fig. 1.  Procedure Block Diagram for HEMI Calculations
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The flow is from a large upstream reservoir 0 (named station 
0), through a  constant-area run of pipe entrance 1 (named 
station 1). The flow from the pipe entrance discharges to the 
outside 3 (named station 3) of the end of the pipe 2 (named 
station 2).  
 
 

 
 
Fig. 1 is a procedure block diagram for the mass flux and exit 
pressure calculations.  The first step, block 1, is to create 
pressure-specific volume models using data obtained by flash 
calculations on either an isentropic or isenthalpic flow path. 
A pressure-specific volume model with two constants,  and 
 , by Simpson [4] as the following fits the data for a broad 
range of fluids, and is suitable for integration: 
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Estimating accurate specific volume is extremely important 
in calculating the mass flux in piping systems.  Single phase 
or two-phase flow requires at least one P-v correlation while 
at least two P-v correlations in series are recommended for 
subcooled liquid.  For subcooled liquid,  the first P-v model 
can be based on two data points. The second data point is at 
the saturated pressure.  The pressure-specific volume model 
“constant”  for the two data points is 1.0.  A general 
guideline for selecting data points is presented as the 
following:   
 
 
 
 
 
 
 
The second step, block 2,  is to calculate G2 and Gc

2 at outside 
pressure (P2 = P3). All calculations are often based on two 
segments: a frictionless section from P0 to P1 and a friction 
section from P1 to P2 as shown in Figure 2.  More segments 
can be considered if necessary.  Although the pressure range 

from P1 to P2 is more desirable for avgv  in flow equation (1),  

the avgv can be calculated for a pressure range from P0 to P2.  

This does not give significant differences for a large N 
(overall loss coefficient) piping system.  The pressure value 
of P1 can be obtained by solving the following equation: 
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For most pressure relief piping systems, the pipe length L, the 
inside pipe diameter D, and the total frictional loss coefficient 
K   are known. An overall loss coefficient N is calculated as 
the following:   
 

K
D

L
fN  4                        (7) 

 
A Fanning friction factor of f can be taken for fully turbulent 
flow. More rigorous calculation methods for the friction 
factor can be considered if the overall loss coefficient is 
sensitive to the friction factor.  For such a case,  a simple 
polynomial equation for fluid viscosities varying with 
pressure can be developed in the same manner as the P-v 
model.  G2 is estimated by solving flow equation (1) by either 
direct integration, numerical integration, analytical 
integration,  or a simple way using direct data points. Gc

2 is 
estimated using equation (3) by taking the pressure derivative 
with respect to the specific volume at P3.  Gc

2 can also be 
estimated at a small pressure increment dP as well as the 
corresponding specific volume change at the small pressure 
increment.    
 
The third step, block 3, is to determine if the piping system is 
choked at station 3 pressure.   If the estimated G2 is greater 
than the estimated Gc

2, it means the system is choked. Thus, it 
is required to proceed with the next step.  If not, the mass flux 
is calculated at block 8.  Incompressible fluid is generally not 
choked.  Thereafter, a preliminary choked pressure is 
estimated, block 4. A good initial choked pressure ensures 
fast convergence.  The choked pressure can be determined by 
the point of intersection between curves G2 and Gc

2. The 
point of intersection indicates choked conditions. Or simply 
take around 50% of P0 as the initial choked pressure estimate. 
 
For the accurate choked pressure,  equation (4) is solved by 
trial and error by changing P2 until G2-Gc

2 = ~0 (within error 
tolerance), blocks 5 - 7.  New P2 (choked pressure) is 
(G2-Gc

2) (Previous P2) / [(2.0)(G2)] + Previous P2.  Factor 2, 
which is adjustable, is to achieve stable convergence. The 
Newton-Raphson Method can also be used as an alternative 
for the partial substitution method.   

