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Abstract—A method for online estimation of the volatility
when observing a stock price is proposed. This is based on mod-
eling the volatility dynamics as a stochastic differential equation
that is constructed using a technique from the control theory [1].
Identification of the model parameters using the observations is
proposed afterwards [2]. It is based on some stochastic calculus.
Volatility estimation is then reformulated as a filtering problem.
An alternative filter instead of the optimal one is proposed since
the latter is not computationally feasible. It is based on samples
(or particles) drawn by discretization of the stochastic volatility
model. Besides, the main feature that makes online particle filter-
ing possible is analytic resolution of the Fokker-Planck equation
for the current return. To the best of our knowledge, such tech-
nique for modeling together with online filtering of the volatility
are quiet novel. The method is implemented on real data: the
Heng Seng index price; this shows a period of relatively high
volatility that corresponds obviously to the Asiatic crisis of Oc-
tober 1997.

Keywords: stochastic volatility, stochastic differential equations,
Fokker-Planck equation, particle filtering.

1 Introduction

Let S = (S t)t∈R+ be an R+-valued semimartingale based on a
filtered probability space (Ω,F , (Ft)t∈R+ ,P) which is assumed
to be continuous. The process S is interpreted to model the
price of a stock. A basic problem arising in Mathematical
Finance is to estimate the price volatility, i.e. the square of the
parameter σ in the following stochastic differential equation

dS t = μS t dt + σS t dWt

where W = (Wt)t∈R+ is a Wiener process. It turns out that the
assumption of a constant volatility does not hold in practice.
Even to the most casual observer of the market, it should be
clear that volatility is a random function of time which we
denote σ2t . Itô’s formula for the return yt = log(S t/S 0) yields

dyt =
(
μ − σ

2
t
2

)
dt + σt dWt y0 = 0 (1)

The main objective is to estimate in discrete real-time one and
only one particular sample path of the volatility process us-
ing one and only one observed sample path of the return. As
regards the drift μ, it is constant but unknown. Under the so-
called risk-neutral measure, the drift is a riskless rate which is
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well known; actually one finds that μ does not cancel out, for
instance, when calculating conditional expectations in a filter-
ing problem. For this argument no change of measure is re-
quired, we work directly in the original measure P, and μ has
to be estimated from the observed sample path of the return as
well.

2 A model for the stochastic volatility

We assume prior information about the unknown process σ2t
of instantaneous volatility: wide sense stationarity and a para-
metric model for its covariance function

γ(τ) = D exp(−α|τ|) τ ∈ R (2)

for some α > 0. This type of covariance function includes
short-term or middle-term memory in the correlation pattern
of the volatility. Then the spectral density of σ2t is given by
the formula

Γ(ω) =
1
2π

∫
R

γ(τ) exp(− jωτ)dτ = 1
2π

2Dα
ω2 + α2

where j =
√
−1. The spectral density Γ(ω) is rewritten as

Γ(ω) =
1
2π

∣∣∣∣∣H( jω)F( jω)

∣∣∣∣∣
2
ω ∈ R

where H( jω) =
√
2Dα and F( jω) = jω + α. Notice now that

Φ(s) =
H(s)
F(s)

s ∈ C

represents the transfer function of some temporally homoge-
neous linear filter; this filter is furthermore stable as the root
of F(s) is in the left half-plane of the complex variable s. Re-
calling that 1/2π is the spectral density of a white noise of
intensity 1, we come to the conclusion that

σ2t − m
(
m = E

[
σ2t

])
may be considered as the response of the filter whose transfer
function is Φ(s), to a white noise with unit intensity and zero
mean. The differential equation describing such a filter is

u̇(t) + αu(t) =
√
2Dαw(t)

where w(t) and u(t) are respectively the input and the output
of the filter. Set xt − m = u(t), the process σ2t—denoted xt in
the following—solves the SDE

dxt = −α(xt − m) dt +
√
2Dα dW̃t (3)

with reflection at 0 so as to assure the positivity; W̃ = (W̃t)t∈R+
is a Wiener process, and W and W̃ are independent. We shall
freely call (3) our stochastic volatility model.
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3 Filtering

Now we consider the filtering problem associated to the cou-
ple (xt, yt): we have noisy nonlinear observations of xt, the R-
valued discrete-time process of returns (yn)n=1,2,... indexed at
irregularly spaced instants t1, t2, .... The observation times are
assumed to be rigourously determined. The observations pro-
cess is related to the state process (xt)t∈R+ via the conditional
distribution

