
Implementation of FPGA based PID Controller for DC
Motor Speed Control System

Savita Sonoli K.Nagabhushan Raju

Abstract— In this paper, the implementation of software
module using ‘VHDL’ for Xilinx FPGA (XC3S400) based PID
controller for DC motor speed control system is presented. The
tools used for building and testing the software modules are
Xilinx ISE 9.2i and ModelSim XE III 6.3c. Before verifying the
design on FPGA the complete design is simulated using
Modelsim Simulation tool. A test bench is written where, the set
speed can be changed for the motor. It is observed that the motor
speed gradually changes to the set speed and locks to the set
speed.

IndexTerms— Field Programmable Gate Array (FPGA),
Proportional-Integral-Derivative (PID) controller, Very High
Speed Integrated Circuit Hardware Description Language
(VHDL), Pulse Width Modulation (PWM).

I. INTRODUCTION

Hardware Description Languages (HDLs) are used to
describe hardware for the purpose of Simulation, Modeling,
Testing, Design, and Documentation of digital systems.
The most popular HDLs are VHDL [(Very High Speed
Integrated Circuit) Hardware Description Language], and
Verilog. VHDL is used to describe hardware from the
abstract to the concrete level. Many of the Electronic
Design Automation (EDA) vendors are standardizing on
VHDL as input and output from their tools. These tools
include simulation tools, synthesis tools, layout tools and
testing tools.

The Proportional-Integral-Derivative (PID) controllers
have been widely used over the past five decades due to
their simplicity, robustness, effectiveness and applicability
for a broad class of systems. Despite the numerous control
design approaches that have appeared in the literature, it is
estimated that, nowadays PID controllers are still employed
in more than 95% of industrial processes [1]. For many
decades, the digital PID controller has been used
extensively in real time digital control. The PID is used
extensively in the field of servo motor control, robotics,
temperature control and power electronics. It has a long
history of development and very mature tuning rules.
Overall, the PID is an important tool for the embedded real
time digital control designer. They are usually implemented
either in hardware using analog components or in software
using computer-based systems. The emergence of field
programmable gate arrays and hardware description
languages allows for added dimensions of digital PID
controllers, Parallelism, Programmable bit widths and
absolute determinism.

Dr. Savita Sonoli is Professor and Head Department of Instrumentation
Technology, Proudha Devaraya Institute of Technology, HOSPET-
583225,KARNATAKA.INDIA. (e-mail: savitachitriki@gmail.com)
Dr. K.Nagabhushan Raju is Associate Professor and Head Department
of Instrumentation. Sri Krishnadevaraya University,Ananthpur-
515055,AndraPradesh, INDIA. (e-mail: electronicsku@rediffmail.com)

Building PID controllers on Field Programmable Gate
Arrays (FPGAs) improves speed, accuracy, power-
efficiency, compactness and cost effectiveness.

With the growing complexity of motor and motion
control applications, it becomes apparent that a Field
Programmable Gate Array (FPGA) offers significant
advantage over the off shelf Application Specific Standard
Product (ASSP) solutions in the areas of performance,
flexibility and inventory control [2]. Custom motor drive
interfaces such as Pulse Width Modulation (PWM) can be
developed easily, quickly and at low cost. Additionally,
because of full configurability, the same FPGA can be used
in various product ranges, reducing the need to maintain
inventory for multiple devices [3].

The Spartan3 family of Field-Programmable Gate
Arrays is specifically designed to meet the needs of high
volume, cost-sensitive consumer electronic applications. The
eight-member family offers densities ranging from 50,000 to
five million system gates. Because of their exceptionally low
cost, Spartan3 FPGAs are ideally suited to a wide range of
consumer electronic applications, including broadband
access, home networking, display/projection and digital
television equipment. Modern FPGAs and their
distinguishable capabilities have been advertised extensively
by FPGA vendors [4]. Moreover, some refereed articles
addressed the advantages of utilizing these powerful chips
[5][6]. In the past two years, Spartan II and III FPGA
families from Xilinx have been successfully utilized in a
variety of applications, which include inverters [7][8],
communications [9][10], embedded processors [11], and
image processing [12]. The implementation of PID
controllers using microprocessors and Digital Signal
Processor (DSP) chips is old and well known [13][14],
whereas very little work can be found in the literature on
how to implement PID controllers using FPGAs. A PWM
generator is introduced in [15]. However, only simulation
results are presented. The contributions of the authors in
[16][17] are considered complementary to the present work
as they provide tools for building the current application.
 The software developed provides the user interface
through on board peripherals like Pushbuttons, Toggle
switches, Light Emitting Diodes (LEDs) and Seven Segment
Displays, so that the user can change the set speed of the
motor as well view the data display on Seven Segment
Display and also reset the entire system.

