
 

 
Abstract—Efficient communication is still a severe problem 

in many parallel codes. Therefore, we will discuss the 
advantages of bitonic sorting networks for the organisation of 
data exchange among nodes in a parallel program. Via data 
flow analysis we will find fixpoints of bitonic sorting networks 
and see how to exploit those for obtaining correction methods 
that allow to solve the packet problem with (log N) steps. 
 

Index Terms—bitonic sorting networks, data flow analysis, 
fixpoints, efficient communication, structure mechanics 
 

I. INTRODUCTION 

NE major problem in parallel computing is to find 
efficient communication strategies. Frequent data 

transmissions easily lead to a tremendous communication 
advent that dominates the computation and, thus, spoils any 
speed-up and scalability values. Especially when 
considering several hundred thousand cores, scalability 
plays a significant role on the step to ‘exascale’ computing. 

Whenever data should be exchanged in parallel between 
all nodes (we use the term node substitutional for process, 
core, processor or computer) of a parallel program, the main 
question is concerning the total amount of necessary 
communication steps to be carried out. For a more generic 
approach (following the example of Valiant [1]) we assume 
to have N nodes labelled from 0 to N1 where each node 
stores one packet to be sent to another node. In case all 
packet destinations are distinct the communication pattern 
follows a permutation. In [1], Valliant has proposed a 
(log N) algorithm for N = 2n nodes which is executed on 
an n-dimensional binary cube. The main idea of his 
algorithm is to separate communication into two phases, 
where in the first phase each node sends its packet to a 
randomly chosen node and in the second phase packets are 
further transmitted to a node randomly chosen of a set of 
nodes, thus, the distance to the packet’s destination becomes 
shorter. 

One strong point of this algorithm is to achieve the 
communication in (log N) steps for every permutation, i.e. 
independent of the initial packet destinations as well as for 
partial permutations. Nevertheless, there are also some weak 
points which make the practical usage especially for 
nowadays supercomputers difficult. First of all, nodes are 
assumed to have queues in order to store more than one 
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packet at a time. Hence, there is a (strong) sequential part in 
the communication as not all packets might be in 
transmission at the same time. Second, Valiant assumes an 
n-dimensional binary cube where each node has n wires 
from it—such a topology is rarely found among the world’s 
fastest supercomputers. 

Other approaches such as bitonic sorting networks 
proposed by Batcher [2] yield with (log2 N) necessary 
steps an inferior performance on the one hand, but they are 
much simpler to implement as efficient communication 
pattern on arbitrary network topologies on the other hand; 
see [3] for a sample application. There are many more 
strategies concerning topologies, protocols, and 
communication patterns in order to further reduce the 
complexity (see [4] e.g.), but at this point we would like to 
focus on bitonic sorting networks (BSN) as they fulfill 
certain aspects such as synchronous transmission (i.e. the 
absence of waiting queues) and determinism (i.e. no random 
choice of nodes). According to Valiant, another weak point 
of BSNs is the missing capability to do partial permutations, 
but this is of no importance for our purposes. 

Instead, we will address a different set of problems 
related to fixpoints of BSNs and their consequences on 
efficient communication strategies for the aforementioned 
permutations of packets among all nodes. Hence, the 
reminder of this paper is as follows. In chapter 2, we will 
introduce a data flow analysis of BSNs to reveal fixpoints of 
those networks, while in chapter 3 we will propose a 
solution to this problem and highlight the use of this 
communication strategy to a sample application from 
structure mechanics. Finally, we will close in chapter 4 with 
a short summary and an outlook. 

II. DATA FLOW ANALYSIS OF BITONIC SORTING NETWORKS 

A. Bitonic Sorting Networks 

Bitonic sorting networks were introduced by Batcher [2] 
as an alternative to ‘classical’ sorting algorithms that can do 
the sorting in parallel with a complexity of (log2 N) in case 
of N  2n input data for some integer n (see [5], e.g., for 
BSNs of arbitrary sizes N). Therefore, the BSN is organised 
in two phases. In the first phase, any arbitrary input 
sequence is modified to become a bitonic sequence, before 
in the second phase this sequence is finally sorted by 
executing a bitonic merge. A bitonic merge (as depicted in 
Fig. 1 for eight inputs) needs (log N) steps to sort any 
bitonic sequence in ascending or descending order. Creating 
a bitonic sequence out of any arbitrary sequence takes 
(log2 N) steps, hence the total cost of a BSN can be 
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computed as (log2 N). Omitting phase one might lead to 
wrong results as further discussed in the next section. 

