
 
 

 

  
Abstract—We used detrended fluctuation analysis (DFA), 

which was originally developed by Peng et al. (1995) to check 
power-law characteristics, to study the heartbeats of sleeping 
subjects. Our purpose was to determine whether DFA is a useful 
method for evaluation of a subject’s wellness of both during 
being awake and sleeping. This is a new challenge to measure 
sleep without complex machine such as an electro 
encephalogram. We simply used electro cardiogram (EKG) for 
the measurements of sleep, although we needed to make a 
baseline-stable EKG amplifier to perform the measurements. 
Here, we show a case study that DFA is a new, useful numerical 
method for quantifying sleep. 
 

Index Terms—DFA, Heartbeat, Fluctuation analysis, Sleep. 
 

I. INTRODUCTION 
  The interval of heartbeats, thereby the heart rate, is 

determined by the rate of a generation of myocardial 
contractions (or more precisely muscle action potentials) in 
terms of physiology. The heart generates contractions 
periodically, automatically, and regularly to pump blood. 
This muscle pumping looks simple, but is not an independent 
variable. The interval is created by the interaction among 
factors such as the composition of chemicals in the blood and 
the frequency of discharge of autonomic nerves governing the 
heart. Therefore, the determination of the heart rate, i.e., 
interval, is complex and is changed beat by beat, and intervals 
fluctuate as a result. Since the heartbeat reflects activity of 
autonomic nerves, it would be possible that heartbeat analysis, 
in other words, analysis of fluctuation or irregularity of 
heartbeats, can evaluate the subject’s wellness during being 
awake and sleep.  

In Chinese medicine, physicians feel the pulse of patients in 
diagnosing patients and find out which organ is not 
functioning well. This fact indicates that pulses or heartbeats 
carry hidden information about the wellness or sickness of the 
patient. However, man-made machines have not been able to 
mimic this practice of physicians, even though it has been 
more than one hundred years since the industrial revolution 
developed.  
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Despite the historical challenges, we hoped to design a 
machine that could be used to detect irregularities in heartbeat 
intervals. For this purpose, we first tested the Fourier power 
spectral analysis on heartbeat data recorded from 
physiological experiments. We selected the Fourier method 
because we trusted that the effectiveness of the Fourier 
method was to our satisfaction, since the Fourier method is a 
well known method for studying a periodic phenomenon like 
rhythmic heartbeat. As for the specimens used in the 
experiments, we selected crustacean hearts instead of human 
hearts, because we are familiar with the structure and function 
of the heart and nervous system of crustaceans. One of the 
main reasons for using invertebrates was that all animals have 
a common genetic code (DNA information) for body systems 
such as the cardiovascular system [1, 2]. All animals 
fundamentally have a pump (the heart) and a controller (the 
brain). 

The result of our Fourier analysis was less than expected 
and quite disappointing [3]. However, during the course of the 
test, we found that the detrended fluctuation analysis (DFA) 
was more suitable for detecting irregularities in the heartbeat 
[3]. DFA distinguished the differences between the heartbeat 
of an isolated heart and an intact heart, even though both of 
the hearts beat regularly [3]. Using DAF, we calculated that 
healthy hearts exhibit a scaling exponent of 1.0, which was 
similar to the results originally reported by Peng et al. in 1995 
[4]. The scaling exponent of 1.0 is comparable to 1/f 
fluctuation, which was reported by Kobayashi and Musha in 
human hearts [5]. Next, we tested human hearts and found out 
that premature ventricular contractions (PVCs), a typical 
extra-systole arrhythmia, lowers the scaling exponent [6] and 
the alternans, which is an abnormal heart rhythm called 
“harbinger of death,” also lowers the scaling exponent of 
heartbeat fluctuation dynamics [7]. Moreover, we found that 
the hearts of heart-transplanted subjects exhibit a scaling 
exponent as high as 1.2 [8] and the hearts of subjects who 
have suffered an ischemic heart disease exhibit a scaling 
exponent of 1.2–1.4 [9, 10]. Therefore, we trusted that this 
method helps to better diagnose the sleep, because sleep 
disorders are afflicted with disorders of the brain functions 
that directly influence the cardiovascular system through the 
autonomic nervous system. 