The organization of this paper is given as follows: In
section II, an overview of the functional modules of a FPGA
based PID controller for DC motor speed control system are
explained. In section III, State flow diagrams of the present
design are presented. In section IV, the implementation
results of the system are discussed. Conclusions are
discussed in section V.

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol II
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-18210-0-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

II. OVERVIEW OF FUNCTIONAL MODULES

The target FPGA device used in the present work is

Spartan3 family XC3S400 manufactured by Xilinx. Design
development and debugging is carried on a low-cost, full-
featured kit from Advanced Electronic Systems (ALS).
This board provides all the tools required to design and
verify Spartan3 platform designs. Designs are based on 10
MHz clock. Figure 1 shows the Hierarchical Diagram of
FPGA Based PID Controller Implementation for DC motor
speed control system. Figure 2 shows the PID Controller
Top level module with sub modules with internal and
external signal flow. The software tools used for building
and testing these modules are Xilinx ISE 9.2i and
ModelSim XE III 6.3c.

A. PID controller Top module
The PID Controller Top module is the Main Top level
VHDL module in the hierarchy. It instantiates the sub
modules ADC_interface, ADC_Data_Read and
Motor_control modules. It interconnects all the signals and
interacts with the external world.
B. ADC interface module
It is a front end interface module for ADC. This module has
a state machine ADC_state that gives out the signals Start
Of Conversion (SOC) and Output Enable (OE) for ADC. It
also generates ADC channel address based on the three bit

 Fig. 1. Hierarchical Diagram for FPGA based PID controller
Implementation

on board toggle switch (TS1, TS2, TS3) input. After
asserting these signals it waits for End Of Conversion (EOC)
signal, which is 8th bit in the data bus. Once ADC asserts
EOC the state machine generates the ADC_Data_Ready
signal used as enable for the register that latches the valid
data from the ADC. Also the same signal will be given to the
next module, ADC Data Read module that uses this as a
control signal for latching the valid data The Sub module
Seven_Segment is used for seven segment Display that will
display the data going to Digital to Analog Converter (DAC)
hardware module, which is the actual speed, calculated using
the PID equation.

PID_Controller_Top

ADC_Interface

Seven_Segment

ADC_Data_rd

Motor_control

PID_Eqn_Kconst

Div_gen_v1_0

ADC_Interface

 ADC_Data_rd

Motor_control

Seven_Segment

PID_Eqn_Kconst

Div_gen_v1_0

Reset in

 LED_out

 Seven_seg_out

 SOC_out

 OE_out

 OE4_Disp

OE2_Disp

 OE1_Disp

 OE3_Disp

 Clk_Div8_out

 Clk_10MHz_in

 ADC_Data_in

 DAC_data_out

 DAC_data_out

ADC_Data ADC_Data_rdy

 ADC_Address_in

 ADC_Addr_out
 ADC_Data_rdy

 ADC_Data

 Speed_select_in

 Capture_ctrl_in

 K_Equation en, en-1, en-2 Error Data

Fig. 2. PID Controller Top module with sub modules

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol II
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-18210-0-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

C. ADC data read module
The ADC data read module takes the ADC data from ADC
interface module based on the control signal
ADC_data_rdy_in. It has a state machine ADC_RD_State
which checks for ADC_data_capture switch, a toggle
switch input connected to the switch input capture_ctrl_in
(TS16) in top module. Once this switch is asserted it
proceeds to next state and checks for the ADC_Data_ready
input signal from ADC interface module. When the
ADC_Data_ready signal is asserted it will wait for 200
cycles in next state and asserts ADC_AVG_DATA_Rdy
signal, which will register the 200th ADC data. Process
waits 200 cycles for ADC data to get stabilized after
change in speed of motor. The latched data along with the
control signal ADC_AVG_DATA_Rdy will be sent out to
next module, which is Motor control module.
D. Motor control module
The Motor control module receives the data from ADC
Data Read module, which is latched into the module using
ADC_AVG_DATA_Rdy control signal from the ADC
Data read module. Once the data is latched into the module
it calculates the current speed, which is the ADC data
multiplied by 10. The maximum speed for the motor is
considered as 2550 rpm which if divided by 10 to get 255
in decimal, equivalent to “11111111” in binary, which is
the maximum 8 bit ADC value. This is done to get the
approximated current speed.

