
Improving the Real-Time Concurrent Constraint Calculus with a Delay

Declaration

Gerardo M. Sarria M. ∗

Abstract—The Real-Time Concurrent Constraint
Programming Calculus (rtcc) is a model of concur-
rency developed to specify systems with real-time be-
haviour. In this paper we enhance this calculus by
extending the concept of time as a discrete sequence
of minimal units that we will call ticks. We also add a
new construct to rtcc to be able of delaying the exe-
cution of a process for an amount of ticks. The oper-
ational semantics were adapted to support these new
features. We argue that this extension makes the cal-
culus temporally homogeneous and allows modeling
real-time systems (such as an improvisation system
where time is an inflexible notion) in a more precise
way.

Keywords: process calculi, rtcc, operational semantics,

delay declaration

1 Introduction

The rtcc calculus [11] is a ccp-based formalism [10], ex-
tension of the ntcc calculus [8]. rtcc is obtained from
ntcc by adding a construct for specifying strong preemp-
tion and by extending the transition system with sup-
port for resources, limited time and true concurrency.
This calculus allows modeling real-time and reactive be-
haviour.

In reactive systems, time is conceptually divided into dis-
crete intervals (or time units). In a time interval, a pro-
cess receives a stimulus from the environment, it com-
putes (reacts) and responds to the environment. In the
case of rtcc the stimulus is a tuple consisting of a con-
straint representing the initial store, the available num-
ber of resources and the duration of the time unit, and
responds with another tuple consisting of a constraint
representing the final store, the maximum number of re-
sources used in calculations and the time spent in them.
A reactive system is shown in figure 1. For each Pi there
is an stimulus ⟨di, ri, ti⟩ and a response ⟨d′i, r

′
i, t
′
i⟩ in the

time unit ki.

To model real time, we assume that each time unit is a
clock-cycle in which computations (internal transitions)
involving addition of information to the store (tell op-
erations) and querying the store (ask operations) take a

∗AVISPA Research Group. Pontificia Universidad Javeriana,
Cali - Colombia. Email: gsarria@cic.javerianacali.edu.co

1k 2k 3k

1P 2P 3P

r’d’ 11 ,, t’1 rd 22 ,, t 2r11 ,, t 1 r’22 ,, t’2 rd 33 ,, t3 r’d’ 33 ,, t’3

...

d’d

Figure 1: Reactive System

particular amount of time dependent on the constraint
system. A discrete global clock is introduced and it is
assumed that this clock is synchronized with the physical
time (i.e. two successive time units in this calculus cor-
respond exactly to two moments in the physical time).
We also assume that the environment provides the exact
duration of the time unit. That is, processes may not
have all the time they need to run, instead, if they do
not reach their resting point in a particular time, some
(or all) of their computations not done will be discarded
before the time unit is over. The duration will be then
the available time that processes have to execute. We will
take this available time as a natural number; this allows
to think of time as a discrete sequence of minimal units
that we will call ticks.

The rtcc calculus provides a way of executing unit de-
lays and weak time-outs with the constructs next P and
unless c next P . We realized that just with these con-
structs a calculus is not able to express neither strong
time-outs [1]: “if an event A does not happen by time
t, cause event B to happen at time t”, nor real delays
within the current time unit.

Process next P activates P the next time unit. Then this
construct delays a process an amount of time given by the
environment (the duration of the time unit). This means
that there is no total control over the exact duration of
the retard and might be more than the time wanted. To
eliminate this drawback, we will add the construct:

delay P for δ

It will delay the execution of process P for at least δ
ticks. This process allows to express things like “this
process should start 3 seconds after another starts”. This
construct is similar to the notation of delay declarations
introduced in logic languages in [7], and used in program-
ming languages like Gödel [4].

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I 
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010



The main contributions of this paper are: 1) the intro-
duction to rtcc of a new construct to delay the execution
of a process within a time unit, 2) an example illustrating
the potential of the new feature, 3) an extension of the
operational semantics to support the new construct, and
4) the explanation of some properties of processes.

2 The Calculus

Here we describe the enhanced syntax and the extended
operational semantics for rtcc. We begin by introducing
the notion of constraint system, very important in
ccp-based calculi.

Constraint System. The rtcc processes are parame-
terized in a constraint system which specifies what kind
of constraints handle the model. Formally, it is a pair
(Σ,Δ) where Σ is a signature (a set of constants, func-
tions and predicates) and Δ is a first order theory over Σ
(a set of first-order sentences with at least one model).

