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Abstract—Intra-uterine fetal ECG monitoring is
critical for identical twin gestations because of the in-
creased risk for cardiac defects. Ultrasound echocar-
diography is important clinically but it does not
provide entirely conclusive information pertaining to
the fetal cardiac conduction system. On the other
hand, fetal electrocardiography can be obtained in-
directly by means of ordinary electrodes placed on
the mother’s abdomen, allowing potential separation
of the fetal electrocardiogram (FECG) for determina-
tion of fetal ECG heart rate and morphology. Diffi-
culties with the twin FECG separation is due to the
large maternal ECG interference, surrounding noise,
artifacts and the underlying similar twin ECG mor-
phology, amplitudes and heart rates. The objective of
this work is to investigate Fast-ICA, a signal separa-
tion technique, using standard contrast functions and
a newly optimized data centric method in this con-
text under different types of interference. We clearly
show with a variety of simulations that the chosen
polynomial based contrast functions (3rd − 6th order)
perform superior to the data based Pearson method.
They work on par and in some cases better than stan-
dard ICA polynomial schemes like SKEW and POW3.
Similar trends were seen with a sample of in-vivo data
as well. Data-centric schemes used on the ICA have
significant potential in true in-vivo situations where
separation is based on the underlying data character-
istics. Keywords: ICA, Fast-ICA, ECG, twins, poly-
nomial

1 Introduction

Intra-uterine monitoring of fetal health seeks to assess
several indicators like growth and maturation, oxygen
availability, neurological function and cardiac function
(to diagnose cardiac hypertrophy, arrhythmias and con-
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genital heart defects - CHD) [1]. Fetal monitoring be-
comes more critical for identical twin gestations, since
the risk for cardiac defects increase (9-15 fold) with such
pregnancies [2]. With such conditions, both fetuses are
at risk for heart failure, requiring simultaneous monitor-
ing of the cardiac traces, to highlight signs of overload
and dysfunction to optimize time of delivery [3]. Cur-
rent trends in fetal cardiovascular diagnosis are gener-
ally based on ultrasound echocardiography. Ultrasound
is clinical important and identifies 25-60% of major heart
defects, between 16 and 22 weeks, but it does not provide
entirely conclusive information pertaining to function of
the fetal cardiac conduction system [4]. Furthermore
echocardiography, requires a trained physician, frequent
repositioning of the transducer and is not recommended
for long-term recordings in the normal home environment
[4]. Fetal Electrocardiography on the other hand is an
attractive candidate for this measurement. Fetal electro-
cardiograms (FECG) can be obtained indirectly by means
of ordinary electrodes placed on the mother’s abdomen.
Monitoring the FECG could potentially enable determi-
nation of the fetal heart rate signal with beat-to-beat ac-
curacy, and allow analysis of morphological and temporal
changes [1]. The FECG can also be used to measure RR
intervals from which the fetal heart rate (FHR) and its
variability can be determined, to diagnose conditions like
tachycardia (FHR>180bpm) or brachycardia (FHR<110
bpm) commonly seen with cardiac defects [1]. Specifi-
cally, fetal hypoxia can be detected when the PR and RR
intervals vary, whereas a depression of the ST segment is
associated with acidosis [5].

Even though acquiring the FECG seems very attrac-
tive for fetal cardiac assessment, its use in clinics has
been quite limited. FECG is a part of abdominal
ECG waveforms and contains interferences that come
from multiple sources. The omnipresent Maternal ECG
(MECG), which can be 5-1000 times larger in its inten-
sity, forms the largest interference. Electromyographic
(EMG) activity, electrode drift, power-line coupling and
thermal/electronic noise corrupt the recordings as well
[6]. The problem becomes even more difficult in the case
of twin fetuses that could have FECG signals of similar
morphology, amplitudes and heart rates [3].
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Several signal separation algorithms have been proposed
in the literature for separating FECG from abdominal
ECG primarily for singleton pregnancies [5]. Classical
filtering methods and adaptive techniques, singular value
decomposition techniques and wavelet transform based
methods have been proposed. Only a few studies have
been reported in the context of twin gestations. For ex-
ample, Lathauwer et. al. [7] used abdominal data of
twins to illustrate a signal separation concept. Comani
et. al., [3], measured and separated twin magnetocardio-
graphy data (an alternative approach to FECG) for diag-
nosis, whereas, Taylor et. al [8] was one of the only stud-
ies that has demonstrated single fetus and twin FECG
detection on a large database of clinical records. Separa-
tion was done using blind source separation (BSS) tech-
niques. The most common BSS technique is the indepen-
dent component analysis (ICA) with different implemen-
tations like INFOMAX, the JADE, the FastICA and the
MERMAID [9]. ICA research has been very vast with
several estimation methods that have been proposed.

