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Abstract—Portfolio managers are often constrained by
turnover limits, minimum and maximum stock positions, car-
dinality, a target market capitalization and sometimes the need
to hew to a style (growth or value). In addition, many portfolio
managers choose stocks based upon fundamental data, e.g.
price-to-earnings and dividend yield in an effort to maximize
return. All of these are typical real-world constraints a portfolio
manager faces. Another constraint, of sorts, is the need to
outperform a stock index benchmark. Performance higher
than the benchmark means a better compensation package.
Underperforming the benchmark means a lesser compensation
package.

We use MOEAs to satisfy the above real-world constraints
and consistently outperform typical performance benchmarks.
Our first MOEA solves all the constraints (except turnover and
position limits) and generates feasible portfolios. The second
MOEA tests each of the potential feasible portfolios of the
first MOEA by trading off mean return, variance, turnover
and position limits. The best portfolio is chosen from these
feasible portfolios and becomes the portfolio of choice for the
next quarter.

The MOEAs are applied to the following problems - generate
a series of monthly portfolios that outperform the S&P 500 over
the past 30 years and generate a set of monthly portfolios that
outperform the Russell 3000 Growth index over the last 15
years. Our two MOEAs accomplish both these goals on a risk
adjusted and non-risk adjusted return basis.

Index Terms—multi-objective evolutionary algorithms
(MOEA), mean-variance optimization, financial constraints,
multi-period MOEAs

I. INTRODUCTION

IN finance, a portfolio is a collection of assets held by an
institution or a private individual. The portfolio selection

problem seeks the optimal way to distribute a given monetary
budget on a set of available assets. The problem usually
has two criteria: maximizing return and minimizing risk.
Classical mean-variance portfolio selection aims at simul-
taneously maximizing the expected return of the portfolio
and minimizing portfolio risk. In the case of linear con-
straints, the problem can be solved efficiently by parametric
quadratic programming (i.e., variants of Markowitz’ critical
line algorithm). What complicates this simple statement of
portfolio construction are real-world constraints that are by
definition non-convex, e.g. cardinality constraints which limit
the number of different assets in a portfolio and minimum
buy-in thresholds. In what follows, we solve the constrained
portfolio construction problem with two multi-objective evo-
lutionary algorithms (MOEAs). The idea is to let the first
MOEA come up with the set of all feasible portfolios and
have the second MOEA generate the efficient frontier for
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each feasible portfolio. The best solution from the second
MOEA is determined using the standard distance function to
measure dominance in the MOEA solution sets.

II. PROBLEM STATEMENT AND PSEUDO-CODE

The two problems we will work with are: generate a series
of monthly portfolios that outperform the S&P 500 over the
last 30 years and generate a set of monthly portfolios that
outperform the Russell 3000 Growth index over the last 15
years.

The common constraints we will operate under are:
turnover not to exceed 8% per month, a minimum stock
position set at 0.35% of the net asset value of the portfolio, a
maximum stock position of 4% of the net asset value of the
portfolio1, we must choose stocks that maximize the scores
generated by a multi-factor stock model2 (this constraint
typifies the use of what is called fundamental financial data
to select stocks that are potential candidates for the final
monthly portfolios) and finally a target market capitalization
constraint where the average market capitalization of the
portfolio must be greater than the average market capitaliza-
tion of all stocks available to purchase in the current month
(this last constraint will mean the portfolios must be what
is called ”large-cap.” Both S&P 500 and the Russell 3000
Growth are large-cap indices [portfolios]).

An additional constraint that we will use just for the Rus-
sell 3000 Growth problem is: we cannot exceed the average
book-to-price value of all stocks available for purchase in
the current month. Meeting this constraint means we will
generate the required growth portfolios in order to conform
to the style of the Russell 3000 Growth.

We solve the issues of the constraints by breaking them
into two groups and using two MOEAs. The first MOEA
generates potential portfolios that lie within the bounds of
all the constraints except turnover and position constraints.
In the second MOEA, we trade off the turnover and position
constraints against mean return and variance (the last being
the typical factors used in mean-variance optimization). We
set the rebalance period to be quarterly versus monthly but
stay within the stated turnover constraint (not to exceed 8%
per month). The steps each MOEA follows are next.

1The minimum and maximum position constraints also imply a cardinality
constraint. Dividing 100% by 0.35% yields 286 which is the maximum
number of stocks any portfolio can have. Dividing 100% by 4% gives 25
which the minimum number of stocks any portfolio can have. The cardinality
constraint is solved in the first MOEA while the position constraints are
solved in the second MOEA.