Given a constraint system, the underlying language L
of the constraint system is a tuple (Σ,V,S), where V
is a set of variables, and S is a set with the symbols
¬,∧,∨,⇒,∃,∀ and the predicates true and false. A
constraint is a first-order formulae constructed in L.

A constraint c entails a constraint d in Δ, notation c ⊧Δ

d, iff c ⇒ d is true in all models of Δ. The entailment
relation is written ⊧ instead of ⊧Δ if Δ can be inferred
from the context.

For a constraint system D, the set of elements of the
constraint system is denoted by ∣D∣ and ∣D∣0 represents
its set of finite elements. The set of constraints in the
underlying constraint system will be denoted by C. The
conjunction of all posted constraints will be called the
store.

Process Syntax. The Processes P,Q, . . . ∈ Proc are
built from constraints c ∈ C and variables x ∈ V in the
underlying constraint system by the following syntax:

P,Q, . . . ::= tell(c) ∣ ∑i∈I when ci do Pi ∣ P ∥ Q
∣ local x in P ∣ unless c next P
∣ catch c in P finally Q ∣ next P
∣ delay P for δ ∣ !P ∣ ⋆P

Intuitively, the process tell(c) adds constraint c to the
store within the current time unit. The ask processwhen
c do P is generalized with a non-deterministic choice of
the form ∑i∈I when ci do Pi (I is a finite set of in-
dices). This process, in the current time unit, must non-
deterministically choose one of the Pj (j ∈ I) whose corre-
sponding guard constraint cj is entailed by the store, and

execute it. The non-chosen processes are precluded. Two
processes P and Q acting concurrently are denoted by
the process P ∥ Q. In one time unit P and Q operate in
parallel, communicating through the store by telling and
asking information. The “∥” operator is defined as left
associative. The process local x in P declares a variable
x private to P (hidden to other processes). This process
behaves like P , except that all information about x pro-
duced by P can only be seen by P and the information
about x produced by other processes is hidden to P . The
weak time-out process, unless c next P , represents the
activation of P the next time unit if c cannot be inferred
from the store in the current time interval (i.e. d ⊭ c).
Otherwise, P will be discarded. The strong time-out pro-
cess, catch c in P finally Q, represents the interruption
of P in the current time interval when the store can entail
c; otherwise, the execution of P continues. When process
P is interrupted, process Q is executed. If P finishes, Q
is discarded.

The execution of a process P now can be delayed in two
ways: with delay P for δ the process P is activated
in the current time unit but at least δ ticks after the
beginning of the time unit, whilst with next P the pro-
cess P will be activated in the next time interval. The
operator “!” is used to define infinite behaviour. The
process !P represents P ∥ next P ∥ next(next P ) ∥
. . ., (i.e. !P executes P in the current time unit and
it is replicated in the next time interval). An arbi-
trary (but finite) delay is represented with the operator
“⋆”. The process ⋆P represents an unbounded but finite
P + next P + next(next P ) + . . ., (i.e. it allows to
model asynchronous behaviour across the time intervals).

The guarded-choice summation process ∑i∈I when ci do
Pi is actually the abbreviation of

when ci1 do Pi1 + . . . +when cin do Pin

where I = {i1, . . . , in}. The symbol “+” is used for binary
summations (similar to the choice operator from CCS
[6]). If there is no ambiguities, the “when c do” can be
omitted when c = true, that is, ∑i∈I Pi. The process that
do nothing is skip. The inactivity process is defined as
the empty summation ∑i∈∅ Pi. This process is similar to
process 0 of CCS and STOP of CSP [5]. Furthermore,
terminated processes will always behave like skip. We
write ∏i∈I Pi, where I = {i1, . . . , in} to denote the parallel
composition of all the Pi, that is, Pi1 ∥ . . . ∥ Pin . When
process Q is skip, the “finally Q” part in process catch
c in P finally Q can be omitted, that is, we can write
catch c in P . A nest of delta delay processes such as
delay (delay P for δ1) for δ2 can be abbreviated to
delay P for δ1 + δ2. Notation nextn P (where next
is repeated n times) is written to abbreviate the process
next (next (. . . (next P ) . . .)). A bounded replication
and asynchrony can be specified using summation and
product. !IP and ⋆IP are defined as abbreviations for

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I 
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010



∏i∈I next
iP and∑i∈I next

iP , respectively. For example,
process ![m,n]P means that P is always active between the
next m and m + n time units.