The objective of this work is to investigate Fast-ICA using
standard contrast functions and comparing them with our
newly optimized data centric contrast functions in the
context of twin FECG extraction from abdominal ECG
channel data simulated for normal and abnormal cardiac
conditions under different types of interference.

2 Independent Component Analysis

The goal of the ICA (Independent Component Analysis)
is to unmix sources that are assumed to be linearly mixed
with unknown coefficients. In this context, it is common
to model the abdominal ECG recordings of a pregnant
woman carrying twins as a linear combination of twin
fetal and maternal signals [5]. The linearly mixed sources
can be represented in the vector form as

x(t) = As(t), (1)

where s(t) = [s1(t)s2(t) . . . sn(t)]
T ∈ RN denotes the N

source signals, x(t) = [x1(t)x2(t) . . . xM (t)]T ∈ RM de-
notes the observation vector, and A ∈ RM×N is the un-
known mixing matrix. It is assumed that M ≥ N . ICA
uses the assumption of statistical independence among
source signals (which is true in this context) to esti-
mate the source signals s(t) and the mixing matrix A.
In other words, ICA methods try to determine the de-
mixing matrix W, which is the inverse of A, so that
the rows of ŝ(t) = Wx(t) become statistically indepen-
dent. In the ICA context, independence is equivalent to
non-gaussianity and we can measure this using kurtosis
and negentropy [9]. For example, for a gaussian random
variable kurtosis is zero. The negentropy for a random
variable y is defined as J(y) = H(ygauss) −H(y), where
H(y) =

∫
f(y) log f(y)dy denotes the information theo-

retic differential entropy, and ygauss is a Gaussian random
variable with the same covariance as y. Since Gaussian

random variables have the largest entropy among all the
random variables with the same variance, the negentropy
is always nonnegative. The larger the negentropy, the
closer the random variable gets to be non-Gaussian. The
main issue with negentropy calculations is the fact that
the distribution of the random variable y is needed in
calculation. Instead, we can use approximation of negen-
tropy [9], eq. 2, for a non-quadratic function G, and zero-
mean, unit variance Gaussian random variable ν. The
nonlinear function G is known as contrast function.

J(y) ≈ [E{G(y)} − E{G(ν)}]2 (2)

Ideally, if the source distribution f(y) is known, the func-

tion G(y) = −logf(y) = −
∫ f ′(y)

f(y) dy would be the op-

timal choice for the contrast function. In general, the
selection of the contrast function depends on the data
and the application. Fast-ICA is a fixed point algorithm
that maximizes an approximation of negentropy for non-
gaussianity. The main iteration step of the Fast-ICA al-
gorithm is

w← E{zg(wT z)} − E{g′(wT z)}w (3)

where z is the whitened and centered data, and g() is
the derivative of the contrast function G(), and g′() is its
second derivative. The vector w denotes one column of
the estimated inverse matrix W. Commonly used con-
trast functions with Fast-ICA algorithm are listed as: (i)
Pow3: g(y) = y3 ; (ii) Gauss: g(y) = y exp(−y2/2) ;(iii)
Tanh: g(y) = tanh(y) ; (iv) Skew: g(y) = y2; (v) Pear-
son: g(y) = − y−a

b0+b1y+b2y2 where a, b0, b1, b2 are found us-
ing the method of moments. Among all the contrast func-
tions above, Pearson system uses some statistical prop-
erties of the data to calculate constants a, b0, b1, b2 in the
contrast function. The rest do not use any of the proper-
ties of data for selection of the contrast function. In the
next section, we describe a new method that uses certain
characteristics of the ECG signal to derive a data-centric
contrast function.

