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Abstract— The adaptively shifted integration (ASI) 

technique and continuum damage mechanics are applied to the 
nonlinear finite element analysis of framed structures modeled by 
cubic Bernoulli-Euler beam elements.  A new form of evolution 
equation of damage, which is a function of plastic relative 
rotational angles, is introduced in order to remove the 
mesh-dependence caused by the strain-dependence of damage.  
The elasto-plastic damage behavior of framed structures can be 
accurately and efficiently predicted by the combination of the ASI 
technique and the new damage evolution equation.  Some 
numerical studies are carried out to show the mesh-independence 
of the proposed computational method. 
 

Index Terms— Finite Element Method, Adaptively Shifted 
Integration Technique, Damage Mechanics, Framed 
Structures, Elasto-Plastic Damage Analysis, Cubic 
Bernoulli-Euler Beam Elements 
 

I. INTRODUCTION 

The occurrence and growth of a number of microscopic 
defects such as microcracks and microvoids in materials 
cause reduction of the stiffness, strength and toughness as 
well as the remaining life of materials.  Continuum damage 
mechanics (abbreviated to CDM) is the theory that can take 
into account the effects of such microscopic defects on the 
mechanical properties of solids in the framework of 
continuum mechanics.  CDM has been applied to the finite 
element analysis of various damage and failure problems of 
structural members in many literatures [1-5].  The so-called 
local approach to fracture based on damage mechanics and 
the finite element method can consistently model the 
mechanical behaviors from the initiation and evolution of 
damage through the propagation of macrocracks, however, it 
is pointed out as a problem that the calculated results 
considerably depend upon the assumed finite element mesh 
[3]. 
     The damage analysis of framed structures based on CDM 
has been studied by many researchers [6-18].  Krajcinovic [6] 
defined the isotropic damage variable (the damage modulus) 
related to the fracture stress and used it to calculate the 
ultimate moment carrying capacities of concrete beams.  
Chandrakanth and Pandey [7] carried out the elasto-plastic 
damage analysis of Timoshenko layered beams.  Cipollina et 
al. [8], Florez-Lopez [9], Thomson et al. [11], Perdomo et al. 
[12], Marante and Florez-Lopez [15], Marante et al. [17] 
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presented the formulation for the damage analysis of RC 
frames by the lumped dissipation model and implemented it 
in the commercial finite element program.  Florez-Lopez [10] 
gave a unified formulation for the damage analysis of steel 
and RC frame members.  Inglessis et al. [13,14], and Febres 
et al. [16] conducted the analysis of steel frames considering 
damage and local buckling in tubular members.  Addessi and 
Ciampi [18] proposed a new beam finite element based on 
damage mechanics and plasticity to analyze the cyclic 
structural response of plane frames.  However, no discussion 
has been made for the mesh-dependence of the finite element 
solutions for the damage problem of framed structures in the 
existing literatures [6-18]. 
     The cubic beam element based on Bernoulli-Euler 
hypothesis is generally used in the finite element analysis of 
framed structures neglecting the effect of shear deformation 
[19].  Toi [20] derived the relation between the location of a 
numerical integration point and the position of occurrence of 
a plastic hinge in the element, considering the equivalence 
condition for the strain energy approximations of the finite 
element and the computational discontinuum mechanics 
model composed of rigid bars and connection springs.  The 
computational method identified as the adaptively shifted 
integration technique [21] (abbreviated to the ASI technique) 
was developed, based on this equivalence condition.  The 
ASI technique, in which the plastic hinge can be formed at 
the exact position by adaptively shifting the position of a 
numerical integration point, gives accurate elasto-plastic 
solutions even by the modeling with the minimum number of 
elements.  The ASI technique has been applied to the static 
and dynamic plastic collapse analysis of framed structures 
[21-24], through which the validity of the method has been 
demonstrated with respect to the computational efficiency 
and accuracy. 
     In the present study, a new computational method is 
formulated for the elasto-plastic damage analysis of framed 
structures, based on the ASI technique for the cubic 
Bernoulli-Euler beam element and the concept of CDM.  The 
non-layered approach, in which the stress-strain relation is 
expressed in terms of the resultant stresses and the 
corresponding generalized strains, is employed in order to 
reduce the computing time for the large-scale framed 
structures.  A new form of damage evolution equation, which 
is expressed in terms of the plastic relative rotational angles 
and the effective element length instead of the plastic 
curvature changes, is proposed in order to remove the 
mesh-dependence of solutions in the damage analysis.  The 
present method is applicable to the collapse analysis of 
framed structures including elasto-plasticity, damage 
initiation, its evolution and fracture.  Numerical studies for 
simple frames are conducted to show accuracy, efficiency 
and the mesh-independence of the proposed method. 