In this article, we provide an empirical proof for the 
practical usefulness of DFA. We explain how we can evaluate 
the wellness of subjects using heartbeat recordings. Our 
purpose was to evaluate sleep of a normal healthy subject 
using the DFA. 
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II.  MATERIALS AND METHODS 

A. Sleep Documented by a Sleep Monitor 
Sleep experiments were performed at the laboratory of R & 

D of Maruhachi Corp. at Hamamatsu, Japan. We used a sleep 
monitor system (Chiyoda-ku, Tokyo, Japan), which produced 
a sleep diagram. The monitor system was made to reflect 
complex physiological factors of being awake and sleep 
processes, including the brain waves, respiration and the 
heartbeat. Since the system can distinguish two typical 
conditions, being awake and deep sleep state, we consider that 
the system is useful to distinguish the being awake state from 
the deep sleep state, which is non-rapid eye movements 
(NREM) sleep. 

B. Electrocardiogram and Muscle Movements 
During sleep, we always monitored the electro-cardiogram 

(EKG) and body movements. For EKG, commercial EKG 
electrodes (Nihonkoden, Japan) were used. The electrodes are 
composed by AgAgCl electrodes and carbon fiber connection 
wires. Body movements were detected by a piezo 
electro-mechanical sensor attached to a finger (AD 
Instruments, Australia). This sensor responds to pressure of 
blood flow and movements of fingers, arms, and body. If there 
are no body movements, the sensor sends only blood flow 
signals. This piezo recording is thereby efficient to know 
whether the subjects are stationary, which means that the 
subjects are in a state of NREM sleep. Another piezo sensor 
was attached to the face of the subjects. It was attached on the 
lateral side surface of the face under a frame of a pair of 
glasses. This can monitor movements of the face including 
eye movement. EKG signals, finger signals, and face signals 
are recorded by a Power Lab system (AD Instruments, 
Australia). 

C. A stable Recoding of EKG 
We cannot use a common electrocardiogram, because 

inevitable body movements during sleep disturb a perfect 
recording of the heartbeat, which means a recording without 
any missing beat. Body movements during sleep produce a 
shift of base line of EKG-trace. Body movements furthermore 
produce many spiking noises in the recordings (see Fig. 1). 
Therefore, we invented a special EKG amplifier [11]. This 
enabled us to obtain stable EKG recordings for hours without 
missing heartbeats (Figs 2 and 3). 

 
Fig. 1. Bad example of EKG. Contaminated with 

undesirable noises in recording due to body movements. A 
complex shift of baseline and spikes indicated by three N. 
Regardless of this “noises” we can identify all heartbeats by 
eye-observation on the PC screen as shown in this figure, only 
if the base line does not scale out from the screen. However, 
we still needed to remove this “noise”. A perfect detection of 
the heartbeat was a necessary condition for performing the 
detrended fluctuation analysis (DFA). 

 
Fig. 2. Stable and perfect EKG recordings during sleep. 

Period of sleep is shown between arrows. A: Stable EKG was 
established by our own EKG amplifier. B: Recordings from a 
finger, a pointer. Movements can be seen as spikes, a large 
vertical swing. C: Recordings from the face lateral surface. 
Vertical swings correspond to various movements. D: 
Automatic calculation of heart rates by a PC program (AD 
Instrument) from the trace A, a stable EKG trace. *(Asterisk) 
shows that the subject became awake at this point of time. He 
said that he was thinking whether it is time to get up or not. 
But he decided to go to sleep again since he was allowed to 
sleep for 3 hrs. His heart rate immediately increased when he 
woke up, but the heart rate returned to a lower value again as 
soon as he fell into a deep sleep. Less face movements as well 
as finger movements appeared during the deep sleep (see 
arrowheads).

 
Fig. 3. The same set of recordings as shown in Fig. 2 but 

shown in different time scales. The timing of individual 
heartbeats are well recorded in both A and B. The base line of 
the EKG trace is stable (A). The face muscle moved at the 
time of three arrows (C). At this moment the heart rate 
increased (A and D) and blood flow increased (B). 

D. DFA: Background 
DFA is based on the concepts of “scaling” and 

“self-similarity” [12]. It has been known as a method that 
identifies “critical” phenomena because systems near critical 
points exhibit fluctuations with self-similar properties [12, 13, 
14]. The fluctuation is referred to as "self-similar" when 
recorded signals and their magnified/contracted copies are 
statistically similar. More strictly, self-similarity is defined as 
follows: in general, statistical quantities, such as "average" 
and "variance," of a fluctuating signal can be calculated by 
taking the average of the signal through a certain section. Here, 
the average is not necessarily a simple average; in this work, 
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we took an average of data squared. The statistical quantity 
calculated would depend on the section size. The signal is 
self-similar when the statistical quantity becomes la times for 
the section size magnified by l. Here, the value a, called the 
"scaling exponent," characterizes the self-similar property. 