   
The final step, block 8, is to determine the homogeneous 
equilibrium mass flux along with unit conversion as the 
following: 
 
G = [G2(106)]0.5  
 
However, experimental data show that significant 
nonequilibrium exists for two-phase flow. The 
nonequilibrium is generally believed to be mostly from 
thermal nonequilibrium.  HEMI can be extended to account 
for the nonequilibrium effects. The authors are proposing the 
following preliminary nonequilibrium factor until complete 
comprehensive correlations are available.    
 
The overall pressure drops in piping systems consist of the 
following three pressure drop terms: 
 
 

20 PPPtotal                                            (8) 

 vGPkinetic
2

2

1
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Fig. 2.  Typical configuration of a pressure relief piping system.    
i

P3 v 3 
Outside 

P2 v 2    
 
 

P1 v 1   

   
 

 P0 

v 0 

Reservoir 
Piping System  
 

Table II 
Data Point Guidelines for Pressure-Specific Volume Correlations 

One P- v  model P0  ,   (P0 +P3)/2 ,   P3  

Two P- v  models  
1st  P- v  model P0 ,   (P0  +  0.5P0) /2 ,   0.5P0  
2nd P- v  model 0.5P0 ,  (0.5P0 +P3)/2,   P3  
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frictionkinetictotalansion PPPP  exp

              (11) 

 
Out of the three pressure loss terms, the pressure drop for 
expansion contributes the most to the nonequilibrium effects 
in the piping systems. The nonequilibrium factor (NF) can be 
defined as the following: 
   
NF = (1+

ansionPexp  / 
totalP )0.5                            (12) 

Thus, the nonequilibrium mass flux (NEMF) and the exit 
pressure (NEEP) are calculated as the following: 
 
NEMF = (Equilibrium Mass Flux) (NF)             (13) 
 
NEEP =  P0 - ( totalP )(NF)2.3                               (14) 

 
The actual  pressure drop for nonequlibrium two-phase flow 
is likely to be greater than the pressure drop which is 
generally proportional to the square of  NF. However, 
equations (12) and (14) are temporary and valid for the 
specific test conditions (0.001 < x0 < 0.005 and N=2.61).  

V. EXAMPLE USING HEMI 

     The following example uses a simplified calculation 
approach for Test #1 in order to make the calculation 
procedure easier to follow. The fluid is saturated water with 
stagnation quality of 0.0035 at 6.722 MPa in a  pressure 
vessel.  The following three data points are prepared based on 
an isenthalpic flow path.       
 
 
 
 
 
 
 
 
Using the three data points and equation (5), the following 
two simultaneous equations are obtained: 
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A simple bisection routine could solve for and The 
results are:  
  
= 3.509350     = 1.255901 
 
Therefore, the specific volume at any pressure point can be 
obtained easily with the following pressure-specific volume 
model: 
 
 v  =  0.0014378 [3.509350((6.722/P)1.255901 -1) +1]  
 
The following specific volume data are prepared using the 
pressure-specific volume model above.  Average specific 
volume is computed for n data points of specific volume over 
a constant interval of  6.8947 Pa (1 psi) as the following:   
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It is assumed that the overall loss coefficient in the piping 
system is independent of the Reynolds number and the tube  
absolute  roughness is 0.01016 mm. The value of the absolute 
roughness of the test tube was not available.  Darby et al. [3] 
also used  absolute roughness of 0.01016 mm for the test 
tube. Based on the tube length of 1.778 m and the typical 
Fanning friction factor of 0.00466, the overall loss 
coefficient of 2.61 is calculated as the following: 
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First, it is required to check if the piping system is choked at 
2.413 MPa assumed as P3 pressure (tube outside).  
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Since G2  is greater than  Gc

2, the flow is choked and it is 
required to calculate the accurate choked pressure.   
For the first trial, the calculated results at P2 = 3.523 MPa 
(assuming P2 = ~ 52% of 6.722 MPa) are: 
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G2  – Gc

