


Abstract—Efficient communication is still a severe problem

in many parallel codes. Therefore, we will discuss the
advantages of bitonic sorting networks for the organisation of
data exchange among nodes in a parallel program. Via data
flow analysis we will find fixpoints of bitonic sorting networks
and see how to exploit those for obtaining correction methods
that allow to solve the packet problem with (log N) steps.

Index Terms—bitonic sorting networks, data flow analysis,
fixpoints, efficient communication, structure mechanics

I. INTRODUCTION

NE major problem in parallel computing is to find
efficient communication strategies. Frequent data

transmissions easily lead to a tremendous communication
advent that dominates the computation and, thus, spoils any
speed-up and scalability values. Especially when
considering several hundred thousand cores, scalability
plays a significant role on the step to ‘exascale’ computing.

Whenever data should be exchanged in parallel between
all nodes (we use the term node substitutional for process,
core, processor or computer) of a parallel program, the main
question is concerning the total amount of necessary
communication steps to be carried out. For a more generic
approach (following the example of Valiant [1]) we assume
to have N nodes labelled from 0 to N1 where each node
stores one packet to be sent to another node. In case all
packet destinations are distinct the communication pattern
follows a permutation. In [1], Valliant has proposed a
(log N) algorithm for N = 2n nodes which is executed on
an n-dimensional binary cube. The main idea of his
algorithm is to separate communication into two phases,
where in the first phase each node sends its packet to a
randomly chosen node and in the second phase packets are
further transmitted to a node randomly chosen of a set of
nodes, thus, the distance to the packet’s destination becomes
shorter.

One strong point of this algorithm is to achieve the
communication in (log N) steps for every permutation, i.e.
independent of the initial packet destinations as well as for
partial permutations. Nevertheless, there are also some weak
points which make the practical usage especially for
nowadays supercomputers difficult. First of all, nodes are
assumed to have queues in order to store more than one

Manuscript received July 26, 2011; revised August 16, 2011.
Computation in Engineering, Technische Universität München,

Arcisstrasse 21, 80290 München, GERMANY. Corresponding author
contact: phone: +49-89-289-25057; fax: +49-89-289-25051; e-mail:
mundani@tum.de

packet at a time. Hence, there is a (strong) sequential part in
the communication as not all packets might be in
transmission at the same time. Second, Valiant assumes an
n-dimensional binary cube where each node has n wires
from it—such a topology is rarely found among the world’s
fastest supercomputers.

Other approaches such as bitonic sorting networks
proposed by Batcher [2] yield with (log2 N) necessary
steps an inferior performance on the one hand, but they are
much simpler to implement as efficient communication
pattern on arbitrary network topologies on the other hand;
see [3] for a sample application. There are many more
strategies concerning topologies, protocols, and
communication patterns in order to further reduce the
complexity (see [4] e.g.), but at this point we would like to
focus on bitonic sorting networks (BSN) as they fulfill
certain aspects such as synchronous transmission (i.e. the
absence of waiting queues) and determinism (i.e. no random
choice of nodes). According to Valiant, another weak point
of BSNs is the missing capability to do partial permutations,
but this is of no importance for our purposes.

Instead, we will address a different set of problems
related to fixpoints of BSNs and their consequences on
efficient communication strategies for the aforementioned
permutations of packets among all nodes. Hence, the
reminder of this paper is as follows. In chapter 2, we will
introduce a data flow analysis of BSNs to reveal fixpoints of
those networks, while in chapter 3 we will propose a
solution to this problem and highlight the use of this
communication strategy to a sample application from
structure mechanics. Finally, we will close in chapter 4 with
a short summary and an outlook.