Element-Size Independent, Elasto-Plastic 
Damage Analysis of Framed Structures 

Yutaka Toi and Keishi Hasegawa 

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I 
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011



 
 

 

 

II. ELASTO-PLASTIC DAMAGE ANALYSIS OF FRAMED 

STRUCTURES  

A. ASI Technique 

One of the authors Toi considered an equivalence 
condition for the strain energy approximations of the cubic 
Bernoulli-Euler beam element (the upper figure in Fig. 1) and 
the computational discontinuum mechanics model which is 
composed of rigid bars connected with the springs resisting 
relative rotational displacement (the lower figure in Fig. 1) 
[20].  The strain energy approximation of the cubic 
Bernoulli-Euler beam element is a function of the location of 
the numerical integration points )2,1( isi , while the 
strain energy function of the discontinuum mechanics model 
depends upon the position of the connection springs 

)2,1( iri .  As a result, the following relation was 
obtained as the equivalence condition for both discrete 
models: 

);2,1(
3

1
21

2

rri
r

si                     (1) 

When the equivalence condition given by Eq. (1) is satisfied, 
the cubic Bernoulli-Euler beam element and the 
computational discontinuum mechanics model are 
completely the same. 

The concept of plastic hinges can be easily, explicitly and 
accurately taken into account by reducing the rotational 
spring constant in the latter physical model.  Therefore, it is 
clear that a plastic hinge can be formed at an arbitrary 
position in the cubic Bernoulli-Euler beam element by 
adaptively shifting the numerical integration points 
according to Eq. (1).  When the integration points are located 
at )2,1(31  isi  , a plastic hinge is formed at either 
one of the edges or both as )2,1(1  iri  .  This case is 
actually important when plastic hinges are formed at member 
joints or concentratedly loaded points, since they cannot be 
formed at exact positions when the numerical integration 
points are located at Gaussian integration points 

)2,1(31  isi   in each element as is usually done.  
The detailed computational procedure of the ASI technique is 
as follows. 

The numerical integration points are located at Gaussian 
integration points )2,1(31  isi   while the element 
is entirely elastic.  The incremental stiffness equation for the 
element is then given by 

fuk dd                                      (2a) 
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(2b) 
In Eqs. (2a) and (2b), the following notations are used: k ; 
the elastic element stiffness matrix, ud ; the nodal 
displacement increment vector, fd ; the nodal external force 

increment vector, elmL ; the element length, )( isB ; the 
generalized strain-nodal displacement matrix, )( ie rD ; the 
elastic resultant stress-generalized strain matrix.  The 
generalized strain increment vector is calculated as 
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The resultant stress increment vector is evaluated as 
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The distribution of resultant stresses in the elastically 
deformed element is determined by the following form of 
equation [21]: 
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where )(siT is the interpolation function matrix given in 
[21].  The location of the cross-section in the element which 
reaches a fully plastic state at first can be determined by 
comparing the calculated distribution of resultant stresses 
with the assumed yield function. 

)]}([{max)]([ 112 sfrf s RR                        (6a) 

or 
)]}([{max)]([ 112 sfrf s RR                      (6b) 

Immediately after the occurrence of the fully plastic 
section, the numerical integration points are shifted to the 
new points ( )2,1(31 2  irsi  ) according to Eq. (1) so 
as to form a plastic hinge exactly at the position of the fully 
plastic section.  For instance, if a fully plastic section occurs 
at the right edge of the element ( 12 r ), the numerical 
integration points are shifted to the points 

)2,1(31  isi  .  The incremental stiffness equation at 
the following incremental step is then given by 

fuk dd                                       (7a) 

where 
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(7b) 
In Eq. (7b), )( 1repdD  is the resultant stress-generalized 
strain matrix for the elasto-plastic deformation considering 
damage.  The generalized strain increment vector is 
calculated as 
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The resultant stress increment vector is evaluated as 
)()()( 222 rdrrd epd εDR                           (9a) 

)()()( 222 rdrrd e  εDR                       (9b) 

The numerical integration points return to the Gaussian 
integration points when the unloading occurs, and they are 
shifted again after reyielding. 
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Fig.1 Cubic Bernoulli-Euler beam element and its physical 
equivalent 

 

B. Elasto-Plastic Damage Constitutive Equation 

The elasto-plastic damage constitutive equation is 
formulated for the incremental analysis of framed structures 
in the present section, based on the previous study for the 
elasto-plastic analysis of framed structures by the 
non-layered approach [25] and the concept of CDM [1]. 

The dissipation potential of the system is the sum of the 
plastic potential and the damage potential, which is given by 
the following equation: 

),;();,( DrYFDRFF DP  R
                

 (10) 

where PF  is the plastic potential for the evolution of plastic 
strains that is a function of the effective resultant stress ( R ), 
the isotropic hardening stress variable ( R ) and the scalar 
damage variable ( D ).  DF  is the damage potential for the 
evolution of damage that is a function of the strain energy 
density release rate (Y ), the strain of isotropic hardening ( r ) 
and the scalar damage variable ( D ). 