Once the current speed is calculated, this value is
subtracted with the set speed value, which is set using the
toggle switches Speed_Set_switch, connected to
Speed_select_in, in PID controller top module. This will
generate current error en. The same en will become en-1 and
en-2 in next consecutive cycles. The values of en, en-1 and en-

2 are fed to PID equation calculation module with their
polarity, which indicates whether the calculated value is
positive or negative. The PID Equation calculation module
will calculate K_equation value, which is a part of PID
equation, [Kp *(en - en-1) + Ki * en + Kd *(en - 2*(en-1))+ en-2].
The final PID equation

[Vn-1+ Kp *(en - en-1) + Ki * en + Kd *(en - 2*(en-1))+ en-2]
will be calculated in Motor control module. It has several
state machines like Motor_Control_State,
PID_Assign_State, SW_Debounce_State and
Speed_Lock_State.

In Motor_Control_State machine capture enable switch
is monitored which is connected to Captur_ctrl_in switch in
the top module. Once this is asserted the controller waits
for some delay until valid data for PID equation is
calculated. Now, swap the values of errors en, en-1 and en-2
and also PID values Vn and Vn-1 are swapped.

PID_Assign_State machine checks the calculated PID
value for negative or greater than 255 the maximum value
of ADC. If it is negative then DAC is assigned Zero, else if
the value is greater than 255, 255 is assigned. If the value is
between 0 and 255 then the actual value for DAC is
assigned.

SW_Debounce_State machine wait for some fixed
amount of delay to overcome the de-bouncing of the speed
select toggle switches.

Speed_Lock_State machine check whether the
calculated speed lies with in plus or minus 100 rpm range of
set speed, if so, it is approximated to the set speed. This
approximation is done, as floating point operation is not
considered in calculating the PID equation, which is beyond
the scope of this design. Once the calculated speed is ready
by PID equation, it is divided by 10 using the divider module
to get the equivalent DAC value. This is based on the
approximation for rpm, which was done in the beginning
while calculating the current speed from ADC data. Once the
equivalent binary data is calculated from PID equation it is
sent to DAC. This will continue until all the errors become
zero and Vn equals Vn-1, which forces current speed equal to
set speed and hence motor starts running at set speed.
E. Coregen divider module
This is Xilinx specific coregen module, used in the present
design. Instantiated in Motor Control Module to divide the
calculated PID value Vn to get the equivalent binary value,
which has to be sent to DAC.
F. Seven segment display module
This module will generate the output enable for on board
seven segment displays and also provide the data to seven
segment modules, which is going out to DAC.
G. PID equation calculation module
The calculated errors en, en-1 and en-2 with their polarities,
whether they are positive or negative is fed to this module
from motor control module. This module will calculate the
part of PID equation,

Vn = Vn-1+ Kp *(en - en-1) + Ki * en + Kd *(en - 2*(en-1))+ en-2

which is Kp *(en - en-1) + Ki * en + Kd *(en - 2*(en-1))+ en-2.
The constants Kp, Ki and Kd values are 3, 2 and 1
respectively. They are calculated by trial and error method.
The PID equation is evaluated part by part. First the
values for Kd *(en - 2*(en-1)) , Ki * en and Kp *(en - en-1) are
individually calculated retaining their polarity, which will
determine whether the calculated values are positive or
negative. Once this is done combined equations,
Kd *(en - 2*(en-1))+ en-2 and Kp *(en - en-1) + Ki * en are
calculated with their polarities. Once these equations are
evaluated, the final K_equation is calculated which is,
Kp *(en - en-1) + Ki * en + Kd *(en - 2*(en-1))+ en-2. This is
fed back to Motor control module with K_equation polarity
that will determine, whether the calculated value of K
equation is positive or negative. In motor control module the
final PID equation,
Vn = Vn-1+ Kp *(en - en-1) + Ki * en + Kd *(en - 2*(en-1))+ en-2 is
calculated. Here the polarities of current errors and current
PID value are passed to polarities of previous PID and
previous errors to hold their polarity for further calculations.
For example, if the error en and its polarity calculated are
negative, then in the next cycle the en value is assigned to en-1
and the polarity of en becomes en-1 polarity.