II. DATA FLOW ANALYSIS OF BITONIC SORTING NETWORKS

A. Bitonic Sorting Networks

Bitonic sorting networks were introduced by Batcher [2]
as an alternative to ‘classical’ sorting algorithms that can do
the sorting in parallel with a complexity of (log2 N) in case
of N  2n input data for some integer n (see [5], e.g., for
BSNs of arbitrary sizes N). Therefore, the BSN is organised
in two phases. In the first phase, any arbitrary input
sequence is modified to become a bitonic sequence, before
in the second phase this sequence is finally sorted by
executing a bitonic merge. A bitonic merge (as depicted in
Fig. 1 for eight inputs) needs (log N) steps to sort any
bitonic sequence in ascending or descending order. Creating
a bitonic sequence out of any arbitrary sequence takes
(log2 N) steps, hence the total cost of a BSN can be

Efficient Bitonic Communication for the
Parallel Data Exchange

Ralf-Peter Mundani, Ernst Rank

O

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol II
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-19251-7-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

computed as (log2 N). Omitting phase one might lead to
wrong results as further discussed in the next section.

Applying the bitonic merge scheme as communication
pattern to parallel applications, an efficient data transfer
between the nodes of a parallel program is possible. For
instance, a total exchange among all nodes could be easily
implemented carrying out all data transmissions in parallel.
As at no point in time one node has to store more than one
data item, no queues are necessary and, thus, all
transmissions can be done synchronously. Assuming a high
enough bisection bandwidth of the underlying physical
network topology, a bitonic merge communication pattern
can benefit and exploit the network performance in order to
reduce the overall communication time.

For Valiant’s example this means, that every node stores
one packet labelled by a destination address of any of the
other nodes. As long as all addresses are distinct, the bitonic
merge can handle the transfer of all packets in (log N)
steps—unfortunately not for all possible permutations.
There exists a subset P  П of all possible permutations П
for which the transfer leads to an incorrect result, i.e. some
packets were delivered to a wrong address. Hence the
question arises for which permutations p  П this happens
and what can be done as ‘correction method’ in order to
leverage the simple implementation of a bitonic merge
communication pattern for the efficient data transfer in
parallel programs.

B. Data Flow Analysis

To reveal all permutations that lead to incorrect results a
closer look has to be paid on the structure of BSNs. Here,
the single data movement between two nodes (in one stage
of the bitonic merge) is of primary interest which suggests
the idea of performing a data flow analysis of a BSN. Data
flow analysis is a proper way whenever it comes to the
understanding and optimisation of algorithms. In our case, a
closer look on the data flow inside a BSN will help to
identify the problematic permutations. Therefore, we have
to trace the single packets on their way through the bitonic
merge in order to observe when something goes wrong and
an incorrect state (for the rest of this paper we refer to the
output or result of a bitonic merger as state) is achieved.

As a bitonic merge with N inputs has a total of N!
permutations, hence for large values of N a data flow
analysis is no longer feasible. According to [6] the problem
can be simplified by considering 0-1-bit vectors instead of
arbitrary input data as any network sorts correct any input

data if and only if it also sorts all possible 0-1-bit vectors.
This ‘reduces’ the complexity from N! to 2N, nevertheless
still not very practicable for large values of N. Again, N
determines the amount of nodes in our parallel program and
for modern supercomputers N tends to be larger than 105 or
106 easily.

Let’s consider a sample scenario. As input we have the 0-
1-bit vector (0100 0100)T that is processed by the bitonic
merger in the following way. The two 1’s arrive at input #1
and #5 at the same time where they clash, i.e. the
comparator keeps one 1 in the upper half and one in the
lower half of the bitonic merger. Further processing then
leads to the following state (0001 0001)T. As this bit vector
is not sorted (i.e. (0000 00011)T) it is wrong and, thus,
would not be a correct solution to our packet problem. The
same result can be observed for bit vectors (1000 1000)T,
(0010 0010)T, and (0001 0001)T.

In order not to follow up all 28 possible bit vectors for
this case, a more general analysis would be preferable. As
we can see from the above example, four different inputs
lead to the same wrong state. Hence, the question should not
be how many inputs lead to wrong states, but how many
wrong states do exist as they play a special role in our
further considerations. For our example with N  8 there are
11 of those incorrect states shown as follows according to
their amount of 1’s.