Now we will show a simple example illustrating the
specification of temporal behaviour in this calculus.

Example 2.1. Suppose a simple improvisation situation
where there are two machines M1 and M2. The first
machine M1 performs a single random action from a list
Actions every 15 ticks. The second machine M2 must
follow it, that is, perform a series of actions depending
on the action performed by M1. Additionally, in some
occasions M1 not only performs a single action but two
in the same time unit (it performs one action and 5 ticks
latter performs another). In this case M2 must stop its
performance and try to follow the second action (there
may be cases in which this is not possible due to the
limit of time). This behaviour can be modeled as follows:

First, we have to model M1:

M1
def= ! ∑

i∈Actions

tell(action1 = i) ∥

⋆ delay ∑
i∈Actions

tell(action2 = i) for 5

Now for the second machine we assume a process
FollowingActions that calculates the actions to follow
and performs them. Also, we assume an action 0 ∉
Actions. Thus M2 is modeled:

M2
def= ! when action1 ≠ 0 do

catch action2 ≠ 0

in FollowingActions(action1)

finally FollowingActions(action2)

To model the whole system we simply launch the process
M1 ∥ M2.

3 Operational Semantics

The operational semantics can be formally described by
means of a transition system conformed by the set of
processes Proc, the set of configurations Γ and transition
relations → and ⇒. A configuration γ is a tuple ⟨P, d, t⟩
where P is a process, d is a constraint in C representing
the store, and t is the amount of time left to the process to

be executed. The transition relations → = {
⟨r⟩
�→, r ∈ Z+}

and ⇒ are the least relations satisfying the rules in tables
1 and 2.

The internal transition rule ⟨P, d, t⟩
r
�→ ⟨P ′, d′, t′⟩ means

that in one internal time using r resources process P
with store d and available time t reduces to process P ′

with store d′ and leaves t′ time remaining. We write

Table 1: Internal Transition Rules of rtcc

t −ΦT (c, d) ≥ 0

⟨tell(c), d, t⟩
1
�→ ⟨skip, d ∧ c, t −ΦT (c, d)⟩

t −ΦA(cj , d) ≥ 0 d ⊧ cj , j ∈ I

⟨∑i∈I when ci do Pi, d, t⟩
1
�→ ⟨Pj , d, t −ΦA(cj , d)⟩

⟨P, d, t⟩
sp
�→ ⟨P ′, d′p, t

′
p⟩ ⟨Q,d, t⟩

sq
�→ ⟨Q′, d′q , t

′
q⟩ sp + sq ≤ r

⟨P ∥ Q,d, t⟩
sp+sq
���→ ⟨P ′ ∥ Q′, d′p ∧ d

′
q ,min(t′p, t

′
q)⟩

⟨P, d, t⟩
sp
�→ ⟨P ′, d′p, t

′
p⟩ sp ≤ r

⟨P ∥ Q,d, t⟩
sp
�→ ⟨P ′ ∥ Q,d′p, t

′
p⟩

⟨Q,d, t⟩
sq
�→ ⟨Q′, d′q , t

′
q⟩ sq ≤ r

⟨P ∥ Q,d, t⟩
sq
�→ ⟨P ∥ Q′, d′q , t

′
q⟩

⟨P, c ∧ ∃xd, t −ΦT (c,∃xd)⟩
s
�→ ⟨P ′, c′, t′⟩

⟨local x, c in P, d, t⟩
s
�→ ⟨local x, c′ in P ′, d ∧ ∃xc′, t′⟩

t −ΦA(c, d) ≥ 0 d ⊧ c

⟨unless c next P, d, t⟩
1
�→ ⟨skip, d, t −ΦA(c, d)⟩

t −ΦA(c, d) ≥ 0 d ⊧ c

⟨catch c in P finally Q,d, t⟩
1
�→ ⟨Q,d, t −ΦA(c, d)⟩

⟨P, d, t −ΦA(c, d)⟩
s
�→ ⟨P ′, d′, t′⟩ d ⊭ c

⟨catch c in P finally Q,d, t⟩
s
�→ ⟨catch c in P ′ finally Q,d′, t′⟩

δ > T − t t > 0

⟨delay P for δ, d, t⟩
0
�→ ⟨delay P for δ, d, t − 1⟩

δ ≤ T − t

⟨delay P for δ, d, t⟩
0
�→ ⟨P, d, t⟩

⟨!P, d, t⟩
0
�→ ⟨P ∥ next !P, d, t⟩

⟨⋆P, d, t⟩
0
�→ ⟨nextm P, d, t⟩

if m ≥ 0

γ1 → γ2

γ′1 → γ′2
if γ1 ≡ γ

′
1 and γ2 ≡ γ

′
2

Table 2: Observable Transition Rule of rtcc

⟨P, c, t⟩ →∗S ⟨Q,d, t′⟩ ↛

P
(⟨c,r,t⟩, ⟨d,max(S),t−t′⟩)
������������⇒ R

if R ≡ F (Q)