2.1 Empirical density based Fast-ICA

In this section, we propose a new way of obtaining the
contrast function using an estimate of the underlying
probability density function (pdf) of the sources (mater-
nal and twin fetal). This way, certain properties of the
source signals can be incorporated into the Fast-ICA al-
gorithm. It is important to note that the mother ECG,
the twin fetal ECG, and the noise signals have different
morphological and temporal characteristics and utilizing
the same contrast function could result in suboptimal so-
lutions. Our goal is to incorporate the differences in the
source signals into the Fast-ICA by utilizing different con-
trast functions that are functions of the empirical pdf.

We follow the following steps in order to obtain contrast
functions that are data centric. (1) Generate template
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source signal : More details are provided in the next sec-
tion, (2) Obtain the empirical pdf : Among the various
ways of obtaining pdf estimates, we choose 2 techniques
- scaling the histogram of the observed data and ker-
nel density estimation (kde), which is a non-parametric
method, (3) Obtain the contrast function: we set the
contrast function as the function: G(y) = − log(fe(y)),
where fe(y) is the empirical pdf for the selected source.
Note that if the pdf estimation was perfect, then this
would be the optimal choice for the contrast function.

In the Fast-ICA algorithm, the first and the second
derivatives of the contrast function G(y) are needed. To
obtain these from the pdf, we propose to fit a polynomial
to G(y) and then take the first and second derivatives
analytically. In this case of polynomial fit with a fixed
order L, the contrast function would be

G(y) = −log(fe(y)) ≈
L∑

i=0

aiy
i.

The coefficient a0 could be selected to be zero for sim-
plicity. The polynomial order could also be optimized for
different sources. Note that the standard Fast-ICA offers
polynomial based contrast functions skew and pow3 but
with unoptimized coefficients.

2.2 Simulation of Data for Twins

We generated all the ECG source signals (maternal and
twin fetal) based on a dynamical model presented in [11].
The model generates a trajectory in a three-dimensional
(3-D) statespace with coordinates (x,y,z). Each revo-
lution on this circle corresponds to one RR-interval or
heartbeat. Distinct points on the ECG, such as the P,
Q, R, S, and T are described by events corresponding to
negative and positive attractors/repellors in that direc-
tion. These events are placed at fixed angles along the
unit circle given by θi. The resultant ECG signal is syn-
thesized by solving a set of differential equations shown
below:

ẋ = αx− ωy; ẏ = αy + ωx

ż = −
∑

iϵ(P,Q,R,S,T )

ai∆θiexp

(
−∆θi

2

2bi
2

)
− (z − z0),(4)

where α = 1 −
√
(x2 + y2), ∆θi = (θ − θi)mod2π,

θ = atan2(x, y), z0 = Asin(2πf2t) and f2 is the respi-
ratory frequency. With some trial and error, we found
suitable values for ai, bi and ∆θi, for each segment, re-
sulting in more realistic maternal and fetal ECG signals
with amplitudes, timing and frequency content close to
clinically reported signals. Table 1 lists the values used
into the ECG model and Table 2 shows the range of ECG
amplitudes and timing values used in this paper. These
values fall within the range reported by Shepovalnikov et.
al. [12] for in-vivo maternal and fetal ECGs.

Table 1: Parameters input into the ECG model

MECG P Q R S T

time (s) -0.202 -0.044 0 0.044 0.216
ai;bi 0.3;0.19 0.3;0.1 28;0.08 -7;0.1 0.5;0.29

θi(deg) -80.47 -16.94 0 16.94 84.71
FECG1;2 P Q R S T

time (s) -0.084;-0.088 -0.02;-0.024 0;0 0.02;0.024 0.056;0.076
ai 0.04;0.04 -3;-2 3.5;3 -4;-5 0.1;0.2
bi 0.5;0.4 0.3;0.32 0.3;0.33 0.2;0.22 0.5;0.4