2The details and back testing of the multi-factor stock model can be found
in [1]. We thank John for supplying the multi-factor scores on a stock-by-
stock basis for the past 30 years.
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A. Data Loading, Retrieving and Filtering

1) Load the target candidate constituent sets from the
multi-factor score files. ”Sets” and ”Files” because we
need to build two sets of candidate portfolios each
month, one for the large-cap portfolio and another for
the large-cap growth portfolio (please note that the size
of these files goes from approximately 1000 stocks in
1980 to more than 3000 in 2009).

2) Remove candidates that may be excluded, on an a
priori basis, of being unable to contribute toward the
portfolio goals.

a) Remove candidates with scores of less than 20
(this was a heuristic choice)

b) Rank candidates by market cap and eliminate
the bottom 12% of candidates. If the market
cap at this level is greater than US$750M, use
US$750M as the floor for the cutoff (this cutoff is
based upon common definitions of where small-
cap stocks start to appear the U.S. stock market).

3) From this subset of candidate equities, retrieve daily
price data going back 287 observations (for use in
trading off mean and variance in second MOEA), and
going forward 63 observations (for use in performance
calculation of final [best] portfolio over the next three
months).

4) Calculate the average market cap and average book to
price score of the constituents in the target benchmark
index (average book-to-price is used to determine if a
portfolio satisfies the style constraint).

5) The candidate constituents remaining serve as the
primary input to the MOEA phase.

B. MOEA Phase I

In this phase the goal is to identify a set of portfolios
(ideally 50 or less) that will be examined by the second
MOEA. Output of the MOEA for each portfolio is the
identification of a subset of the candidates (between 25 and
286) to be used as candidates for later optimization (again
25 because of the 4% maximum constraint and 286 because
of 0.35% constraint).

1) The MOEA is invoked, passing the candidate con-
stituent data, portfolio constituents from previous re-
balances, the market cap average for the target bench-
mark index and population, generations, and mutation
rate. For the large-cap growth portfolio, there is an
additional parameter for the average book-price score
of the target benchmark portfolio.

a) MOEA algorithm is NSGA II, using single point
crossover, bit flip mutation, and binary tour-
nament for selection. For the passed parame-
ters, population represents the number of pro-
posed solutions that will be carried from gen-
eration to generation (note that the number of
non-dominated solutions is often considerably
smaller); generations is the number of generations
to be evaluated within the evolutionary algorithm;
and mutation rate indicates the rate at which a
dominated portfolio will be modified as it moves
from generation to generation.

b) For the large-cap portfolio, population is 500,
generations are 1200, and mutation rate is 0.03
(3%).

c) For large-cap growth portfolio, population is 50
(for the three-objective problem, a population
of 500 tended to generate several hundred non-
dominated solutions; the population number is
dropped to avoid generating more solutions than
can be explored in the MVO phase). All other
parameters are the same.

2) Generation-zero portfolios are started with 156 equities
randomly selected. If there are portfolios from a pre-
vious rebalance available, those portfolios are seeded
into the population.

3) The large-cap portfolio objectives are the maximization
of multi-factor score and average market cap. The
large-cap growth portfolio adds a third objective to
minimize the book-to-price score.

4) Penalties are in place to enforce the cardinality and
market cap constraints. For large-cap growth, there is
also a penalty for exceeding the book-price average
passed in.

5) The MOEA phase produces two files as output. One
file contains the objective values for the solution set,
and the other contains the portfolios (where each equity
has a 0/1 value) describing the Pareto efficient frontier.

6) Any portfolios passing constraints from the previous
rebalance are added to the set of portfolios generated
by the MOEA.

C. MOEA Phase II
Some definitions are needed to understand the workings

of the second MOEA.
First is the efficient frontier. This frontier is calculated by

trading off mean stock returns and their related variances.
In essence, a combination of stocks (the portfolio) is called
efficient if it has the best possible expected level of return
for its level of risk (this risk is usually usually proxied by the
standard deviation of the portfolio’s return). Every possible
combination of stocks can be plotted in risk-expected return
space and the collection of all such possible portfolios defines
a region in this space. The upward-sloping boundary of this
region, a hyperbola, is called the efficient frontier.

The Sharpe ratio is a measure of the excess return (or
risk premium) per unit of risk in a portfolio or a trading
strategy. The Sharpe ratio is the standard measure of the risk
premium when an efficient frontier is calculated. The Sharpe
ratio is used to characterize how well the return of a portfolio
compensates the investor for the risk taken. The higher the
Sharpe ratio the better the portfolio trades off risk and return.