 2: (0001 0001)T, (0000 0101)T
 3: (0001 0101)T, (0001 0011)T
 4: (0101 0101)T, (0011 0011)T, (0001 0111)T
 5: (0101 0111)T, (0011 0111)T
 6: (0101 1111)T, (0111 0111)T

What can be observed immediately is that there are never

more 1’s in the upper half (or first part) than in the lower
half (or second part) as at most K/2 1’s can clash in the
same step (and thus stay up) in case of K 1’s. As this
follows a recursive pattern – a bitonic merger of 2n1 inputs
contains all states of a bitonic merger with 2n inputs – all of
those wrong states can be built from combinations of the 1-
distributions in subsequent halves. For instance, in case of
three 1’s in the input data only one 1 might clash and reside
in the upper half, i.e. (0001 )T. For the lower half only
the combinations ( 0101)T and ( 0011)T are feasible
– both combinations of a bitonic merger with four inputs –
as due to the structure of the bitonic merger all 1’s are
always shifted downward as far as possible. Hence, in case
all three 1’s reside in the lower half, only the vector
(0000 0111)T is possible but this does not correspond to an
incorrect state.

As it’s clear how to construct the incorrect states of a
bitonic merger with N  2n inputs, the total amount of those
states as well as the states itself are computable. This is an
important property for the next section in order to further
evaluate BSNs for the handling of the packet problem in
case of arbitrary, i.e. not only bitonic, sequences in (log N)
steps.

Fig. 1. Bitonic merge of N  8 inputs with (log N)  3 steps (grey boxes)
for sorting in ascending order

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol II
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-19251-7-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

C. Fixpoints

If a permutation p leads to an incorrect state s, one idea
might be to process this state again as input to the same
bitonic merger. Unfortunately it turns out, that the incorrect
states are fixpoints of the bitonic merger bm() as the
mapping bm(s)  s is true for all s  S  П with S denoting
the subset of incorrect states. We have seen in the section
above that several different permutations p  P, with P  
denoting the subset of all permutations leading to an
incorrect state, might lead to the same incorrect state s,
namely the one where all 1’s are shifted downward as far as
possible. Hence, only those states have to be further
considered as otherwise there exists a mapping bm(p)  s.

Proof 1: s  S: bm(s)  s is true

If s is an incorrect state then the corresponding bit vector

must have at least one 0-bit bi, 0  l  i  m  2n, between
two 1-bits bl and bm—otherwise it would consist of some 0’s
followed only by 1’s indicating a correct sorting. In each
step of the bitonic merge some upper part is compared to
some lower part and corresponding bits are exchanged if
being out of order. Hence, if bi is in the upper part and
compared to a 1 in the lower part bi doesn’t change its place
and the final result is the same as the input sequence, i.e.
bm(s)  s. If bi is in the lower part and compared to a 1 in
the upper part they are exchanged and, thus, the bits
between bl and bm are filled with 1’s. But this leads to a
correct sorting which contradicts the assumption that s  S
was an incorrect state □

Proof 2: p  P  p  S: s  S with bm(p)  s

Due to the assumption p  P the bit vector contains at

least two bits bi and bj with 0  i  j  2n and bi  bj  1 that
clash in the kth step with 1  k  n. Hence, there is at least
one 0 between the two 1’s such that the final bit vector has a
structure as follows (101)T and corresponds to a
critical state—otherwise, i.e. k  n, bits bi and bj would be
neighbours without any 0 in between. But this leads to a
correct state, so the input sequence must have been bitonic
and, thus, contradicts the assumption p  P. According to
Fig.°1 all 1’s of the bit vector are shifted downward as long
as they do not clash. Hence, if no shifting can be done
p  bm(p) such that p belongs to S, but this is a
contradiction to the assumption p  S. Therefore, p  bm(p)
which means at least one shifting was executed. Now
feeding the resulting bit vector bm(p) again as input to the
bitonic merger the shifting can be continued until we reach a
critical state s  S, such that there exists a mapping
bm(p)  s □