θi(deg) -103.5;-116.31 -31.5;-42.46 0;0 31.5;42.46 72;95.08

Table 2: Durations and amplitudes of MECG and FECG

MECG P −Q Q− T R−R S − T QRS

(sec) 0.158 0.26 0.83 0.172 0.088
FECG1;FECG2 P −Q Q− T R−R S − T QRS

(sec) 0.064;0.064 0.076;0.1 0.4;0.39 0.036;0.09 0.04;0.048
MECG P Q R S T

(mV) 0.521 0.15 2.102 -0.266 0.804
FECG1;FECG2 P Q R S T

(mV) 0.135;0.133 0.053;0.077 0.242;0.231 0.089;0.058 0.142;0.141

2.3 Simulation Studies

The maternal and the fetal ECG signals are uniquely dif-
ferent in their ECG durations, amplitudes and also spec-
tral content [12]. In this paper, we assume maternal heart
rates fixed at 72 bpm and vary fetal hearts around an av-
erage of 150 bpm. At first a noise free scenario was tested
where maternal and 2 fetal ECG signals were mixed us-
ing a randomly selected 3-by-3 mixing matrix to form 3
channels of data that was input into the algorithms. We
then quantitatively compared the reconstruction perfor-
mance of Fast-ICA with different standard contrast func-
tions and our newly proposed data centric functions using
a metric called the performance index or the PI-metric.
Since ICA methods cannot exactly determine the scaling
(the energy) of the sources, and their orders, the Amari
distance [9] is useful for performance comparison. The
Amari distance (or the PI metric) is defined as follows:
Let eij be the (i,j)th element of the matrix E = WA.
Then the PI metric is -

PI=
1

n

n∑
i=1

{(
n∑

k=1

|eik|
maxj |eij |

− 1

)
+

(
n∑

k=1

|eki|
maxj |eji|

− 1

)}
.

(5)
We then repeated the simulations for noisy channel data
using zero-mean unit variance Gaussian noise and elec-
tromyographic (EMG) artifacts. Gaussian noise is chosen
to simulate the collection of the numerous sources of noise
all added up together including electrode noise, environ-
mental noise, electronics, etc. The effect of its variance
is also tested using the ICA schemes. The EMG signal
arises from the mother’s abdominal muscle movements.
We used data from physionet online signal archives [13]
for this source. Other simulations involved testing the
ICA techniques over acquisition time, closely similar fetal
signals (primarily heart rate) and with in-vivo maternal
ECG (from physionet). In-vivo fetal ECG data is cur-
rently unavailable online and requires a separate clinical
study.
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3 Results and Discussion

Fig 1 shows an example of the maternal and twin fe-
tal ECG data used in the ICA simulations generated us-
ing the ECG dynamical model [11] and parameters in
Table 1. Parameters were carefully chosen (see Table
2) so that, the ECG segments and amplitudes would be
within the range of clinically reported results. It is clear
from the figure that the two signals are not identical in
terms of their morphological and temporal behavior as
described in Taylor et. al. [8] and Shepovalnikov et.
al. [12]. We also estimated the power spectral density
using the standard Welch technique and calculated the
center of gravity of the spectrums. Values obtained for
MECG, FECG1 and FECG2 were 9.27Hz, 20.22Hz and
17.59Hz. These values closely agree with those reported
in [12]. The above 3 sources (for example: MECG= 72,
FECG1= 150, FECG2= 147bpm) were combined to form
3 channels of data using a 3-by-3 mixing matrix. With a
starting random guess of the mixing matrix, the source
data was estimated and the PI metric (eq. 5) was calcu-
lated. To assess the performance with noise (EMG and
gaussian noise), the number of channels was increased to
5.
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Figure 1: Simulated maternal and twin fetal ECG signals
using parameters and values from Table 1 and 2. Power
spectrum of the signals done using the Welch method.

For the data centric method, a robust estimate of the
source probability density function (pdf) is needed. We
do this by creating a normalized histogram of long length
(10-15 minutes) ECG data and noise. The length of the
data matrix is chosen such that the pdf shape converges.
Fig 2 shows an example of the obtained density functions
for sources and noises with both techniques. Note that
the density functions look different across all sources mo-
tivating a data-centric method. We then fit a 3rd − 6th

order polynomial to the contrast function and then use
that information in the Fast-ICA routine (see section:
ICA). Fig 3 shows the variation of the PI metric over
the different schemes over data acquisition time (up to
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Figure 2: Probability density functions (pdfs) of the ma-
ternal, fetal signals, EMG artifact and gaussian noise,
using normalized histogram and KDE methods.