When comparing portfolios with differing expected returns
against the risk-free rate (in our case 3-month U.S. Treasury
bills), the portfolio with the higher Sharpe ratio gives more
return for the same risk. Investors are often advised to pick
portfolios with high Sharpe ratios. The best Sharpe ratio on
the efficient frontier is by definition the best portfolio to
invest in.

This short introduction to a part of modern portfolio theory
(MPT) can be supplemented by [2].

Returning to the second MOEA, daily returns are cal-
culated for all equities that may appear in a portfolio (to
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avoid having to recalculate a daily return series for an equity
multiple times), and the daily risk free rate closest to the
rebalance date is retrieved. Then for each feasible portfolio
from the previous MOEA, the following actions are taken:

1) Identify the equities designated as candidates for the
portfolio being processed, and form the returns matrix.
The minimum number of returns to be used is 126
(six months); because the number of observations must
exceed the number of candidate equities (the so-called
”curse of dimensionality”), the maximum number of
returns in the series is determined by portfolio size, up
to 287.

2) In addition to forming the returns matrix (step 1,
above), we also need to generate mean expected re-
turns, variances, and the covariance matrix.

3) The MOEA is called, using pointers to the above files,
a pointer to the file containing the previous winning
portfolio, and the MOEA parameters (population =
100, generations = 600, mutation rate = 0.01).

4) Following the lead of an earlier replication of MVO
results using MOEA, the algorithm used is SPEA2.
SBXCrossover, polynomial mutation, and selection by
binary tournament are used. The SPEA2 archive size
is the same as the population size.

5) Random portfolios are used for generation zero. If
available, the previous winning portfolio is seeded into
the generation zero set.

6) In each evaluation, the randomly assigned weights are
normalized (so that they sum to 1).

7) In weighting strategy #1 (non-zero values are 0.0035 ≤
w ≤ 0.04%), weights greater than 0.00175 are rounded
up to 0.0035, while weights under that amount are
rounded to zero. Weights over 0.04 are set to 0.04.
All weight adjustments are added to a ledger, and
then debited or credited at the end of the adjustment
process (evenly divided among those that can accept
the debit/credit amount without moving outside the set
weight boundary).

8) In weighting strategy #2 (all equities are weighted,
0.0035 ≤ w ≤ 0.04%), values less than 0.0035 are
rounded up to 0.0035, while values over 0.04 are set to
0.04. All weight adjustments are added to a ledger, and
then debited or credited at the end of the adjustment
process (evenly divided among those that can accept
the debit/credit amount without moving outside the set
weight boundary).

9) There are four objectives for the MOEA: maximize
return, minimize risk, minimize turnover and meet the
maximum and minimum holdings constraint. The first
two objectives are the standard MVO calculations [3].
The turnover and position objectives calculate the shift
in weight between the previous winning portfolio and
the proposed portfolio. It attempts to insure that no
portfolios break the holdings or turnover bounds.

10) Once all MVOs have been run, the winning portfolio
is then selected. Ideally, this is the portfolio with
the best Sharpe ratio that has also passed the market
cap and turnover constraints. If no portfolios pass
the constraints, the portfolio with the best turnover is
considered the winner.

11) The performance for the winning portfolio (and the

target benchmark index) for the period until the next
rebalance is then calculated and logged.

D. MOEA Phase IIa

If the turnover constraint is not met in Step 9, we use a
subsidiary MOEA that lies inside the second MOEA which
trades off the best Sharpe ratio portfolio with its existing
stock positions against turnover.

The form this MOEA takes is somewhat similar to solving
the minimum cut problem in graph theory using MOEAs
(see, for example, [4]). The difference between our MOEA
and the MOEAs that have been used to solve the minimum
cut problem is that we are interested in reducing or enlarging
the weight of one or more edges while keeping within the
position limit constraints (though we do allow stock holdings
to go to zero if needed). Once stocks are re-weighted and
the turnover constraint reached, a new efficient frontier is
calculated and the new Sharpe portfolio examined. If the new
Sharpe portfolio meets the turnover and position constraints,
the MOEA in IIa stops and the best Sharpe portfolio for
this feasible portfolio from MOEA I is stored. The process
is repeated for all the portfolios passed from MOEA I that
do not meet the turnover constraints after their first Sharpe
portfolio is formed.

Once turnover constraints are met for the Sharpe portfolios
that fail step 9 but pass what maybe called Step 9a, Steps
10 and 11 are now executed.

This ends the second MOEA.

III. RESULTS

TABLE I
ANNUALIZED RETURNS FOR THE LARGE-CAP MOEA PORTFOLIOS AND

THE S&P 500. THE PERIOD COVERED IS FROM DECEMBER 1979
THROUGH DECEMBER 2009 (121 MONTHS).