 

 
 

Applying the bitonic merge scheme as communication 
pattern to parallel applications, an efficient data transfer 
between the nodes of a parallel program is possible. For 
instance, a total exchange among all nodes could be easily 
implemented carrying out all data transmissions in parallel. 
As at no point in time one node has to store more than one 
data item, no queues are necessary and, thus, all 
transmissions can be done synchronously. Assuming a high 
enough bisection bandwidth of the underlying physical 
network topology, a bitonic merge communication pattern 
can benefit and exploit the network performance in order to 
reduce the overall communication time. 

For Valiant’s example this means, that every node stores 
one packet labelled by a destination address of any of the 
other nodes. As long as all addresses are distinct, the bitonic 
merge can handle the transfer of all packets in (log N) 
steps—unfortunately not for all possible permutations. 
There exists a subset P  П of all possible permutations П 
for which the transfer leads to an incorrect result, i.e. some 
packets were delivered to a wrong address. Hence the 
question arises for which permutations p  П this happens 
and what can be done as ‘correction method’ in order to 
leverage the simple implementation of a bitonic merge 
communication pattern for the efficient data transfer in 
parallel programs. 

B. Data Flow Analysis 

To reveal all permutations that lead to incorrect results a 
closer look has to be paid on the structure of BSNs. Here, 
the single data movement between two nodes (in one stage 
of the bitonic merge) is of primary interest which suggests 
the idea of performing a data flow analysis of a BSN. Data 
flow analysis is a proper way whenever it comes to the 
understanding and optimisation of algorithms. In our case, a 
closer look on the data flow inside a BSN will help to 
identify the problematic permutations. Therefore, we have 
to trace the single packets on their way through the bitonic 
merge in order to observe when something goes wrong and 
an incorrect state (for the rest of this paper we refer to the 
output or result of a bitonic merger as state) is achieved. 

As a bitonic merge with N inputs has a total of N! 
permutations, hence for large values of N a data flow 
analysis is no longer feasible. According to [6] the problem 
can be simplified by considering 0-1-bit vectors instead of 
arbitrary input data as any network sorts correct any input 

data if and only if it also sorts all possible 0-1-bit vectors. 
This ‘reduces’ the complexity from N! to 2N, nevertheless 
still not very practicable for large values of N. Again, N 
determines the amount of nodes in our parallel program and 
for modern supercomputers N tends to be larger than 105 or 
106 easily. 

Let’s consider a sample scenario. As input we have the 0-
1-bit vector (0100 0100)T that is processed by the bitonic 
merger in the following way. The two 1’s arrive at input #1 
and #5 at the same time where they clash, i.e. the 
comparator keeps one 1 in the upper half and one in the 
lower half of the bitonic merger. Further processing then 
leads to the following state (0001 0001)T. As this bit vector 
is not sorted (i.e. (0000 00011)T) it is wrong and, thus, 
would not be a correct solution to our packet problem. The 
same result can be observed for bit vectors (1000 1000)T, 
(0010 0010)T, and (0001 0001)T. 

In order not to follow up all 28 possible bit vectors for 
this case, a more general analysis would be preferable. As 
we can see from the above example, four different inputs 
lead to the same wrong state. Hence, the question should not 
be how many inputs lead to wrong states, but how many 
wrong states do exist as they play a special role in our 
further considerations. For our example with N  8 there are 
11 of those incorrect states shown as follows according to 
their amount of 1’s. 

 
 2: (0001 0001)T, (0000 0101)T 
 3: (0001 0101)T, (0001 0011)T 
 4: (0101 0101)T, (0011 0011)T, (0001 0111)T 
 5: (0101 0111)T, (0011 0111)T 
 6: (0101 1111)T, (0111 0111)T 

 
What can be observed immediately is that there are never 

more 1’s in the upper half (or first part) than in the lower 
half (or second part) as at most K/2 1’s can clash in the 
same step (and thus stay up) in case of K 1’s. As this 
follows a recursive pattern – a bitonic merger of 2n1 inputs 
contains all states of a bitonic merger with 2n inputs – all of 
those wrong states can be built from combinations of the 1-
distributions in subsequent halves. For instance, in case of 
three 1’s in the input data only one 1 might clash and reside 
in the upper half, i.e. (0001 )T. For the lower half only 
the combinations ( 0101)T and ( 0011)T are feasible 
– both combinations of a bitonic merger with four inputs – 
as due to the structure of the bitonic merger all 1’s are 
always shifted downward as far as possible. Hence, in case 
all three 1’s reside in the lower half, only the vector 
(0000 0111)T is possible but this does not correspond to an 
incorrect state. 