Stanley and colleagues have considered that the scaling 
property could be found in biological data because most 
biological systems are strongly nonlinear and resemble the 
systems in nature that exhibit critical phenomena. They 
applied DFA to DNA arrangement and electrocardiogram 
(EKG) data in the late 80’s to early 90’s and found the scaling 
property in them [13, 14]. They emphasized DFA's potential 
utility in life science [14]. Technologically, while it has not 
matured, nonlinear technology is now accepted and 
increasingly advancing. 

E. DFA: Technique 
DFA-computation methods have already been explained 

elsewhere [15]. Here, we describe it for biological scientists 
who have no background of physics.  

(i) The heartbeat is recorded for about 30 to 50 minutes at 
a single testing because about 1000 beats are required for 
determination of the scaling exponent. We recorded 
heartbeats using an EKG or finger pressure pulses.  

(ii) Pulse-peak time series {ti} (i = 1, 2,..., N + 1) are 
captured from the record using an algorithm based on the peak 
detection method. To avoid false detection, we identified all 
peaks with eye-observation on the PC screen although it was a 
time consuming task. Experience in neurobiology and cardiac 
animal physiology is sometimes necessary when determining 
whether a pulse-peak is a cardiac signal or a noise.  

(iii) The heartbeat-interval time series {Ii}, such as the 
R-R intervals of an EKG, are calculated, which is defined as:  

 

1{ } { }i i iI t t+= - , i = 1, 2, ..., N             (1) 
 

   (iv) The series {Bi}, upon which we conduct DFA, is 
calculated as follows:  
 

{Bk} = {Sj = 1
k [Ij - <I>]},                          (2) 

 
where < I > is the mean interval defined as: 
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(v) The series {Bk} is divided into smaller sections, 
which include j beats each. The section size j can range 
from 1 to N. For the efficient and reliable calculation of the 
scaling exponent in our program, we confirmed by test 
analysis that the number N is hopefully greater than 1,000.  

(vi) In each section, the series {Bk} is approximated to a 
linear function. To find the function, we applied the least 
square method. This function expresses "trend," the slow 
fluctuation such as Bk increases/decreases throughout the 
section size. Then, a "detrended" series {B'k}j is obtained by 
the subtraction of {Bk} from the linear function.                                                                    

(vii) We calculate the variance, which is defined as:  
 

F2(j) = <{B'k2}j>                                      (4) 
 

 
Fig. 4. Representative patterns of sleep. Three different 

subjects. We made this figure by modification of the original 
report to show typical sleep patterns. All example recordings 
show that a deep sleep stage (stage IV, NREM sleep) occurs 
within one hour. 

  
 
 
(viii) The procedure (v) to (vii) is repeated for changing j 

from 1 to N. Finally, we plotted a variance against the section 
size j. Then, the scaling exponent is obtained by  
 

F2(j) ∝ ja                                             (5) 
 

Most of computations mentioned above, which are 
necessary to obtain the scaling exponent, are automated. The 
automatic program gives us a scaling exponent relatively 
quickly. The scaling exponent exhibits a value near 1.0 for a 
normal/healthy heart and exhibits a higher or lower value for a 
sick heart. Although we cannot have a critical discussion 
regarding whether or not the exponent is precisely 1.0 or not, 
our automatic program is helpful and reliable to distinguish a 
normal state of heart from a sick state. Hence, in this report, 
we mention 3 categories in differentiation: normal, high, and 
low. 

III. RESULTS 

A. Sleep and EKG 
We do not have a sophisticated electro encephalogram. 

However, we could record a pattern of sleep using a sleep 
monitor, such as a stage of being awake and NREM sleep. A 
deep sleep started as soon as the subjects fell asleep. It was of 
no importance during which time, day or night, the patient fell 
asleep. NREM sleep occurred within one hour, if subjects 
were healthy and sleepy. However, some subjects can never 
sleep well in a laboratory bed, even if they were deprived of 
their sleep for a certain period of time prior to the experiment. 
Since this initial deep sleep process is common to healthy 
people, we focused on this initial deep sleep in the present 
investigation. To obtain a good sleep or a good nap, subjects 
were advised to cut their regular sleeping time shorter.  
Our research interest was a possible correlation between EKG 
and sleep. For that reason we used DFA for heartbeat analysis, 
since the DFA reflects the functioning of autonomic nerves. 
We first observed how sleep starts and continues during an 
EKG recording. Before that, we had to confirm what is a 
representative sleep pattern, which is well known in 
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publications [16]. From Fig. 4, one can see that a deep sleep 
occurs in the first one hour. Our sleep records also confirmed 
the same pattern, even if the experiments started at day time 
(Fig. 5). This subject exhibited a common pattern, where 
NREM sleep occurred in the first one hour after starting the 
experiment. Fig. 6 shows a sleep pattern which we analyzed in 
the present study. Fig. 7 shows heart rate time series 
corresponding to this sleep patterns shown in Fig. 6. One can 
see that the heart rate gradually decreased and became more 
steady during sleep. However, the heart rate changed 
dynamically during the period of being awake. 
 