Knowing that all incorrect states are fixpoints of a bitonic

merger and all problematic input sequences lead to such
fixpoints, this allows us restricting further investigations on
those fixpoints only. Again, the total amount of incorrect
states (of a bitonic merger with a certain size N  2n) is an
important characteristic telling us how many ‘special cases’
we have to consider for any correction method in order to

prove that the bitonic merger leads for all permutations to
the correct results. In case of N  4, N  8, N  16, or N  32
inputs the total amount of incorrect states is still quite
moderate with only 1, 11, 151, or 7548 states, resp, and thus
can be easily checked by an algorithm. In the next chapter
we will therefore discuss about possible correction methods
as well as a sample application from structure mechanics.

III. APPLICATION OF BSN COMMUNICATION STRATEGY

For further considerations we assume that in case
between two nodes a clash occurs, both of the nodes set a
local flag notifying that the bitonic merge leads to an
incorrect state. When finished, all nodes exchange flags in
order to indicate that more processing, i.e. an additional
correction is necessary.

A. Naïve Correction: Odd-Even-Transposition

One idea to handle incorrect states is firstly to ‘crack’ a
fixpoint s (applying some shifts e.g.) and then process this
modified state s again by the bitonic merger. In the ideal
case, now bm(s) leads to a correct result—otherwise
bm(s)  s with s  S, i.e. another fixpoint has been
reached and the entire correction has to be repeated until the
problem is solved. Immediately two questions arise: How to
crack a fixpoint and how many rounds of bitonic merge
have to be executed until a correct result is achieved?

A naïve approach for cracking a fixpoint is to deploy
some phases of an odd-even-transposition. During an odd-
even-transposition neighbouring nodes either starting with
odd or even indices are pairwise compared and exchanged if
being out of order. Fig. 2 shows the related comparisons in
case of N  8 inputs.

If we now consider the 11 incorrect states (as illustrated

above) of a BSN with N  8 inputs it is simple to check if
this correction method works by applying the odd-even-
transposition on each of them. For seven states the problem
can be solved while for four states the odd-even-
transposition leads to another fixpoint. Hence, for the latter
states a further processing via another round through the
bitonic merger is ineffective. The resulting incorrect states
are shown as follows according to their amount of 1’s.

 2: (0000 0101)T
 4: (0001 0111)T
 6: (0101 1111)T

Fig. 2. Two phases (grey boxes) of an odd-even-transposition for N  8
inputs

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol II
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-19251-7-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

A slight better result can be achieved if only the first of
the two phases of an odd-even-transposition (namely the
first grey box in Fig. 2) is performed, followed by a
complete round of the bitonic merger. Considering the same
11 incorrect states from above, this is – again – trivial to
check. Now for nine states the problem can be solved while
only two states lead to another fixpoint where further
processing via the bitonic merger is ineffective. The
resulting incorrect state (according to its amount of 1’s) is as
follows.

 4: (0001 0111)T

One interesting observation is that all incorrect states with

an odd number of 1’s could be solved and, thus, only states
with an even number of 1’s are left. But at this point we do
not claim that this is a general principle which all fixpoints
of any BSN with size 2n follow; something that could be
further investigated in the future. Deploying a second round
of an odd-even-transposition finally solves the problem for
the three incorrect states or the one incorrect state above in
case of two phases or one phase of an odd-even-
transposition, resp., as correction method. Hence, this leads
to our second question of how many times the correction
method has to be applied on a BSN of arbitrary size until
any 0-1-bit vector is sorted.

Proof 3: For any BSN with size N  2n the correction

method has to be deployed at most log N times.