⟨P, d, t⟩ → ⟨P ′, d′, t′⟩ (omitting the “r”) when resources

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I 
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010



are not relevant. The observable transition rule P
(ι,o)
�⇒ Q

means that process P given an input ι from the environ-
ment reduces to process Q and outputs o to the environ-
ment in one time unit. Input ι is a tuple consisting of the
initial store c, the number of resources available r within
the time unit and the duration t of the time unit. Out-
put o is also a tuple consisting of the resulting store d,
the maximum number of resources r′ used by processes
and the time spent t′ by all process to be executed. An
observable transition is constructed from a sequence of in-
ternal transitions. It is assumed that internal transitions
cannot be directly observed.

Now we are going to explain the transitions rules in tables
1 and 2. A tell process adds a constraint to the current
store and terminates, unless there is not enough time to
execute it (in this case it remains blocked). The time
left to other processes after evolving is equal to the time
available before the transition less the time spent by the
constraint system to add the constraint to the store. The
time spent by the constraint system is given by functions
ΦT ,ΦA ∶ ∣D∣0 × ∣D∣0 �→ N − {0} (ΦT (c, d) approximates
the time spent in adding constraint c to store d, and
ΦA(c, d) estimates the time querying if the store d can
entail a constraint c). In addition, execution of a tell
operation requires one resource.

The rule for a choice says that the process chooses one
of the processes whose corresponding guard is entailed
by the store and execute it, unless it has not enough
time to query the store in which case it remains blocked.
Computation of the time left is as for the tell process.
The store in this operation is not modified. It consumes
one resource unit.

The first rule of parallel composition says that both pro-
cesses P and Q executes concurrently if the amount of re-
sources needed by both processes separately is less than
or equal to the number of resources available. The re-
sulting store is the conjunction of the output stores from
the execution of both processes separately. This process
terminates iff both processes do. Therefore, the time left
is the minimum of those times left by each process. The
second and third rules affirm that in a parallel process,
only one of the two processes can evolve due to the num-
ber of resources available.

To define the rule for locality, following [3], we extend
the construct of local behaviour to local x, c in P to
represent the evolution of the process. Variable c is the
local information (or store) produced during the evolu-
tion. Initially, c is empty, so we regard local x in P as
local x,true in P . The rule for locality says that if P
can evolve to P ′ with a store composed by c and informa-
tion of the “global” store d not involving x (variable x in
d is hidden to P ), then the local ... in P process reduces
to a local ... in P ′ process where d is enlarged with in-
formation about the resulting local store c′ without the

information on x (x in c′ is hidden to d and, therefore, to
external processes).

In a weak time-out process, if c is entailed by the store,
process P is terminated. Otherwise it will behave like
next P . This will be explained below with the rule for
observations. For a strong time-out, a process P ends its
execution (and another process Q starts) if a constraint c
is entailed by the store. Otherwise it evolves but asking
for entailment of constraint persists.

The two rules for delaying state that a process
delay P for δ delays the execution of P for at least δ
ticks. Once the delay is less than the current internal
time (T represents the duration of the time-unit given by
the environment), the process reduces to P (i.e. it will
be activated). In each transition this process does not
consume any resource.

The replication rule specifies that the process P will be
executed in the current time unit and then copy itself
(process !P ) to the next time unit. The rule for asyn-
chrony says that a process P will be delayed for an un-
bounded but finite time, that is, P will be executed some
time in the future (but not in the past). The rule that
allows to use the structural congruence relation ≡ defined
below states that structurally congruent configurations
have the same reductions.