2 = 249.3 – 247.3 = 2.0        
 
Further trials are required to refine the results. The new 
choked pressure can be estimated as the following: 
 
New P2  = (G2-Gc

2) (Previous P2) / [(2.0)(G2)] + Previous P2 

              = (249.3 – 247.3)(3.523) / [(2)(249.3)] + 3.523 
              = 3.537 
 
For the second trial, the calculated results at 3.537 MPa are: 
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Table III 
                   Physical Properties for Example  

Data  P, MPa v , m3/kg 
#1 6.722 0.0014378 
#2 4.568 0.0045886 
#3 2.413 0.0146616 

Table IV 
                         Specific Volume Data for Example   

Pressure,  
MPa 

Specific Volume, 
m3/kg 

Average Specific 
Volume, m3/kg 

3.544 0.0076659 0.0038165 
3.537 0.0076939 0.0038248 
3.530 0.0077221 0.0038333 
3.523 0.0077504 0.0038416 

- - - 
2.420 0.0145952 0.0056008 
2.413 0.0146616 0.0056153 
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G2  – Gc

2 = 250.2 – 250.0 = 0.2        
 
The difference is so small that further trials are unlikely to 
improve the results appreciably.  Finally, the homogeneous 
equilibrium mass flux can be determined from the second 
trial results as the following: 
    
G = [G2(106)]0.5 = [(250.2)(106)]0.5 = 15818 kg/m2·s         
 
The mass flux of 15818 kg/m2·s at 3.537 MPa exit pressure is 
essentially a converged solution.  It is proven that HEMI 
predicts conservative results (smallest flow capacity) because 
the observed mass flux is 17528 kg/m2·s.  In general,  using 
direct integration of the flow equation is preferred over 
simpler calculation methods such as the one shown in this 
example.  However, the results are reasonably similar.              
 
Using the calculation results from HEMI, the nonequilibrium 
factor is: 
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NF = (1 + 
ansionPexp  / 

totalP )0.5  

     = (1 + 0.973 /3.185)0.5 = 1.143 

 
The nonequilibrium mass flux and the exit pressure are: 
 
NEMF = (Equilibrium Mass Flux) (NF) 

   = (15818)(1.143) =18080 kg/m2·s   
 
NEEP =  P0 - ( totalP )(NF)2.3  

         = 6.722 – (3.185)(1.143)2.3 = 2.391 MPa 
 

The values for the homogeneous nonequilibrium calculations 
are in good agreement with the observed ones. 

VI. COMPARISON OF MODEL PREDICTIONS 

    Fig. 3 shows changes in dimensionless mass flux (G/Gmax) 
with overall loss coefficient for the Test #1.  Gmax in the 
dimensionless mass flux is the calculated mass flux for a 
perfect nozzle.  The mass flux of the HEM is clearly shown to 
overpredict with larger overall loss coefficients (longer runs 
of pipe). Predictions from HEM and HEMI indicate there are 
significant differences. Employing an incompatible 
mathematical model with fluid physics results in less 
conservative results as shown in Fig. 3. Thus, it is very 
important that every homogeneous equilibrium model should 
be confirmed to satisfactorily represent the flow behavior in 
pipes both mathematically and physically.  
    
  Table V is a summary of prediction results for Sozzi and   

Sutherland test data on Nozzle 2 with the 1.778 m long 
straight tube (longest flow length) for low stagnation quality 
(0.001 < x0 < 0.005) saturated water. The experimental data 
indicate thermal nonequilibrium because the observed exit 
pressures are significantly lower than the calculated exit 
pressures of both of the homogeneous equilibrium models. 

