

Abstract—Enterprise Information Systems (EIS) applications

are complex and incur significant costs and effort during
version upgrades, which are further exacerbated by any
customizations.

Our temporal meta-data framework for EIS applications
avoids or minimizes these upgrade issues by standardizing all
update procedures as an updated set or stream of individual
meta-data changes. Each change is applied sequentially for all
changes between the previous and current meta-data models.
Meta-data changes include the core application functionality
plus meta-data changes for any local or unique customizations.

The automated update process removes the need from
developers to produce version specific update programs, and
simplifies the end user’s meta-data EIS application update
processes. Collision detection with third party customizations,
known as Variant Logic, can precisely identify any potential
conflict in advance, avoiding or reducing compatibility rework
effort for customizations.

Index Terms—meta-model, automated update, variant, logic,
EIS

I. INTRODUCTION
here are many contributing factors to the difficulties and
costs involved in upgrading traditional EIS applications,

such as:
• Each customization has to be separately reviewed for

compatibility with the update and potentially modified.
• Organizations often defer upgrades to reduce costs and

application downtime.
• Due to the longevity of many EIS applications they may

also be internally composed of multiple legacy
technologies that have been integrated potentially
requiring platform installation and migration aspects.

• EIS applications will affect a large proportion of the
business operations requiring a significant level of
quality assurance and user education to be successful.

The overall lifecycle costs of maintaining an EIS

Manuscript received July 12, 2011.
Jon Davis is with Digital Ecosystems and Business Intelligence Institute

(DEBII), Curtin University, Enterprise Unit 4, Technology Park, Bentley
6102, Australia (phone: +61 410 320 956; e-mail: jed1@coxdavis.name).

Elizabeth Chang is also with Digital Ecosystems and Business
Intelligence Institute (DEBII), Curtin University (phone: +61 8 9266 7085;
fax: +61 8 9266 4846; e-mail: Elizabeth.Chang@cbs.curtin.edu.au).

application are compounded when accounting for all major
version upgrades, updates, patches and field fixes that may
be released by the application vendor, particularly when the
end user has employed customizations that need to be
reviewed and may need re-engineering.

A major objective of the temporal meta-data framework
[1] is to streamline deployment of application updates,
which instead of new code, new database objects, and
specific and unique migration programs and procedures as
typically required, is replaced by a stream of discrete meta-
data changes.

With this deployment capability the issue of how many
versions or updates need to be progressively applied to a
meta-data EIS application is reduced to the one extended
update process as all updates can be applied sequentially and
as a single process rather than as multiple separate upgrades.

An additional specific objective of the framework is to
also provide the capability for end users or third parties to
define and create their own application logic, to supplement
or replace a vendor’s pre-defined application logic, as what
we term Variant Logic [2], to become a variation of the
application logic, analogous to customizations in
traditionally developed applications.

Variant Logic can be applied to any object defined in a
meta-data EIS application; visual objects of the user
interface, logical processing objects such as events,
functions or workflow, or as data structures.

All integration points between the core meta-data EIS
application logic and each Variant Logic instance can be
identified as to its independence of any core application
changes, and every potential area of logic conflict or
collision can be clearly and fully disclosed and documented
to the logic definers, to minimize the scope for further
review and potential rectification works.

This dual ability to simplify the update process and to
clearly identify exactly where logic customizations may be
in conflict combine to provide meta-data EIS applications
with significantly reduced maintenance effort and costs over
the system lifecycle.

II. RELATED WORKS
The following related issues have guided this research to

define the deployment and update capabilities and processes

Automatic Application Update with User
Customisation Integration and Collision
Detection for Model Driven Applications

Jon Davis and Elizabeth Chang

T

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol II
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-19251-7-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

of the temporal meta-data framework for EIS applications.

A. Software Version Management
Version control is the goal of software configuration

management, to ensure the controlled change or
development of the software system [3] to track the
development of the components and manage the baseline of
software developments [4] including throughout the various
phases of a project [5].

The atomic level required for a meta-data system is the
individual object definition within the meta-data EIS
application model which needs to be managed at a low level
and is also fundamentally tied to direct dynamic execution.

An associated technique for identifying changes between
versions of software [6] is a key approach when applied to
meta-data and is instrumental to an automated update
approach.

B. OMG, MDA, MOF and CWM
The aim of the Object Management Group (OMG) is to

“provide an open, vendor-neutral approach to the challenge
of business and technology change”. The OMG represent
one of the largest initiatives for Model Driven Engineering
(MDE). Their Model Driven Architecture (MDA) initiative
is to “separate business and application logic from
underlying platform technology” [7].

The OMG’s Meta Object Facility (MOF) “provides a
metadata management framework, and a set of metadata
services to enable the development and interoperability of
model and metadata driven systems”. Its intention is to
promote cross platform access to independent modeling
systems and definitions in a common format as an agent of
sharing and reuse.

The OMG’s Common Warehouse Metamodel (CWM) is
an associated technology to support the common storage of
Unified Modeling Language (UML) and MOF models to be
accessed by modeling and coding toolsets.