As it’s clear how to construct the incorrect states of a 
bitonic merger with N  2n inputs, the total amount of those 
states as well as the states itself are computable. This is an 
important property for the next section in order to further 
evaluate BSNs for the handling of the packet problem in 
case of arbitrary, i.e. not only bitonic, sequences in (log N) 
steps. 

 
 

Fig. 1.  Bitonic merge of N  8 inputs with (log N)  3 steps (grey boxes)
for sorting in ascending order 
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C. Fixpoints 

If a permutation p leads to an incorrect state s, one idea 
might be to process this state again as input to the same 
bitonic merger. Unfortunately it turns out, that the incorrect 
states are fixpoints of the bitonic merger bm( ) as the 
mapping bm(s)  s is true for all s  S  П with S denoting 
the subset of incorrect states. We have seen in the section 
above that several different permutations p  P, with P   
denoting the subset of all permutations leading to an 
incorrect state, might lead to the same incorrect state s, 
namely the one where all 1’s are shifted downward as far as 
possible. Hence, only those states have to be further 
considered as otherwise there exists a mapping bm(p)  s. 

 
Proof 1: s  S: bm(s)  s is true 
 
If s is an incorrect state then the corresponding bit vector 

must have at least one 0-bit bi, 0  l  i  m  2n, between 
two 1-bits bl and bm—otherwise it would consist of some 0’s 
followed only by 1’s indicating a correct sorting. In each 
step of the bitonic merge some upper part is compared to 
some lower part and corresponding bits are exchanged if 
being out of order. Hence, if bi is in the upper part and 
compared to a 1 in the lower part bi doesn’t change its place 
and the final result is the same as the input sequence, i.e. 
bm(s)  s. If bi is in the lower part and compared to a 1 in 
the upper part they are exchanged and, thus, the bits 
between bl and bm are filled with 1’s. But this leads to a 
correct sorting which contradicts the assumption that s  S 
was an incorrect state   □ 

 
Proof 2: p  P  p  S: s  S with bm(p)  s 
 
Due to the assumption p  P the bit vector contains at 

least two bits bi and bj with 0  i  j  2n and bi  bj  1 that 
clash in the kth step with 1  k  n. Hence, there is at least 
one 0 between the two 1’s such that the final bit vector has a 
structure as follows (101)T and corresponds to a 
critical state—otherwise, i.e. k  n, bits bi and bj would be 
neighbours without any 0 in between. But this leads to a 
correct state, so the input sequence must have been bitonic 
and, thus, contradicts the assumption p  P. According to 
Fig.°1 all 1’s of the bit vector are shifted downward as long 
as they do not clash. Hence, if no shifting can be done 
p  bm(p) such that p belongs to S, but this is a 
contradiction to the assumption p  S. Therefore, p  bm(p) 
which means at least one shifting was executed. Now 
feeding the resulting bit vector bm(p) again as input to the 
bitonic merger the shifting can be continued until we reach a 
critical state s  S, such that there exists a mapping 
bm(p)  s   □ 

 
Knowing that all incorrect states are fixpoints of a bitonic 

merger and all problematic input sequences lead to such 
fixpoints, this allows us restricting further investigations on 
those fixpoints only. Again, the total amount of incorrect 
states (of a bitonic merger with a certain size N  2n) is an 
important characteristic telling us how many ‘special cases’ 
we have to consider for any correction method in order to 

prove that the bitonic merger leads for all permutations to 
the correct results. In case of N  4, N  8, N  16, or N  32 
inputs the total amount of incorrect states is still quite 
moderate with only 1, 11, 151, or 7548 states, resp, and thus 
can be easily checked by an algorithm. In the next chapter 
we will therefore discuss about possible correction methods 
as well as a sample application from structure mechanics. 

III. APPLICATION OF BSN COMMUNICATION STRATEGY 

For further considerations we assume that in case 
between two nodes a clash occurs, both of the nodes set a 
local flag notifying that the bitonic merge leads to an 
incorrect state. When finished, all nodes exchange flags in 
order to indicate that more processing, i.e. an additional 
correction is necessary. 

A. Naïve Correction: Odd-Even-Transposition 

One idea to handle incorrect states is firstly to ‘crack’ a 
fixpoint s (applying some shifts e.g.) and then process this 
modified state s again by the bitonic merger. In the ideal 
case, now bm(s) leads to a correct result—otherwise 
bm(s)  s with s  S, i.e. another fixpoint has been 
reached and the entire correction has to be repeated until the 
problem is solved. Immediately two questions arise: How to 
crack a fixpoint and how many rounds of bitonic merge 
have to be executed until a correct result is achieved? 