Finally, the rule for observable transitions states that a
process P evolves to R in one time unit if there is a se-
quence of internal transitions starting in configuration
⟨P, c, t⟩ and ending in configuration ⟨Q,d, t′⟩. Process R,
called the “residual process”, is constituted by the pro-
cesses to be executed in the next time unit. The latter are
obtained from Q by applying the future function defined
as follows:

Let F ∶ Proc → Proc be defined by

F (Q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R if Q = next R or
Q = unless c next R

F (Q1) ∥ F (Q2) if Q = Q1 ∥ Q2

catch c in F (R) finally S if Q = catch c in R finally S
local x in F (R) if Q = local x, c in R
skip Otherwise

To simplify the transitions, a congruence relation ≡ is de-
fined. Following [10], we introduce the standard notions
of contexts and behavioural equivalence.

Informally, a context is a phrase (an expression) with a
single hole, denoted by [⋅], that can be plugged in with
processes. Formally, processes context C is defined by
the following syntax:

C ::= [⋅] ∣ when c do C + M
∣ C ∥ C ∣ local x in C
∣ unless c next C ∣ catch c in C finally C
∣ delay C for δ ∣ next C
∣ ! C ∣ ⋆C

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I 
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010



where M stands for summations.

Two processes P and Q are equivalent, notation P ≐ Q,
if for any context C, P ≐ Q implies C[P ] ≐ C[Q]. Let ≡
be the smallest equivalence relation over processes satis-
fying:

1. P ≡ Q if they only differ by a renaming of bound
variables

2. P ∥ skip ≡ skip ∥ P ≡ P

3. P ∥ Q ≡ Q ∥ P

4. next skip ≡ skip

5. local x in skip ≡ skip

6. local x y in P ≡ local y x in P

7. local x in next P ≡ next(local x in P )

We extend ≡ to configurations by defining
⟨P, c, t⟩ ≡ ⟨Q, c, t⟩ iff P ≡ Q.

Properties. It is clear that with the introduction of the
strong time-out construct, the delta delay construct and
the additional observables of the transition system not all
ccp properties hold. For example, the properties of mono-
tonicity with respect to the store (if a process P evolve
to Q given a particular store d, then P also evolves to
Q given a stronger store e, e ⊧ d) and restartability ex-
plained in [3] do not hold since for a given store a process
may evolve, but if that particular store is augmented, it
is possible that the signal that stops the process (with the
catch construct) be now present, so the process evolves
in a different way. Moreover, time becomes very impor-
tant because processes are limited by the available time.
This available time is reduced in every transition, so if
we take the output of a process and we give it to the
same process as input, that process might evolve in an-
other way obtaining different results. This show that the
notion of quiescent point, usual in CCP calculi, involves
time now.

The following two properties state that a process can only
post constraints in the store or leave it unmodified, but
cannot take out constraints from it, i.e. the store can
only be augmented, not reduced. Additionally, a process
consumes some time to evolve, that is, the time available
at the beginning of the transition is always greater than
or equal to the time at the end (since processes ultimately
perform ask and tell operations, they reduce the available
time using functions ΦA and ΦT , in other words, available
time in a transition is always reducing.

Property 3.1. (Internal Extensiveness). If
⟨P, c, t⟩ → ⟨Q,d, t′⟩ then d ⊧ c and t > t′ ≥ 0.

Proof. The proof proceeds by simple induction on the
inference of ⟨P, c, t⟩ → ⟨Q,d, t′⟩.

The property above can be extended to the observable
relation.

Property 3.2. (Observable Extensiveness). If

P
(⟨c,r,t⟩, ⟨d,s,t′⟩)
�������⇒ Q then d ⊧ c and t > t′ ≥ 0.

Proof. By definition, if P
(⟨c,r,t⟩, ⟨d,s,t′⟩)
�������⇒ Q, then there is

a sequence

⟨P1, c1, t1⟩ → ⟨P2, c2, t2⟩ → . . . → ⟨Pn, cn, tn⟩ ↛

with P = P1, Q = F (Pn), c = c1, t = t1, d = cn and
t′ = t − tn. Then, by property 3.1 cn ⊧ . . . ⊧ c2 ⊧ c1 and
t1 > . . . > tn ≥ 0. Hence d ⊧ c and t > t′ ≥ 0.

Time introduces a different behaviour of transitions than
that of ntcc. For example, suppose that there is 5 ticks
of available time and we have two processes executing

in parallel P1
def= tell(x = 0) and P2

def= catch x =
0 in Q1 finally Q2. If the current store is not strong
enough to infer x = 0 and posting that constraint in the
store takes 6 ticks of time, P1 cannot add it so process
Q1 will continue its execution; but if we augment the
amount of available time the constraint will be added,
Q1 will be stopped and Q2 probably will be executed (if
there’s time). We can find a similar situations with other
constructs.