The goal of the OMG is interoperability, and the tools and
technologies are primarily aimed at highly technical analysts
and developers. Our objective for the meta-data EIS
application includes technical analysts for the vendors or
logic definers but is primarily targeted at business user and
operational optimization.

C. Software Update and Deployment
The larger and more complex a system is the less likely

that automated updates will complete successfully as less
effort and quality assurance seems to be expended on
producing each specific update program than on the primary
software product [8], exacerbating existing common issues
with system development quality assurance [9].

Managers of EIS upgrades attest to the often extensive
projects required for particularly major version EIS
upgrades which can require months of effort and
considerable expense.

The minimization of effort for updating meta-data EIS
applications is a major objective of our research.

D. Application Customization and Rework
 It has become commonplace for end user organizations to

engage the vendor or authorized third parties to develop
specific customizations for their user requirements to
become embedded within a new localized version of the
application. Notwithstanding the initial expense, additional
review and potential re-engineering is required for each
customization when the EIS is upgraded to ensure ongoing
compatibility, which adds often considerable time and
expense to each upgrade. [10]

Customization of EIS systems for the local environment
has become a fact of life for many end user organizations,
and reducing the impact of the use of customizations through
the maintenance lifecycle is another major objective of our
research.

E. Model Driven Engineering
Alternatives to the common process of hard coded

application logic are provided by ongoing Model Driven
Engineering (MDE) which is a generic term for software
development that involves the creation of an abstract model
and how it is transformed to a working implementation [11].

A significant proportion of the works to date have
involved modelling which contributes more directly to
streamlining code generation, processes that are directly
aimed for and dependent on highly technical programmers.
[12] base their works on the UML 2 specification to seek to
reduce coding and transform models of business processes
into executable forms.

Such a model is the goal of our temporal meta-model
framework for EIS applications [13]. Every aspect of the
EIS application functionality is a component of the meta-
data model, whether it is identified as core application meta-
data produced by the original vendor, or whether it is a
modification or extension produced by a user or third party
as Variant Logic. Meta-data version updates can always be
clearly identified by a comparison of the meta-data between
two time states and then re-producing the sequence of meta-
data changes to apply to the meta-data model to be updated.

III. AUTOMATIC APPLICATION UPDATE WITH
USER CUSTOMISATIONS

Our ongoing development of a temporal meta-data
framework for EIS applications seeks to remove the need for
hard coding by technical developers and transform the
responsibility of defining application logic to business
analysts, knowledge engineers or even business end users.

Similarly, the application update process can be greatly
simplified as we remove the need for specific version
upgrade programs and procedures for every minor or major
upgrade, patch or field fix. Updates are always a series of
identified changed meta-data that is applied sequentially to
the target meta-data application until all changes have been
applied.

With this deployment capability the issue of how many
versions or updates need to be progressively applied to a
meta-data EIS application is reduced to the one extended

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol II
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-19251-7-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

update process as all updates can be applied sequentially and
as a single process rather than as multiple separate upgrades.

This also provides clear identification of all application
changes that will be made to the end-users.

A. Meta-Data Version Control Framework
In our meta-data EIS application model, version control

needs to be applied to only two of the aspects of the model;
the overall Application Model object, and to any Logic
Variant object.

The temporal meta-data management aspects of the model
internally tracks all changes that are made to any of the
model’s meta-data whether as core application changes, user
or third party customizations or Variant Logic to identify the
constituent meta-data for each defined version.

The primary Version Control classes (see Figure 1)

facilitate the identification and classification of the meta-
data into the logical groupings that we humans understand as
specific versions. Internally, it is the ongoing temporal
management of the meta-data that maintains the true atomic
history of the application evolution by tracking each
individual logic change in the meta-data model.

The Application Model object, representing the overall
grouping object for the model meta-data, can be divided into
any hierarchy of sub-Applications to classify and organize
the core application meta-data into modules and sub-
modules as required (see figure 2).

The sub-Application grouping is to facilitate the logical
grouping of functionality by vendors or logic definers of the
meta-data EIS application models. Sub-Applications provide
a suitable breakdown for the deployment and tracking of
individual modules and as an additional selection criteria for
assigning security access but have no other logical
limitations within the meta-data model.

Any additionally defined meta-data can be defined by any

other authorized user or third party. All additional meta-data
must also be associated with the Application Model object
and be subject to local authorization and access of the core
application environment.

The logic definer authorization processes are governed by
the following principles:

• All original meta-data is owned by the identified core
logic definer, usually at the highest authorization level.

• Additional logic definers can be defined with lower
level authorizations.

• Meta-data objects owned by one logic definer cannot
be modified by a different logic definer, to ensure
application semantic integrity.

• Any logic definer can define new meta-data, reference
and invoke meta-data owned by other logic definers,
and modify undefined meta-data attributes of meta-data
owned by other logic definers where this functionality
has not been restricted.

• Meta-data defined by a higher level logic definer
always over-rides any other identical meta-data
definition created by a lower-level logic definer – this
aspect will be further discussed during update collision
detection.