III. STATE FLOW DIAGRAMS

The state flow diagrams are so drawn that, they are self

explanatory and gives the complete idea of software
development for FPGA based PID controller for DC motor
speed control system. Figure 3 shows State flow diagram for

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol II
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-18210-0-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

ADC_State, state machine in ADC Interface module.
Figure 4 shows State flow diagram for ADC_RD_State,
state machine in ADC Data read module similarly, State
flow diagrams for Motor_Control _State, state machine,
PID_Assign_State, state machine, SW_Debounce State,
state machine, and Speed_lock_state, state machine in
Motor control module are developed.

 Fig. 3. State flow diagram for
 ADC_State, state machine

IV. RESULTS

A. Simulation Results

Logic simulation in FPGA design environment plays a
very vital role in verifying the functionality of the designs.
Simulation is a powerful way to test the system on a
computer, before it is turned into hardware. Simulators let
designer to check the values of signals inside the system.

In the present study, for functional verification, before
verifying the performance of proposed controller design on
FPGA,

Fig. 4. State flow diagram for
 ADC_RD_State, state machine

the complete design is simulated using Modelsim Simulation
tool (Xilinx version ModelSim XE III 6.3c), which has pre-
compiled libraries for all Xilinx FPGAs. A test bench is
written where, the set speed can be changed for the motor. In
the test bench, the Top module of the design
PID_controller_top is instantiated. The inputs like Clock,
Reset, Switch data and ADC data are defined and the output
is observed in the simulation window.

As many sub modules are instantiated in Top module
and as this is a hierarchical design, internal sub module
signals are also observed in the waveform window of the
simulator. Once all the signals are taken into the waveform
window, the simulation is run for 1000 µs and the changes in
the signals are observed in the waveform window. It is
observed that the motor speed gradually changes to the set
speed and locks to the set speed.

Start

Initialize all the signals
ADC_SOC = 0, ADC_Data_ready = 0

ADC_OE = 0

Assert ADC_data ready = 1
&

ADC_ OE = 1

End

The process is
continuous after reset

Check
If EOC = 1

Assert SOC = 1

&
OE = 1

 Yes

No

Start

Initialize all the signals in the
 State machine

Datacount = 0, ADC_avg_data = 0
ADC_avg_data_rdy = 0,

ADC_data_latch = 0

Check if
Data_capture = 1

Check if
ADC_data_rdy = 1

Wait for 200 counts

Generate the latch signal to
Latch the ADC data.

End The process is
 continuous after reset

No

No

Yes

Yes

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol II
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-18210-0-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

Figure 5 shows the simulation results for the set speed
of 1400 rpm. It is seen that after certain transitions, when
the errors en, en-1 and en-2 become zero, the current speed
will become 1400 rpm which is equal to set speed. The data
going to the DAC, PID_data_out is equal to 140, which is
the current speed. The transitions in the state machines that
are assigning current value to en, en-1, en-2 and Vn-1 are
observed in the waveform window.

Finally, from the waveforms it is observed that, when
the optimal values for Kp, Ki and Kd are used to calculate the

current speed, the current speed will equal the set speed
when all the errors en, en-1 and en-2 become zero, hence Vn
equals Vn-1 and the motor starts running at the set speed.

Table 2 shows the Design Summary, Xilinx tool device
utilization summary and reports the percentage of available
resources that have been used for the current FPGA design.
The performance summary summarizes the timing
requirement and also the proper routing of the signals.