For any fixpoint s the corresponding bit vector must have

at least one 0-bit bi, 0  l  i  m  2n, between two 1-bits bl
and bm. Due to the odd-even-transposition the 1-bit bl is
shifted downward by one position (it can be seen easily that
l has to be an even index, otherwise s would not be a
fixpoint and a mapping bm(s)  s with s  S would exist).
Either the ‘gap’ between bl and bm has been closed and a
correct state has been reached, or the bit vector is processed
again by the BSN otherwise. In the latter case, if bl has
clashed before the odd-even-transposition in step k, now it
might clash in a step  k1 or lead to a correct result. Hence,
as the bitonic merger consists in total of log N steps, and
each odd-even-transposition postpones the clashing at least
by one step, there can be at most log N full processing
rounds □

B. Further Considerations on Complexity

Up to now we have seen that for the packet problem
proposed by Valiant a BSN can solve the task with log N
steps, but unfortunately not for all permutations of input
data. Some permutations might lead to incorrect states that
are furthermore fixpoints of the BSN. Hence, for any
correction method it is enough to consider only those very
limited amount of fixpoints which makes any checking
much simpler. Nevertheless, what’s left to show is that the
bitonic merge plus any correction method is still in the
range of (log N) or at least clog N with some constant
factor c  log N.

Instead of a formal prove (which at this point is also very
difficult to show) we choose an algorithmic approach. What

can be observed for BSN of size N  2n with increasing n is
that the majority of all permutations ( 90%) lead to an
incorrect state. Fortunately, there are much less fixpoints
that have to be further considered. Hence, for any correction
method applied to those fixpoints it can be shown by an
algorithm how many correction steps it takes until the
fixpoints have been fully resolved.

Concerning now exascale computing this becomes
interesting for values of N  220 which entails some
computational effort to prove for all critical states.
Nevertheless, for smaller values of N we could show that
the majority of all fixpoints was resolved after just one
correction step (1-fixpoints) and only very few fixpoints
needed further processing, i.e. more than one correction step
(2-fixpoints, 3-fixpoints and so on). We furthermore could
observe a trend that for increasing values of N the ratio of 1-
fixpoints stays pretty stable, hence we assume this also
holds for larger values of N—something that has to be
further investigated in the future.

Based on this very promising results we conclude so far:
the majority of fixpoints are 1-fixpoints and higher
representatives (2-, 3-, …-fixpoints) have a strictly
decreasing ratio, thus, in most cases c  1 is enough. If we
now consider the average case, it takes only a few
correction steps c  log N in order to reach a correct state.
For the initially proposed packet problem this means that the
bitonic merge can solve any permutation on average with
(log N) steps.

C. Sample Application: FEM

One application that benefits from the BSN
communication strategy is related to structure mechanics.
Here, with the p-version of finite element methods (p-FEM)
– without going into detail of high-order FEM, see [7] or [8]
for further information – arises the problem to assemble the
global system matrix K from the single element stiffness
matrices K(e) via superposition K  K(e). As K might grow
very large, usually memory is the limiting factor.
Nevertheless, p-FEM is very well suited for parallelisation
as the single element stiffness matrices K(e) are independent
from each other and, thus, can be computed in parallel.

When it comes to the matrix assembly of K, efficient
parallel strategies can be found in literature for shared
memory systems (see [9] e.g.) while distributed memory
approaches typically suffer from a huge communication
advent. The problem is that within a distributed assembly
each process computes only one block of K for which it
needs certain K(e)’s as input data. Even the computation of
single K(e)’s can be optimised concerning locality measures,
i.e. they are computed on the same node where they are
needed for the assembly, most of them are needed on
several nodes and, thus, have to be transmitted. In
accordance to the packet problem from above one K(e) can
be seen as a packet that has to be sent from one node to
some destination.

In a worst case approach – which of course never meets
reality – each node stores some K(e)’s or packets, resp.,
which are never used for the local assembly and have to be
transmitted to one or more other nodes. Now this is a variant
of the original packet problem still to be solved in (log N)

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol II
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-19251-7-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

steps. As each node is source (and destination) of M
packets, we assume that each node has the capacity to store
M packets for later delivery. In contrast to the single packet
problem each node will first of all do M transmissions in a
row (transmissions among all disjoint pairs of nodes still
happen in parallel while several transmissions between two
nodes happen sequentially) before the nodes decide which
packets to keep for local processing, i.e. a packet has arrived
at its final destination, and which for further transfer.