The damage increment is obtained by the following 
equation: 
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where d  is a proportional coefficient.  The concrete form 
of this equation is discussed in the next section. 

The yield function is assumed as follows: 
00   Rf eq                           

 (12) 

where the equivalent effective stress eq  is given as 
follows: 
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in which 1R , 2R , 3R  and 4R  are the two components of 
bending moments, the axial force and the torsional moment 
respectively.  A  is the cross-sectional area.  0xZ , 0yZ  and 

pW  are the plastic sectional factors [26].  Each effective 

resultant stress component is given by the following 
equation: 

)4,,1()1/(  iDRR ii                   (14) 

The following equation is assumed to hold on the yield 
surface considering damage: 
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Using the yield function of Eq. (12) as the plastic potential 

PF  in Eq. (10), the generalized plastic strain increment 
( pd ) and the strain increment of isotropic hardening ( dr ) 
are given by the following equations: 
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where d  is a proportional coefficient. 
The total strain increment in the plastic state is the sum of 

the elastic strain increment and the plastic strain increment.  
As a result, the following equation is obtained: 

R
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where eD  is the elastic resultant stress-generalized strain 
matrix.  edε  and pdε  are the generalized elastic and plastic 
strain increment respectively. 

The plastic hardening parameter and its increment are 
assumed as follows: 

nKrR                                           (19) 
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d
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where K  and n  are the material constants. 
Substituting Eqs. (11), (12), (16) (18) and (20) into Eq. 

(15), the proportional coefficient d  is calculated as 
follows: 
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Substituting Eq. (21) into (18), the following incremental 
relation between effective resultant stresses and generalized 
strains can be obtained: 
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(22) 
where epdD  is the tangential, elasto-plastic damage stiffness 
matrix. 

The incremental relation between resultant stresses and 
generalized strains is given by the following equation: 
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(23) 
where epdD  is the tangential, elasto-plastic damage matrix 
relating resultant stress increments with generalized strain 
increments to be used in Eqs. (7b) and (9a). 
 

C. Damage Evolution Equation 

The following damage evolution equation given by 
Lemaitre [1] is used as Eq. (11) in the preceding section: 
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S  and s in Eq. (24a) are material constants.  p  and Dp  
are the accumulated equivalent generalized plastic strain and 
its critical value for the initiation of damage.  The equivalent 
generalized plastic strain increment )(dp  is given as 
follows: 
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where xd and yd  are the curvature change increments.  
d  and '

zd  are the average axial strain and the torsional 
rate respectively.  The notation )(dp  indicates that the 
equivalent generalized plastic strain increment dp  is a 
function of curvature changes here.  The strain energy release 
rate Y  is given as follows: 
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where E  is Young’s modulus.  The time-independent 
damage that evolves with an increase of the equivalent stress 
and the equivalent plastic strain is assumed in the present 
analysis. 

The generalized strain increment in the elasto-plastic 
behavior is the sum of the elastic component and the plastic 
component.  Therefore the relation with the nodal 
displacement increment is expressed by the following 
equation: 

)( pepe dddd uuBεε                       (27) 

The relation between the curvature change increment and the 
nodal displacement increment for the cubic Bernoulli-Euler 
beam element is given by the following equation: 





















p
x

elm

p

elm

p

elm

e
x

elm

e

elm

e

elm

p
x

e
x

d
L

u
L

du
L

d
L

du
L

du
L

dd

22212

22212

222

222




        (28) 

where elmL  is the element length.  The superscripts e  and 
p  indicate an elastic and a plastic component respectively.  

The subscripts 1 and 2 indicate nodes at both edges of the 
element.  The plastic relative rotational angle 

p
d  at the 

plastic hinge can be accurately calculated by the application 
of the ASI technique, not depending on the element length.  
This can be proved by the fact that the plastic collapse load of 
framed structures calculated by the ASI technique coincides 
with the exact solution given by the theoretical plastic 
analysis [26], independent of the number of elements [21].  
On the other hand, the calculated curvature changes are 
mesh-dependent. 

The damage evolution calculated by Eqs. (24), (25) and 
(26) extremely depends on the element length ( elmL ) since 
the damage evolution equation is expressed in terms of the 
curvature change increments as shown in Eq. (25).  Then, Eq. 
(25) is replaced with the following equation: 
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In Eq. (29), xeffL ,  and yeffL ,  
are the effective element 

length dependent on the shape and dimension of the 
cross-section and the material property, which are the 
parameters relating the curvature change increments with the 
plastic relative rotational angles 

p
xd  and 

p
yd .  The 

elastic relative rotational angles are neglected here as their 
effects can generally be considered to be small.  It is assumed 
in Eq. (30) that a plastic hinge is formed at the right edge of 
the element.  The plastic relative rotational angle is an 
important parameter in the plastic analysis of framed 
structures [26], in which the plastic collapse load and the 
residual strength of plastic hinges are calculated and 
discussed by using this parameter.  The effective element 
length as well as the other material constants concerning 
damage should be determined in the experiments containing 
bending tests of frame members.  However, the tentative 
values are used in numerical examples in the next chapter.  It 
is expected that the use of )(dp  in Eq. (29) instead of 

)(dp  in Eq. (25) will remove the mesh-dependence of the 
finite element solutions for the elasto-plastic damage analysis 
of framed structures. 
 