A naïve approach for cracking a fixpoint is to deploy 
some phases of an odd-even-transposition. During an odd-
even-transposition neighbouring nodes either starting with 
odd or even indices are pairwise compared and exchanged if 
being out of order. Fig. 2 shows the related comparisons in 
case of N  8 inputs. 

 

 
If we now consider the 11 incorrect states (as illustrated 

above) of a BSN with N  8 inputs it is simple to check if 
this correction method works by applying the odd-even-
transposition on each of them. For seven states the problem 
can be solved while for four states the odd-even-
transposition leads to another fixpoint. Hence, for the latter 
states a further processing via another round through the 
bitonic merger is ineffective. The resulting incorrect states 
are shown as follows according to their amount of 1’s. 

 
 2: (0000 0101)T 
 4: (0001 0111)T 
 6: (0101 1111)T 

 

 
 

Fig. 2.  Two phases (grey boxes) of an odd-even-transposition for N  8 
inputs 
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A slight better result can be achieved if only the first of 
the two phases of an odd-even-transposition (namely the 
first grey box in Fig. 2) is performed, followed by a 
complete round of the bitonic merger. Considering the same 
11 incorrect states from above, this is – again – trivial to 
check. Now for nine states the problem can be solved while 
only two states lead to another fixpoint where further 
processing via the bitonic merger is ineffective. The 
resulting incorrect state (according to its amount of 1’s) is as 
follows. 

 
 4: (0001 0111)T 

 
One interesting observation is that all incorrect states with 

an odd number of 1’s could be solved and, thus, only states 
with an even number of 1’s are left. But at this point we do 
not claim that this is a general principle which all fixpoints 
of any BSN with size 2n follow; something that could be 
further investigated in the future. Deploying a second round 
of an odd-even-transposition finally solves the problem for 
the three incorrect states or the one incorrect state above in 
case of two phases or one phase of an odd-even-
transposition, resp., as correction method. Hence, this leads 
to our second question of how many times the correction 
method has to be applied on a BSN of arbitrary size until 
any 0-1-bit vector is sorted. 

 
Proof 3: For any BSN with size N  2n the correction 

method has to be deployed at most log N times. 
 
For any fixpoint s the corresponding bit vector must have 

at least one 0-bit bi, 0  l  i  m  2n, between two 1-bits bl 
and bm. Due to the odd-even-transposition the 1-bit bl is 
shifted downward by one position (it can be seen easily that 
l has to be an even index, otherwise s would not be a 
fixpoint and a mapping bm(s)  s with s  S would exist). 
Either the ‘gap’ between bl and bm has been closed and a 
correct state has been reached, or the bit vector is processed 
again by the BSN otherwise. In the latter case, if bl has 
clashed before the odd-even-transposition in step k, now it 
might clash in a step  k1 or lead to a correct result. Hence, 
as the bitonic merger consists in total of log N steps, and 
each odd-even-transposition postpones the clashing at least 
by one step, there can be at most log N full processing 
rounds   □ 

B. Further Considerations on Complexity 

Up to now we have seen that for the packet problem 
proposed by Valiant a BSN can solve the task with log N 
steps, but unfortunately not for all permutations of input 
data. Some permutations might lead to incorrect states that 
are furthermore fixpoints of the BSN. Hence, for any 
correction method it is enough to consider only those very 
limited amount of fixpoints which makes any checking 
much simpler. Nevertheless, what’s left to show is that the 
bitonic merge plus any correction method is still in the 
range of (log N) or at least clog N with some constant 
factor c  log N. 

Instead of a formal prove (which at this point is also very 
difficult to show) we choose an algorithmic approach. What 

can be observed for BSN of size N  2n with increasing n is 
that the majority of all permutations ( 90%) lead to an 
incorrect state. Fortunately, there are much less fixpoints 
that have to be further considered. Hence, for any correction 
method applied to those fixpoints it can be shown by an 
algorithm how many correction steps it takes until the 
fixpoints have been fully resolved. 

Concerning now exascale computing this becomes 
interesting for values of N  220 which entails some 
computational effort to prove for all critical states. 
Nevertheless, for smaller values of N we could show that 
the majority of all fixpoints was resolved after just one 
correction step (1-fixpoints) and only very few fixpoints 
needed further processing, i.e. more than one correction step 
(2-fixpoints, 3-fixpoints and so on). We furthermore could 
observe a trend that for increasing values of N the ratio of 1-
fixpoints stays pretty stable, hence we assume this also 
holds for larger values of N—something that has to be 
further investigated in the future. 