S&P 500 and MOEA 1 Year 3 Year 5 Year 10 Year
S&P 500 31% 54% 70% 98%
MOEA 53% 92% 119% 168%

TABLE II
RISK AND CUMULATIVE RETURN ON 10,000 USD FOR THE S&P 500

AND THE MOEA PORTFOLIOS. THE PERIOD COVERED IS FROM
DECEMBER 1979 THROUGH DECEMBER 2009 (121 MONTHS).

S&P 500 and MOEA
Sharpe
Ratio

Information
Ratio

Cumulative
Return on
10,000 USD

S&P 500 1.1 N/A 10,858
MOEA 1.8 0.14 18,544

TABLE III
ANNUALIZED RETURNS FOR THE LARGE-CAP GROWTH MOEA

PORTFOLIOS AND THE RUSSELL 3000 GROWTH. THE PERIOD COVERED
IS FROM DECEMBER 1996 THROUGH DECEMBER 2009 (53 MONTHS).

R3000 Growth and MOEA 1 Year 3 Year 5 Year 10 Year
R3000 Growth 4% 8% 10% 14%

MOEA 7% 12% 19% 27%

In terms of percent return and USD return, the MOEA
portfolios have double the value of their benchmarks.

On a risk-adjusted basis, the results are not as clear. The
information ratio for the large-cap growth MOEA is very
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TABLE IV
RISK AND CUMULATIVE RETURN ON 10,000 USD FOR THE RUSSELL

3000 GROWTH AND THE MOEA PORTFOLIOS. THE PERIOD COVERED IS
FROM DECEMBER 1996 THROUGH DECEMBER 2009 (53 MONTHS).

R3000 Growth and MOEA
Sharpe
Ratio

Information
Ratio

Cumulative
Return on
10,000 USD

R3000 Growth 0.14 N/A 18,001
MOEA 0.24 0.32 27,590

significant while its Sharpe ratio is only a little larger than
the Russell 3000 Growth Sharpe ratio and both Sharpe ratios
are little different from 0 (zero). For the large-cap MOEA,
its Sharpe ratio is significantly larger than its benchmark, but
its information ratio is very small. So it is not crystal clear
that the MOEA portfolios are better, meaner higher, than
risk-adjusted returns of the benchmarks. However, by not
underperforming their benchmarks on a risk-adjusted basis,
the implication is that the MOEAs are at least equal to their
benchmarks on a risk-adjusted basis and based upon the
risk-adjusted measure used, better than the benchmark. Any
portfolio manager would be happy with these results as they
have significantly higher performance than their benchmark.
And when it comes to risk-adjusted performance versus the
benchmark, they are at least the same.

As to the MOEAs ability to meet constraints: 1) In
100% of all cases, the MOEA portfolios on a weighted
market capitalization basis meet or exceed the large-cap
market capitalization constraint, 2) For the smallest and
largest positions constraints based on net asset value, none
of the MOEA portfolios broke this constraint on either the
minimum or maximum side, 3) Turnover did occasionally
exceed the 8% limit per month; these occurrences tended to
happen early in the 1980’s portfolios - just as the MOEA was
getting on its feet - but the turnover limit was also broken
in later portfolios as well (The authors surmise that there
were times when the non-dominated provided to the second
MOEA were composed of stocks different enough from the
prior quarter’s portfolio that the four-way trade-off between
mean, variance, turnover and position limits meant turnover
was busted in certain cases. We believe the primary cause
for this happening is a significant change in some of the
individual stock scores generated by multi-factor model from
quarter to quarter. These sorts of changes are very common
when using multi-factor models).

IV. CONCLUSIONS

We successfully demonstrate that MOEAs with real world
constraints can generate portfolios that exceed the returns of
their benchmarks and, at a minimum, equal their benchmarks
on a risk-adjusted basis.

We generate these outperforming portfolios by the use
of two MOEAs: the first MOEA generates all the non-
dominated feasible sets that meet all the constraints except
turnover and minimum and maximum position. The second
MOEA trades off the last two constraints along with mean
and variance to come up with the final portfolio that has the
best Sharpe ratio (or meets the maximum turnover allowed
if the other constraints are not met).

As best as we know this is the first multi-period use of
MOEAs in stock portfolio construction. We are encouraged

by the results and hope others can extend and improve
upon our work. The authors are now working on extending
the unique turnover solution used in the second MOEA to
enhance computer security and hopefully improve existing
solutions to problems involving worms and viruses. We are
doing so by extending the current techniques using homotopy
to search for feasible sets. In addition, we are finding faster
feasible set results can be computed using linear piecewise
topology.
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