Table V 
Sozzi and Sutherland Nozzle 2 (L= 1.778 m) Data vs. HEM and HEMI Predictions 

        P0,  
 
        MPa 

Quality, 
 
x0 at P0 

 Observed  
 
G, kg/m2·s  P2, MPa 

Calculated 
HEM   
G, kg/m2·s    P2, MPa 

Calculated 
HEMI  
G, kg/m2·s  P2, MPa 

Calculated 
HEMI Nonequilibrium  
G, kg/m2·s        P2, MPa 

6.867 0.00200 19286 2.455 17884 3.971 15970 3.592 18251 2.413 
6.833 0.00280 18358 2.441 17762 3.944 15873 3.565 18128 2.399 
6.791 0.00310 17919 2.413 17670 3.916 15790 3.544 18036 2.379 
6.757 0.00250 17919 2.379 17660 3.909 15770 3.537 18021 2.379 

6.722, Test #1 0.00350 17528 2.379 17518 3.882 15658 3.509 17884 2.358 
6.681 0.00330 17528 2.365 17464 3.861 15604 3.496 17826 2.358 
6.647 0.00340 17528 2.344 17401 3.840 15546 3.475 17757 2.337 
6.605 0.00330 17528 2.344 17338 3.820 15487 3.454 17694 2.324 
6.936 0.00188 19334 2.482 18011 4.006 16092 3.627 18382 2.441 
6.915 0.00301 19334 2.413 17884 3.985 15990 3.606 18260 2.427 
6.902 0.00405 19334 2.351 17777 3.964 15907 3.592 18163 2.413 
6.881 0.00428 18309 2.358 17728 3.951 15863 3.578 18109 2.399 
6.853 0.00430 17772 2.344 17679 3.937 15819 3.565 18055 2.392 

6.826, Test #2 0.00455 17577 2.337 17611 3.923 15760 3.551 17992 2.386 
6.860 0.00131 19481 2.448 17928 3.971 16005 3.592 18290 2.420 
6.833 0.00162 18944 2.448 17826 3.951 15902 3.565 18177 2.386 
6.812 0.00172 18944 2.420 17816 3.944 15902 3.565 18172 2.399 
6.784 0.00178 18553 2.427 17762 3.930 15853 3.551 18119 2.386 
6.757 0.00177 18553 2.413 17718 3.916 15814 3.537 18075 2.379 
6.709 0.00197 18553 2.344 17621 3.889 15726 3.516 17972 2.372 
6.709 0.00209 18553 2.330 17611 3.889 15717 3.509 17962 2.358 
6.860 0.00240 19334 2.386 17840 3.958 15936 3.585 18207 2.413 

6.826, Test #3 0.00240 17870 2.330 17782 3.944 15883 3.565 18148 2.392 
6.791 0.00280 17870 2.310 17689 3.923 15809 3.551 18060 2.392 
6.757 0.00290 17577 2.310 17640 3.902 15760 3.530 18006 2.372 

973.0249.1963.0185.3

exp



 frictionkinetictotalansion PPPP      
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Although homogenous equilibrium models predict smaller 
mass flux with lower exit pressure, thermal nonequilibrium 
ultimately leads to higher flow values.  Therefore, it is 
evident that there is something wrong if the homogeneous 
equilibrium predictions are quite close to the experimental 
data. However, preliminary HEMI’s nonequilibrium 
predictions for both the mass flux and the exit pressure are in 
good agreement with the experimental data. This also verifies 
that HEMI is a real homogenous equilibrium model that can 
be extended to account for the non-equilibrium effects.     
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

VII. CONCLUSION 

HEMI has several practical advantages over existing 
homogeneous equilibrium models: it predicts accurate mass 
flow capacity and pressure drop for an equilibrium flow 
using a theoretically developed flow equation which is 
mathematically and physically satisfactory, it yields 
conservative results as supposed, and it is simple and easy to 
apply for all fluids at any conditions. HEMI also offers 
opportunities to revisit previous experimental data to draw 
out a better solution for nonequilibrium effects.   
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Fig. 3. Changes in dimensionless mass flux with overall loss coefficient for Test #1.
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