Fig. 5. Simulation waveforms for set speed 1400 rpm

B. Hardware Test Results
The experimental studies are carried out to evaluate the

performance of the controller. Configuration is the Process
by which the bit streams of a design, as generated by the
development software are loaded into the internal
configuration memory of the FPGA. To verify the
performance of the controller design on Hardware, the
VHDL code (Bit file) is downloaded into the Target FPGA
device (Spartan3 family XC3S400) and the complete
system is reset. The set speed is assigned to switches
according to the requirement and the capture control switch
is enabled. Once this is done the ADC data will be read
and PID equation implemented will calculate the equivalent
PID value and it is fed back to the motor through DAC and
once the current speed equals the set speed, the motor starts
running at the set speed. Again to change the set speed, the
above procedure is repeated by changing the toggle switch
position.

As the set speed is varied, the ADC voltage also varies,
the measured ADC values and the equivalent Hex values
for different set speeds are tabulated. It is observed that the
current speed, which is displayed, on the ‘on board’ seven
segment display equals the set speed value. Also the change
in the motor speed for different switch combinations can be
observed accordingly. Table 1 shows the results of the DC
motor speed control system for various set speeds.

Figure 6 shows the Photograph of the experimental setup
and working model of FPGA based DC motor speed control
system.

Table1. Results of DC motor speed control system
 for various set speeds

Sl.No

Toggle
Switch
position

Set Speed
(rpm)

Equivalent
HEX value

Measured
ADC voltage

(Volts)
1. 000 2500 FA 4.5
2. 001 1200 78 2.4
 3. 010 400 28 0.64
4. 011 1400 8C 2.8
5. 100 2000 C8 3.63
6. 101 600 3C 1.15
7. 110 1100 6E 2.04
8. 111 900 5A 1.8

 Fig. 6. Photograph of the experimental setup and working model of
 FPGA based DC motor speed control system

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol II
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-18210-0-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

Table 2. Design Summary of FPGA based PID controller for DC motor Speed control system
ADCINTERFACE Project Status

Project File: ADCINTERFACE.ise Current State: Programming File Generated

Module Name: PID_controller_top Errors: No Errors

Target Device: xc3s400-5pq208 Warnings: 3 Warnings

Product Version: ISE 9.2i Updated: Wed Aug 20 13:47:36 2008

ADCINTERFACE Partition Summary

No partition information was found.

 Device Utilization Summary

Logic Utilization Used Available Utilization Note(s)

Number of Slice Flip Flops 2,638 7,168 36%

Number of 4 input LUTs 2,358 7,168 32%

Logic Distribution

Number of occupied Slices 1,916 3,584 53%

 Number of Slices containing only related logic 1,916 1,916 100%

 Number of Slices containing unrelated logic 0 1,916 0%

Total Number of 4 input LUTs 2,358 7,168 32%

Number of bonded IOBs 43 141 30%

 IOB Flip Flops 16

Number of MULT18X18s 3 16 18%

Number of GCLKs 2 8 25%

Total equivalent gate count for design 56,447

Additional JTAG gate count for IOBs 2,064

Performance Summary

Final Timing Score: 0 Pinout Data: Pinout Report

Routing Results: All Signals Completely Routed Clock Data: Clock Report

Timing Constraints: All Constraints Met

Detailed Reports

Report Name Status Generated Errors Warnings Infos

Synthesis Report Current Sun Aug 17 12:30:06 2008 0 0 0

Translation Report Current Sun Aug 17 12:30:48 2008 0 0 0

Map Report Current Sun Aug 17 12:31:18 2008 0 2 Warnings 3 Infos

Place and Route Report Current Sun Aug 17 12:33:47 2008 0 1 Warning 3 Infos

Static Timing Report Current Sun Aug 17 12:34:08 2008 0 0 3 Infos

Bitgen Report Current Sun Aug 17 12:34:53 2008 0 0 0

V. CONCLUSIONS

A digital PID controller is successfully implemented
using the FPGA and its performance is verified and tested
on a DC motor speed control system for real-time control.
The test results showed that with PID controller added, the
steady-state error is eliminated and the desired output speed
is obtained. The implementation of controller has reduced
the total hardware complexity and cost. According to the
experiment done it is observed that, in the simulation, when
the set speed is changed, the motor speed locks to the set
speed, when the current error en, previous error en-1 and
previous to the previous error en-2 becomes zero.