 
 

 
Fig. 5. Two sleep records from the same person in our 
laboratory. A male subject, 59 years old, took a nap in the 
laboratory facility. He was advised to sleep less hours the 
night before these tests. A state of being awake and a state of 
NREM sleep can be identified, although the software for 
monitoring sleep is different between A and B. Recorded in 
February (A) and in May (B) 2010, from the same subject at 
the same laboratory facility. 
 

 
Fig. 6. Entire sleep record shown in Fig. 5A. We recorded the 
heartbeat during sleep and also during the period shown as 
“Awake”, as described in the Methods section. 

 
Fig. 7. Time series of the heart rates, calculated from the EKG, 
recorded during the period of “Sleep” and “Awake” in the 
sleep diagram of Fig. 6. * Two asterisks: Subject declared he 
was conscious during this short period of time. This period of 
being awake was not precisely detected by a sleep diagram, 
shown in Fig. 6. Therefore, it seems that a sleep diagram does 
not always perfectly express the brain functioning. Our 
understanding of sleep in terms of neuroscience is not so 
advanced as we thought, as mentioned in a reference [17]. 
 

B. DFA of Heartbeats 
Fig. 7 shows the results of DFA on both data during 

“Sleep” and “Awake”. The scaling exponents during sleep 
decreased, which was 0.82 (Fig. 7A) although the scaling 
exponent of the “Awake” state showed a perfect measure of 
0.99, almost 1.0 (Fig. 7B). This indicates that this subject is 
healthy in terms of DFA as has been shown in our previous 
research [6, 7, 9, 10]. However, we discovered that a deep 
sleep state is not an ideal state of brain functions in terms of 
DFA tests. We would suggest that sleeping could be a 
dangerous condition for living animals. In the animal world, 
all creatures have to find a safe place for resting at night 
without being attacked by predators. 

 
Fig. 8. DFA results of heartbeat patterns during the states of 

“Sleep” and “Awake”, shown in Figs 6 and 7. The scaling 
exponents are 0.82 and 0.99, respectively. 
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IV. DISCUSSION 
Time series of the heart rates showed that the heart rates 

during deep sleep were steady, compared to being awake (Fig. 
6). This steadiness can be quantified by DFA and calculated 
as a lower scaling exponent. This discovery of a low scaling 
exponent during deep sleep is interesting, since we have 
already reported that the heart without control of the brain 
exhibits a low scaling exponent [3]. It is known that the 
healthy heart under the brain control shows a normal scaling 
exponent of 1.0 as mentioned above [9]. Even in the phase of 
deep sleep, if a subject is awake, the heart rates return to a 
normal rate (see * in Fig. 6). Therefore, the heart in deep sleep 
is pumping in a state of “minimum control” from the brain. 
We did not record the brain waves. However, the sleep 
monitor we used is believed to reflect brain functions, like the 
autonomic nervous system function. Therefore, it seems that a 
sleep pattern diagram does not always reflect details of the 
brain activities. Our understanding of sleep in terms of 
neuroscience is not so advanced as we thought, as mentioned 
in a reference [17]. Understanding the brain function 
regarding to sleep is still in an alpha stage. Or, the 
understanding of brain waves themselves is not perfect: for 
example, among millions of neurons, individual neuron 
function is still under investigation in neuroscience. 

It is known that a healthy heart exhibits 1/f rhythm [5]. 
DFA can reveal that healthy hearts exhibit the scaling 
exponent of 1.0 [see 6, 7, 9, 10]. This was observable during 
the awake period. The fact that a deep sleep shows a low 
scaling exponent suggests that deep sleep functions are not 
ideal states of brain activities, because the brain process is less 
involved. In the animal world, all creatures have to find a safe 
place for resting without being attacked by predators. 
Sleeping is a dangerous condition for living animals. The low 
scaling exponent means that the brain itself is taking a rest 
during deep sleep. A deep sleep state might be a period that 
the brain works by not controlling the body with full power, 
but consolidating memories for example. This opinion might 
be still controversial.  

Sleep related problems, such as the association between 
sleep apnea and the risk of traffic accidents, are a negligible 
medical concern. If a sleep state can be quantified by a simple 
method like DFA of the heartbeats, it might be helpful to 
diagnose sleeping problems. EKG and DFA might be 
potential solutions in solving the sleep problems. 
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