500s) for noiseless (left) and noisy (right) data. The new
data-centric schemes well surpasses the data based Pear-
son method (both noiseless and noisy) and performs on
par and sometimes better than the standard polynomial
schemes (such as POW3 and SKEW). Beyond 200s of
data for noiseless and 400s for noisy channels, the PI met-
ric stabilized indicating that a relatively long segment of
data (maybe 10 mins) should be taken before ICA estima-
tion for fetal reconstruction. PI metrics under 0.1 in this
case offered a clear visual morphological reconstruction
(example shown later). For increased heart rates, around
180 bpm, (see Fig 4), the PI metric increased in value
due to errors in maternal ECG reconstruction. FECGs
were however estimated properly (result not shown). Fig
5 shows the variation in mean PI metric over the different
ICA schemes with closely similar twin fetal signals and
heart rates for noisy channel data centered around 150
bpm and 180 bpm (both types common with cardiac de-
fects). Closely similar fetal signal is a common occurrence
with identical twins. Here we investigated the separation
performance when fetal signals had a heart rate differ-
ence between 0 and 5 bpm. Note that the input signals
have no rate variability. The data-centric method with
4th order performs the best for FECG1=150bpm but the
POW3 method surpasses this slightly for a higher mean
FECG1 of 180 bpm. We also noticed an overall shift in
the metric with increase in heart rate indicating ICA re-
construction difficulties with the maternal ECG at these
rates. Fig 6 is an example in-vivo data set experimented
on. The MECG was obtained from physionet from real
ECG databases and the fetal signals were simulated (see
section: simulation of twin data). EMG gaussian noise
were also mixed into the channel. Real fetal signals are
unavailable online and hence were simulated. The figure
shows clean reconstruction with the polynomial method.
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Figure 3: Variation in mean PI metric over time (10-500 sec) for the different Fast-ICA schemes and our proposed
data-centric implementations using polynomial (3rd − 6th order) for data with no noise (left) and with noise (right).

Further the figure also shows the PI metrics for all the
techniques with the poly-4 performing as expected.

4 Summary and Conclusion

In this study, we investigated Fast-ICA standard con-
trast functions and formulated new data-centric polyno-
mial based contrast functions to extract simulated twin
FECG from abdominal ECG channel data, under differ-
ent types of interference for purposes of twin fetal health
assessment. We clearly show that the polynomial based
contrast functions perform superior to the data based
pearson method and works on par and in some cases bet-
ter than standard ICA polynomial schemes like SKEW
and POW3. We show a variety of simulations with and
without noise and quantify reconstruction performance
using a PI metric that is scale and order independent. PI
metrics for Poly-4 were in many cases the lowest offer-
ing best performance. When estimation was done over
data acquisition time, it was clear that adequate data
was needed for good performance. In general a good rule
of thumb may be acquiring 600s (or 10 min) of data
before ICA estimation. The performance of the ICA
schemes, however, degraded slightly with increased heart
rates (180 bpm) possibly due to increase information con-
tent in the signal. With this scenario MECG reconstruc-
tion imperfections caused the increase in PI values. It
was also clear from the simulations that equal fetal heart
rates could not be separated, but a difference of 1 bpm
was sufficient to significantly improve the performance
for most techniques. Again poly-4 performed the best
at FECG1=150bpm whereas POW3 was slightly better
at FECG1=180bpm. While testing on the in-vivo data,
similar trends were seen with the Poly-4 being on par

than the other ICA schemes. We believe that these data-
centric schemes with ICA will be more powerful in true
in-vivo situations when access to abdominal ECG data is
available with twin fetal gestations.
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Figure 4: Variation in mean PI metric (eq. 5) over
time (10-500 sec) for the different Fast-ICA schemes and
our proposed data-centric implementations using polyno-
mial (3rd− 6th order) for data with increased heart rates
(FECG1=180bpm; FECG2=177bpm.
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