In brief, the role of FPGA, in measurement and
control point of view, is to acquire the data from sensor
through analog to digital converter, do the processing on
the acquired data and then generate control signals to the
actuator, which intern controls the parameter being
measured. FPGAs ensure ease of design, lower
development costs, more product revenue, and the
opportunity to speed products to market. Building PID
controllers on FPGAs improves speed, accuracy, power-
efficient, compactness and cost effectiveness over other
digital implementation techniques.

REFERENCES

[1] K.J. Astrom and T. H. Hagglund, “New Tuning Methods far PID

Controllers,” Proc. of 3rd European Conference, pp. 2456-2462, 1995.
[2] Shouling He and Xuping Xu, “Hardware/Software Co design

Approach for an ADALINE Based Adaptive Control System,” Journal
of Computers, vol. 3, no. 2, pp. 29-36, Academy publisher, February
2008.

[3] Craig Hackney, “PGA Motor Control Reference Design,” Application
Note: Spartan and Virtex FPGA Families, Xilinx XAPP808 vol. 1.0,
September 16, 2005.

[4] Mohamed Abdelati, “FPGA-Based PID Controller Implementation,”
The Islamic University of Gaza, Palestine, This research was
supported by the Ministry of Higher Education in Palestine.

[5] Anthony Cataldo, “Low-priced FPGA options set to expand,”
Electronic Engineering Times Journal, no. 1361, pp. 38-45, USA,
2005.

[6] Gordon Hands, “Optimised FPGAs vs dedicated DSPs,” Electronic
Product Design Journal, vol. 25, no. 12, UK, December 2004.

[7] R. Jastrzebski, A. Napieralski, O. Pyrhonen and H. Saren,
“Implementation and simulation of fast inverter control algorithms
with the use of FPGA circuit,” Nanotechnology Conference and Trade
Show, pp. 238-241, Nanotech 2003.

[8] Lin. F.S, Chen. J.F, Liang. T.J, Lin. R.L and Kuo, Y.C, “Design and
implementationof FPGA-based single stage photovoltaic energy
conversion system,” Proceedings of IEEE Asia-Pacific Conference on
Circuits and Systems, pp 745-748, Taiwan, December 2004.

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol II
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-18210-0-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

[9] Bouzid Aliane and Aladin Sabanovic, “Design and implementation
of digital bandpass FIR filter in FPGA,” Computers in Education
Journal, vol.14, pp. 76-81, 2004.

[10] M. Canet, F. Vicedo, V. Almenar and J. Valls, “FPGA
implementation of an IF transceiver for OFDM-based WLAN,” IEEE
Workshop on Signal Processing Systems, SiPS: Design and
Implementation, pp. 227-232, USA, 2004.

[11] Xizhi Li and Tiecai Li, “ECOMIPS: An economic MIPS CPU design
on FPGA,” Proceedings- 4th IEEE International Workshop on
System-on-Chip for Real-Time Applications, pp. 291-294, Canada
2004.

[12] R. Gao, D. Xu and J. P. Bentley, “Reconfigurable hardware
implementation of an improved parallel architecture for MPEG-4
motion estimation in mobile applications,” IEEE Transactions on
Consumer Electronics, vol.49, no.4, November 2003.

[13] H. D. Maheshappa, R. D. Samuel and A. Prakashan, “Digital PID
controller for speed control of DC motors, IEEE Technical Review
Journal, vol. 6, no.3, pp. 171-176, India, 1989.

[14] J. Tang, “PID controller using the TMS320C31 DSK with on-line
parameter adjustment for real-time DC motor speed and position
control,” IEEE International Symposium on Industrial Electronics,
vol. 2, pp. 786-791, Pusan, 2001.

[15] D. Deng, S. Chen and G. Joos, “FPGA implementation of PWM
pattern generators,” Canadian Conference on Electrical and
Computer Engineering, and Electronics Engineers Inc, vol. 1, pp.
225-230 May, 2001.

[16] Rivera. D.E, S. Skogestad and M. Morari, “Internal Model Control 4.
PID Controller Design.” Ind. Ene Chem. Proc. Des & Dev, 25, pp.
252.265, 1986.

[17] Nagabhushana Katte, “Design and Development of Computer Based
Fuzzy and Integrated Fuzzy Logic Controllers for Process
Parameters,” Ph.D Thesis July 2006.

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol II
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-18210-0-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