Practically the M-packet problem can be seen as a
sequence of M rounds of the single packet problem. For the
single packet problem we have seen that any incorrect state
can be corrected using one of the methods shown above.
Hence, this is also valid in case of M packets with a small
modification. In order to distinguish the packets they have
to be labelled from 1 to M where the ordering of the packets
under no circumstance must be subject to change. Otherwise
it is not possible to guarantee that any incorrect state might
be resolved. Furthermore, each node needs M flags to
indicate any clash of packets during round m with
m  [1, M]. When finished with all transmissions there are
at most M incorrect states that can be treated in the usual
way. However, as this part is still work in progress, practical
experiments have to show how many incorrect states appear
on average for different values of M.

IV. CONCLUSIONS AND OUTLOOK

In this paper, we have presented an analysis of bitonic
sorting networks as efficient communication strategy with a
complexity of (log N) communication steps. BSNs have
proven to be a realistic alternative to existing approaches
that in most cases require either special network topologies
or sophisticated routing protocols while a BSN
communication pattern is simple to implement even for
arbitrary networks. We further have addressed the problem
that a BSN only works correct for certain input sequences
and, thus, might lead to incorrect states which have to be
further processed. Those incorrect states are fixpoints of the
BSN which can be computed in advance in order to find
correction methods that do not exceed the (log N) property
and make the shown approach competitive.

For practical issues we have also given an example from
structural mechanics that benefits from the BSN
communication pattern when performing a distributed
matrix assembly. Here, an efficient organisation of the data
exchange among all nodes can tremendously reduce the
communication advent and provide a scalable approach that
is still advantageous on next generation supercomputers
with more than 105 or 106 cores. Future work will comprise
beside the search for further correction methods to the
critical states especially an implementation of the distributed
matrix assembly on a supercomputer in order to study the
scalability and speed-up behaviour of the BSN
communication pattern for different problem sizes and
different amount of cores.

ACKNOWLEDGMENT

This publication is based on work supported by Award
No. UK-C0020 made by King Abdullah University of

Science and Technology (KAUST).

REFERENCES
[1] L. G. Valiant, “A scheme for fast parallel communication,” SIAM

Journal on Computing, vol. 11, no. 2, pp. 350361, 1982.
[2] K. E. Batcher, “Sorting networks and their applications,” in Proc.

AFIPS Spring Joint Computer Conference, 1968, pp. 307314.
[3] J. F. Prins, “Efficient bitonic sorting of large arrays on the MasPar

MP-1,” technical report TR91-041, Department of Computer Science,
UNC-Chapel Hill, USA, 1991.

[4] S. Rao, T. Suel, T. Tsantilas, M. Goudreau, “Efficient communication
using total exchange,” in Proc. 9th International Parallel Processing
Symposium, 1995, pp. 544550.

[5] T. Levi, A. Litman, “Bitonic sorters of minimal depth,” technical
report CS-2010-08, Computer Science Department, Technion, Israel,
2010.

[6] D. E. Knuth, “The art of computer programming, vol. 3: Sorting and
searching,” 2nd ed., Addison-Wesley, 1988.

[7] B. A. Szabó, I. Babuška, “Finite Element Analysis,” John Wiley &
Sons, 1991.

[8] B. A. Szabó, A. Düster, E. Rank, “The p-version of the finite element
method,” Encyclopedia of Computational Mechanics, vol. 1, chapter
5, pp. 119139, John Wiley & Sons, 2004.

[9] M. N. de Rezende, J. B. de Paiva, “A parallel algorithm for stiffness
matrix assembly in a shared memory environment,” Computers and
Structures, vol. 76, no. 5, pp. 593602, 2000.

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol II
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-19251-7-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