Note that resources were not considered in the above
properties. This can be explained with the fact that pro-
cesses can evolve with just a single resource, they would
only need enough time.

Finally, since each time unit has a fixed time given by the
environment, the number of internal transitions is finite,
i.e. there is always a final transition in a sequence. This
is important since it guarantees that there are no infinite
computations in one time unit.

Theorem 3.3. Every sequence of internal transitions is
finite.

Proof. The proof follows directly from the fact that
∀c, d ∈ ∣D∣0, ΦT (c, d) > 0 and ΦA(c, d) > 0, and from
property 3.1.

4 Concluding Remarks

In this paper we enhanced the real-time concurrent con-
straint calculus rtcc with a delay construct. We believe
that now with this new feature this calculus allows to
model real-time behaviour in a more precise way. We
extended the operational semantics with two new rules

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I 
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010



allowing to express the internal transitions involving de-
laying a process within a time unit.

We also showed the applicability of the new features by
modeling an improvisation system. Previously in [9] we
showed the musical expressiveness of the rtcc calculus
by modeling musical dissonances.

The new construct delay P for δ arose from the catch
process for two purposes: (1) given the transition sys-
tem proposed where two processes can be executed at
the same time (true concurrency), if there is no way to
delay the execution of a process within a time unit, ev-
ery process would be executed simultaneously (assuming
that there are enough resources) (2) it makes the calculus
homogeneous with respect to the notion of time, that is,
now we can delay a process for some given ticks or for
some given time units.

A delay declaration similar to delay P for δ was first
introduced in a ccp-based language in [2] (it was called
δ-CCP). However the concept of delay in that model is
different from our approach. In the δ-CCP calculus, the
delay mechanism is simulated by modifying the ask con-
struct: the agent ask(δ(x)) → A behaves like A if the
current store satisfies the property δ(x) (a user-defined
predicate), otherwise the agent suspends.

5 Acknowledgments

We want to thank Camilo Rueda for his brilliant ideas
and support during this research. We also thank Salim
Perchy for studying rtcc and letting us know some early
problems involving the delays.

References

[1] Berry, G.: Preemption in concurrent systems. In:
Proceedings of the 13th Conference on Foundations
of Software Technology and Theoretical Computer
Science. pp. 72–93. Springer-Verlag, London, UK
(1993)

[2] de Boer, F.S., Gabbrielli, M., Marchiori, E.,
Palamidessi, C.: Proving concurrent constraint pro-
grams correct. ACM Transactions on Programming
Languages and Systems (TOPLAS) 19(5), 685–725
(September 1997)

[3] de Boer, F.S., Pierro, A.D., Palamidessi, C.: Non-
determinism and infinite computations in constraint
programming. In: Selected Papers of the Workshop
on Topology and Completion in Semantics. Theoret-
ical Computer Science, vol. 151, pp. 37–78. Elsevier
Science Publishers B. V., Chartres, France (1995)

[4] Hill, P., Lloyd, J.: The Gödel Programming Lan-
guage. The MIT Press (April 1994)

[5] Hoare, C.A.R.: Communicating Sequential Pro-
cesses. Prentice-Hall International Series in Com-
puter Science, Prentice Hall (April 1985)

[6] Milner, R.: A Calculus of Communicating Systems.
Lecture Notes in Computer Science, Springer-Verlag
(1980)

[7] Naish, L.: An introduction to mu-prolog. Tech. Rep.
82/2, The University of Melbourne, Melbourne, Aus-
tralia (1982)

[8] Palamidessi, C., Valencia, F.: A temporal concur-
rent constraint programming calculus. In: Seventh
International Conference on Principles and Prac-
tice of Constraint Programming. Lecture Notes in
Computer Science, vol. 2239, pp. 302–316. Springer-
Verlang, London, UK (December 2001)

[9] Perchy, S., Sarria, G.: Dissonances: Brief descrip-
tion and its computational representation in the rtcc
calculus. In: 6th Sound and Music Computing Con-
ference (SMC2009). Porto, Portugal (July 2009)

[10] Saraswat, V.A.: Concurrent Constraint Program-
ming. ACM Doctoral Dissertation Award, The MIT
Press, Cambridge, MA, USA (1993)

[11] Sarria, G., Rueda, C.: Real-time concurrent con-
straint programming. In: 34th Latinamerican Con-
ference on Informatics (CLEI2008). Santa Fe, Ar-
gentina (September 2008)

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I 
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010