P {yn ∈ Γ|y1, ..., yn−1, (xt : 0 ≤ t ≤ tn)} n ≥ 1

for Γ a Borel-measurable set from R. For homogeneity of no-
tation we set t0 = 0 so that yn=0 = yt=t0 = 0. Now look at
the distribution above and recall that yn = y(tn) and that the
process yt solves the SDE

dyt =
(
μ − xt

2

)
dt +

√
xt dWt y0 = 0 (4)

This is (1) where σt is denoted
√xt. For t ≥ tn−1

yt = yn−1 +
∫ t

tn−1

(
μ − xs

2

)
ds +

∫ t

tn−1

√
xs dWs (5)

and thus

P {yn ∈ Γ|y1, ..., yn−1, (xt : 0 ≤ t ≤ tn)} =
P {yn ∈ Γ|yn−1, (xt : tn−1 ≤ t ≤ tn)}

Given a sample path of (xt)tn−1≤t≤tn and the observation yn−1,
(yt)tn−1≤t≤tn is a Markov process with state space R satisfying
(5). This leads to the central concept of this section: the
Fokker-Planck equation [3]. The domain of the Fokker-Planck
operator:

LFP p(y, t) =
( xt
2
− μ

)
∂p
∂y
(y, t) +

xt
2
∂2p
∂y2
(y, t),

is the set of distribution densities on (R,B(R)) underP. Given
a sample path of (xt)tn−1≤t≤tn and the observation yn−1, the distri-
bution density p(y, t) of yt solves the Fokker-Planck equation

∂p
∂t
(y, t) = LFP p(y, t) tn−1 < t ≤ tn (6)

with the initial condition p(y, tn−1) = δ(y − yn−1). The formal
solution of the above partial differential equation is

p(y, t) = exp {(t − tn−1)LFP} p(y, tn−1)

Since LFP is a sum of two non commuting operators, the ex-
ponential operator exp {(t − tn−1)LFP} cannot be expressed as
simple products of terms involving each of these. Neverthe-
less, the solution of the Fokker-Planck equation is obtained
using the Trotter product formula [4]. For two arbitrary oper-
ators A and B

exp {t(A + B)} = lim
n→∞

(
exp

{ t
n
A
}
exp

{ t
n
B
})n

Then the solution of (6) is the limit as n→ ∞ of(
exp

{
ρ(t − tn−1)

n
d
dy

}
exp

{
�(t − tn−1)

n
d2

dy2

})n
δ(y − yn−1)

where
ρ =

xt
2
− μ � =

xt
2

For algebraic manipulations we use the integral representation
of the delta function and write the solution of (6) as

p(y, t) = lim
n→∞
Θn

1
2π

∫ +∞

−∞
exp{− jzy} exp{ jzyn−1} dz

where

Θ = exp
{
ρ(t − tn−1)

n
d
dy

}
exp

{
�(t − tn−1)

n
d2

dy2

}

We claim that

exp
{
�(t − tn−1)

n
d2

dy2

}
exp{− jzy} = exp

{
−�(t − tn−1)

n
z2 − jzy

}

exp
{
ρ(t − tn−1)

n
d
dy

}
exp{− jzy} = exp

{
−ρ(t − tn−1)

n
jz − jzy

}

Therefore

Θ exp{− jzy} = exp
{
−�(t − tn−1)

n
z2 − ρ(t − tn−1)

n
jz − jzy

}

Θn exp{− jzy} = exp
{
−�(t − tn−1)z2 − ρ(t − tn−1) jz − jzy

}
and thus

p(y, t) =
1
2π

∫ +∞

−∞
exp{−�(t − tn−1)z2

+ jz
[−y + yn−1 − ρ(t − tn−1)]} dz

Let Z be a Gaussian random variable and ψ(u), u ∈ R, be its
characteristic function:

ψ(u) = E[exp{ juZ}]

= (2πVar[Z])−
1
2

∫ +∞

−∞
exp{ juz} exp

{
− (z − E[Z])

2

2Var[Z]

}
dz

= exp
{
juE[Z] − u

2

2
Var[Z]

}

Then

p(y, t) =
1

2
√
π�(t − tn−1)

ψ (−y + yn−1 − ρ(t − tn−1))

with
E[Z] = 0 Var[Z] =

1
2�(t − tn−1)

and hence we obtain for tn−1 ≤ t ≤ tn

p(y, t) =
1√

2πxt(t − tn−1)

× exp
⎧⎪⎪⎪⎨⎪⎪⎪⎩−
[−y + yn−1 +

(
μ − xt

2

)
(t − tn−1)]2

2xt(t − tn−1)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
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3.1 Conditional density characterization:
the optimal filter