Based on this very promising results we conclude so far: 
the majority of fixpoints are 1-fixpoints and higher 
representatives (2-, 3-, …-fixpoints) have a strictly 
decreasing ratio, thus, in most cases c  1 is enough. If we 
now consider the average case, it takes only a few 
correction steps c  log N in order to reach a correct state. 
For the initially proposed packet problem this means that the 
bitonic merge can solve any permutation on average with 
(log N) steps. 

C. Sample Application: FEM 

One application that benefits from the BSN 
communication strategy is related to structure mechanics. 
Here, with the p-version of finite element methods (p-FEM) 
– without going into detail of high-order FEM, see [7] or [8] 
for further information – arises the problem to assemble the 
global system matrix K from the single element stiffness 
matrices K(e) via superposition K  K(e). As K might grow 
very large, usually memory is the limiting factor. 
Nevertheless, p-FEM is very well suited for parallelisation 
as the single element stiffness matrices K(e) are independent 
from each other and, thus, can be computed in parallel. 

When it comes to the matrix assembly of K, efficient 
parallel strategies can be found in literature for shared 
memory systems (see [9] e.g.) while distributed memory 
approaches typically suffer from a huge communication 
advent. The problem is that within a distributed assembly 
each process computes only one block of K for which it 
needs certain K(e)’s as input data. Even the computation of 
single K(e)’s can be optimised concerning locality measures, 
i.e. they are computed on the same node where they are 
needed for the assembly, most of them are needed on 
several nodes and, thus, have to be transmitted. In 
accordance to the packet problem from above one K(e) can 
be seen as a packet that has to be sent from one node to 
some destination. 

In a worst case approach – which of course never meets 
reality – each node stores some K(e)’s or packets, resp., 
which are never used for the local assembly and have to be 
transmitted to one or more other nodes. Now this is a variant 
of the original packet problem still to be solved in (log N) 
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steps. As each node is source (and destination) of M 
packets, we assume that each node has the capacity to store 
M packets for later delivery. In contrast to the single packet 
problem each node will first of all do M transmissions in a 
row (transmissions among all disjoint pairs of nodes still 
happen in parallel while several transmissions between two 
nodes happen sequentially) before the nodes decide which 
packets to keep for local processing, i.e. a packet has arrived 
at its final destination, and which for further transfer. 

Practically the M-packet problem can be seen as a 
sequence of M rounds of the single packet problem. For the 
single packet problem we have seen that any incorrect state 
can be corrected using one of the methods shown above. 
Hence, this is also valid in case of M packets with a small 
modification. In order to distinguish the packets they have 
to be labelled from 1 to M where the ordering of the packets 
under no circumstance must be subject to change. Otherwise 
it is not possible to guarantee that any incorrect state might 
be resolved. Furthermore, each node needs M flags to 
indicate any clash of packets during round m with 
m  [1, M]. When finished with all transmissions there are 
at most M incorrect states that can be treated in the usual 
way. However, as this part is still work in progress, practical 
experiments have to show how many incorrect states appear 
on average for different values of M. 

IV. CONCLUSIONS AND OUTLOOK 

In this paper, we have presented an analysis of bitonic 
sorting networks as efficient communication strategy with a 
complexity of (log N) communication steps. BSNs have 
proven to be a realistic alternative to existing approaches 
that in most cases require either special network topologies 
or sophisticated routing protocols while a BSN 
communication pattern is simple to implement even for 
arbitrary networks. We further have addressed the problem 
that a BSN only works correct for certain input sequences 
and, thus, might lead to incorrect states which have to be 
further processed. Those incorrect states are fixpoints of the 
BSN which can be computed in advance in order to find 
correction methods that do not exceed the (log N) property 
and make the shown approach competitive. 

For practical issues we have also given an example from 
structural mechanics that benefits from the BSN 
communication pattern when performing a distributed 
matrix assembly. Here, an efficient organisation of the data 
exchange among all nodes can tremendously reduce the 
communication advent and provide a scalable approach that 
is still advantageous on next generation supercomputers 
with more than 105 or 106 cores. Future work will comprise 
beside the search for further correction methods to the 
critical states especially an implementation of the distributed 
matrix assembly on a supercomputer in order to study the 
scalability and speed-up behaviour of the BSN 
communication pattern for different problem sizes and 
different amount of cores. 
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