III. NUMERICAL EXAMPLES 

The elasto-plastic damage analysis of a simple space frame 
is conducted in the present section.  Figure 2 shows the 
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loading condition, the boundary condition and the plastic 
hinges with their sequence to be formed in the space frame.  
The space frame is fixed at lower ends and subjected to a 
concentrated load horizontally.  The material constants, the 
dimensions and the damage parameters for the space frame 
are assumed as follows: 210E [GPa], 0tE  [GPa], 

3000  [MPa], 710L [mm], 10B [mm], 
10H [mm].  003.0S [MPa], 1s  and 

001.0Dp .  Each member is uniformly subdivided with 
one, two, four, eight and sixteen elements.  The element 
length in the case when each member is uniformly 
subdivided with sixteen elements is tentatively used as the 
effective element length xeffL ,  and yeffL , .   

Figure 3 shows the results calculated by the conventional 
finite element method (not using the ASI technique) which 
employs the damage evolution equation expressed in terms of 
the equivalent plastic strain increment )(dp  given by Eq. 
(25).   The numerical integration points in each element are 
always located at Gaussian integration points through the 
whole deformation process, therefore a plastic hinge 
considering damage can be formed only at Gaussian 
integration points in each element.  Consequently, the 
convergence of solutions for the plastic collapse load and the 
damage softening behavior is very slow, although the 
solutions are improved with the mesh refinement. 

When applying the ASI technique to the analysis of Fig. 3, 
the calculated plastic collapse loads are completely 
independent of the element subdivision as shown in Fig. 4, 
because the locations of formation of plastic hinges, which 
are member joints in this problem, are exactly considered in 
the present analysis.  However, the convergence of solutions 
after the occurrence of damage is still slow, as the damage 
evolution is calculated by using the equivalent plastic strain 
increment )(dp  given as a function of the curvature 
change increment. 

Figures 5 shows the results calculated by the finite element 
method using the ASI technique based on the damage 
evolution equation expressed in terms of the equivalent 
plastic strain increment )(dp  given in Eq. (29).  As shown 
in this figure, the mesh-dependence has almost been removed 
and the highest computational efficiency and accuracy have 
been achieved by the combined use of the ASI technique and 
the new damage evolution equation expressed in terms of the 
plastic relative rotational angles.  It can be concluded that 
one-element modeling per member is practically possible for 
the elasto-plastic damage analysis of space framed structures 
using cubic beam elements based on Bernoulli-Euler 
hypothesis. 

The converged solution depends on the values of the 
effective element length xeffL ,  

and
 yeffL , influenced by the 

shape and dimension of the cross-section and the material 
property, which should practically be determined by the 
bending tests for a limited number of typical member joints in 
the large-scale framed structure to be analyzed.  Once they 

have been experimentally determined, they can be introduced 
in the elasto-plastic damage analysis of the large-scale 
framed structures. 
 

 
 
 

 Fig.2 Space frame under lateral loading 
 ( : plastic hinge) 

 
 

 
 

Fig.3 Load-deflection curves for a space frame 

 by the conventional method using )(dp  

 
 

 
 

Fig.4 Load-deflection curves for a space frame 

by the ASI technique using )(dp  

 

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I 
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011



 
 

 

 
 

Fig.5 Load-deflection curves for a space frame 

by the ASI technique using )(dp  

 

IV. CONCLUSION 

A new finite element formulation for the elasto-plastic 
damage analysis of framed structures has been proposed by 
the combined use of the ASI technique for cubic 
Bernoulli-Euler beam elements and the new damage 
evolution equation expressed in terms of plastic relative 
rotational angles.  It has been confirmed through some 
numerical studies that the present method is almost 
mesh-independent and one-element idealization per member 
is possible for practical purposes.  The present computational 
method can analyze the collapse behavior of large-scale 
framed structures considering elasto-plasticity, damage and 
fracture with the highest computational efficiency and 
accuracy.  Furthermore, the present algorithm can easily be 
implemented in the existing finite element program.  The 
tentative value was used as the effective element length for 
the present numerical studies, which should more exactly be 
determined by the bending tests or the plate/shell level finite 
element analysis of typical member joints in the framed 
structure to be analyzed. 
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