The optimal estimate—in a sense of the mean square—of
f (xt) given the observations y1,...,yn−1 up to time t is the con-
ditional expectation

E
[
f (xt)|y1, ..., yn−1

]
tn−1 ≤ t < tn n ≥ 1

for all reasonable functions f on R+. We assume that
P {xt ≤ x|y1, ..., yn−1} possesses a density with respect to the
Lebesgue measure λ on R+:

Πxt |y1,...,yn−1(x) =
dP {xt ≤ x|y1, ..., yn−1}

λ(dx)

Now look at the SDE (3), the Fokker-Planck operator for xt is

LFP p(x) = αp(x) + α(x − m)p′(x) + Dαp′′(x)
The domain of this operator is the set of distribution densities
p(x) on (R+,B(R+)), under P, satisfying

mp(0) − Dp′(0) = 0
This is due to the reflection of the process xt on the boundary
{0} of its state space R+.

It follows that the posterior distribution densityΠxt |y1,...,yn−1(t, x)
for tn−1 ≤ t < tn, n ≥ 1, solves the Fokker-Planck equation

∂p
∂t
(t, x) = LFP p(x, t) tn−1 < t < tn

i.e.
∂p
∂t
(x, t) = αp(x, t) + α(x − m)∂p

∂x
(x, t) + Dα

∂2p
∂x2

(x, t) (7)

with the initial condition

p(x, tn−1) = Πx(tn−1)|y1,...,yn−1(x) (8)

and the boundary condition

mp(0, t) − D∂p
∂x
(0, t) = 0 (9)

This is a static relation for x = 0, i.e., it holds for any
t ∈ [tn−1, tn[.

At each observation instant tn, n ≥ 1, Π x(tn)|y1,...,yn(x) solves the
Bayes rule

Π x(tn)|y1,...,yn(x) ∝ Πx(t−n )|y1,...,yn−1(x)Πyn|y1,...,yn−1,x(tn)=x(yn) (10)

where

Πyn |y1,...,yn−1,x(tn)=x(yn) =
1√

2πx(tn − tn−1)

× exp
⎧⎪⎪⎪⎨⎪⎪⎪⎩−

[
−yn + yn−1 + (μ − x

2 )(tn − tn−1)
]2

2x(tn − tn−1)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
and Πx(t−n )|y1,...,yn−1(x) is the solution of (7-9) as t ↑ tn.

4 Identification

It follows from (4) that the variation process [y]t of yt is given
by

[y]t =
∫ t

0
xs ds

thus
[y]tn − [y]tn−1 =

∫ tn

tn−1
xs ds n = 1, 2, ...

On the other hand, so long as every duration between two
successive observations is small, the following approximation
holds

[y]tn ≈
n∑
i=1
(yi − yi−1)2

Thus ∫ tn

tn−1
xs ds ≈ (yn − yn−1)2

i.e., the couple of series below coincide approximatively

S =
{∫ tn

tn−1
xs ds

}
n=1,2,...

S ′ =
{
(yn − yn−1)2

}
n=1,2,...

and so do their first and second order moments. The following
is the computation of the mean and covariance function for the
series S of aggregations of the instantaneous volatility on the
observation intervals. To do this we need to have tn − tn−1 = δ
for each n = 1, 2, ... and as mentioned above δ must be small
(we set δ = 1 time unit). Then

E

[∫ tn

tn−1
xs ds

]
= mδ

and for k = 1, 2, ...

Cov
[∫ tn

tn−1
xu du ,

∫ tn−k

tn−k−1
xv dv

]
=

E

[∫ tn

tn−1
xu du ×

∫ tn−k

tn−k−1
xv dv

]
− (mδ)2 =

∫ tn

tn−1

∫ tn−k

tn−k−1
γ(u − v) du dv

If we replace γ by its expression in (2), we obtain the follow-
ing formula for k = 1, 2, ...

Cov
[∫ tn

tn−1
xu du ,

∫ tn−k

tn−k−1
xv dv

]
=

D
α2

(
exp{−αδ(k − 1)} − 2 exp{−αδk} + exp{−αδ(k + 1)})

(11)

It follows that D and αmay be obtained by least squares of the
difference between the covariance function of S ′, calculated
from the observations, and the covariance function given by
formula (11).
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The following gives an approximation for the drift parameter
μ in (1).

yn − yn−1 =
∫ tn

tn−1

(
μ − xs

2

)
ds +

∫ tn

tn−1

√
xs dWs

implies that

E
[
yn − yn−1

]
= μ δ − 1

2
E

[∫ tn

tn−1
xs ds

]

But ∫ tn

tn−1
xs ds ≈ (yn − yn−1)2

thus
E

[
yn − yn−1

] ≈ μ δ − 1
2
E

[
(yn − yn−1)2

]

i.e.
μ ≈ 1
δ

(
E

[
yn − yn−1] + 12 E

[
(yn − yn−1)2

])
(12)

The daily price of the Hang Seng index of the market of Hong
Kong is observed during 3191 successive trading days from
1995 to 2007. This is plotted in Figure 1. Figure 2 shows the
daily returns

yn − yn−1 = log
(
S tn
S tn−1

)
n = 1, ..., 3190

The empirical mean of the squared daily returns (yn − yn−1)2
yields an approximation for the volatility mean : m ≈
2.6435e − 004. For the approximation of the drift μ in (12)
we get 5.4008e − 004. The variance D and the rate α that
give a good fitting between the covariance function of S and
its empirical approximation are 3.5926e − 007 and 0.0857 re-
spectively. The SDE (3) for the stochastic volatility of the
stock is thus calibrated, and we now go back to filtering.
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Figure 1: The observed sample path for the price of the Hang
Seng index of the market of Hong Kong.
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Figure 2: The observed sample path for the daily log-returns.
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5 A Monte-Carlo particle filter

The true filter (7-10) which is optimal in a mean square sense
involves a resolution of the Fokker-Planck equation. Both an-
alytic and numerical solutions for this partial differential equa-
tion are computationally intractable. This drives us to an al-
ternative Monte-Carlo filter [5]. We wish to approximate the
posterior distribution as a weighted sum of randomDirac mea-
sures: for Γ a Borel-measurable set from R+

P {xt ∈ Γ|y1, ..., yn−1} ≈
K∑
k=1
wk εξk (Γ) tn−1 ≤ t < tn n ≥ 1

where the particles ξk are independent identically distributed
random variables with “the same” law as xt; these particles
are indeed samples drawn from the Euler discretization of
the SDE (3). Here we use the well known Euler scheme
since there isn’t a significant gain with more sophisticated dis-
cretization schemes. Then, for any function f on R+

E
[
f (xt)|y1, ..., yn−1

] ≈
K∑
k=1
wk f (ξk) tn−1 ≤ t < tn n ≥ 1

The weights {wk}k=1,...,K are updated only as and when an ob-
servation yn proceeds, each one according to the likelihood of
its corresponding particle, i.e., at each observation time tn

wk =
Πyn|y1,...,yn−1,x(tn)=ξk (yn)∑K
�=1Πyn |y1,...,yn−1,x(tn)=ξ� (yn)

where {ξk}k=1,...,K are samples with the same law as x(tn).

Besides sampling, there may be (importance) resampling at
each observation time: the set of particles is updated for re-
moving particles with small weights and duplicating those
with important weights. We simulate K new iid random vari-
ables according to the distribution

K∑
k=1
wk εξk

Obviously, the new particles have new weights and thus give
a new approximation for the posterior distribution. On the
other hand, these new particles are used to initialize the Euler
discretization scheme for the next sampling.

The following is the remainder of implementation details of
the Monte-Carlo particle filter.

• Number of particles: K = 1000
• Time step of the Euler discretization: 0.01 time unit
• In practice the distribution for the initial volatility x0 is
not available, here we take a uniform distribution on [ε, 1]
(ε > 0 must be small); its density satisfies the imposed
condition (9).

The sample path of the square root volatility (in percent) of the
Heng Seng index price is displayed in Figure 3. This sample
path exhibits relatively high volatilities that are clustered
together round the 697th trading day; this corresponds to the
Asian financial crisis of October 1997.
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Figure 3: The estimated sample path for the price of the Hang
Seng index.

6 Conclusion

Probabilistic management of uncertainty in dynamical sys-
tems is proposed when illustrated on an application from fi-
nancial engineering: volatility estimation. We consider the
volatility as a stochastic process and construct a filter that
is recursive and pathwise in the observations; these two as-
pects are designated by the term online (or real-time) filtering.
The filter output is thus one—and only one—particular sam-
ple path of the volatility process. Besides, the main feature
that makes online particle filtering possible is analytic resolu-
tion of a Fokker-Planck equation. It is worth noting that our
method does not need any effort to transform data, for exam-
ple, to take off seasonality. The conformity between the im-
plementation result—within a low simulation cost—and some
practical issues prove to my satisfaction the performance of
the method.
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