There is no limitation on what logical functionality can be
defined by users or third parties other than any authorization
limitations that may be imposed on access to existing
objects. Minor additions or entire add-on modules or
applications can be defined to supplement a meta-data EIS
application.

The final aspect of user or third party customization is
provided as Variant Logic, which is a modified copy of an
aspect of the core application logic that becomes an
alternative variation of the application logic. It too can be
applied to any object defined in a meta-data EIS application.

There can be multiple and different Variant Logic sets
involving the same meta-data as different users may choose
and be authorized, in both the security and semantic
domains, to prefer separate alternate optimized logic for
their specific usage under their local conditions.

Fig. 2. Core Application meta-Data composed of Sub-Application
meta-data.

G01_Application_Model

...

I03_Inheritance_For_Version_
Control_Schema

...

E25_Logic_Variant

...

Fig. 1. Applicability of Version Control in meta-data EIS application
model.

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol II
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-19251-7-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

The scope of Variant Logic is also unlimited, subject to
ongoing access authorizations, other than any logic that is
restricted by the original meta-data logic definer.
Restrictions are typically imposed to maintain information
processing standards for key meta-data definitions.

While Variant Logic is defined to alter existing
application functionality, it is also defined on existing
application meta-data objects in order to define access to
user and third party customizations e.g. adding navigation
menu items, or adding buttons to user interface screens, to
invoke new functionality.

Figure 3 illustrates the extended meta-data model that
includes the core application meta-data, user and third party
customizations meta-data, and the Variant Logic meta-data
extensions.

In traditional application development the updates are

provided as replacement executable files, database
migrations and upgrade programs which provide the
outcomes of the changes but rarely identify all changes to
the users except through perhaps a prepared text summary.
Even the application vendor’s internal programming staff
may not fully identify all of the programming changes unless
they utilize comprehensive internal version control
management that integrates across all of the implemented
technologies.

The meta-data EIS application can clearly identify all
changes, the order that they were made, and the impact and
object relationship of the changes.

B. Defining the Meta-Data Update
There are two aspects of defining the scope of the meta-

data changes that are to be applied as part of the update
process:

• Continuity: ensure that meta-data changes apply to the
end user organization’s current version,

• Content: select all meta-data changes that are
appropriate for the selected meta-data update.

Continuity is ensured by the meta-data definer
sequentially identifying the build release of all versions of its

application meta-data independent of the scope of the meta-
data changes of that release. As meta-data updates, which
may include changes to both the application logic and to the
underlying data structures of the modeled application, must
be applied continuously this build identification against each
change in the meta-data update sequence guarantees
continuity is maintained.

The build identification also allows for greater flexibility
in the availability and application of the meta-data updates
by releasing multi-version meta-data updates that can be
applied by the end user in different ways (see Figure 4);

• Update Start: for an end user currently at build N of a
meta-data EIS application, a multi-version release can
include any previous build meta-data which will be
ignored by the meta-data updater which would only
commence the update with the meta-data update items
from build N+1 in the multi-version update stream,

• Update End: an end user can choose to cease or hold
the meta-data update at any available build level greater
than their current build level. This may be desirable
depending on internal update and test policies, or
potentially due to available downtime windows if some
builds involved extensive functional changes or
intensive data changes. The atomic level required for a
meta-data system is the individual object definition
within the meta-data EIS application model which
needs to be managed at a low level and is also
fundamentally tied to direct dynamic execution.

The content of the changed meta-data for each new build

level is based on the meta-data changes as defined in a
vendor’s or other logic definer’s defined internal
development systems.

Similarly to traditional development, a meta-data
application logic definer must also maintain its application
development, aka meta-data definition processes, according
to efficient internal version control procedures for software
engineering. This may involve any distributed or centralized
combination of logic definer and test servers where the
scope of the meta-data logic changes have been segmented,
distributed, combined and otherwise managed to its final
approved state.

Each approved meta-data change to an existing meta-data
model will become part of an identified build set of meta-
data changes.

The scope of any meta-data build set may include meta-
data from multiple sub-Applications or be specific to a
single functional area – this is at the discretion of the logic
definer.

Available
Range of
Meta-Data
Updates

Selected Range of Meta-Data Updates
for an Organisation commencing from

current Build level

V(earliest_available)

V(user_current) V(user_to_stop)

V(latest_available)

Fig. 4. Optional range of selected meta-data update.

Fig. 3. Additional custom user meta-data and Variant Logic.

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol II
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-19251-7-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

Also for commercial reasons, a vendor may wish to place
additional restrictions on the included scope of any build set
release that is provided as an update to its customers. E.g. to
include only the meta-data for particular sub-Applications
that are licensed to some customers. The only caveat is that
where a logic definer chooses to limit the scope of the build
release that they ensure the logical consistency of the
released build set to ensure compatibility with the stated
release target users (see Figure 5).

A consequence may be that a particular released build set

may be a null set and include no specific updates, as a valid
release. This build set must still be included as part of the
overall sequential lifecycle updates to ensure overall
continuity is maintained.

C. Automated Meta-Data Update and User
Customization Detection
Complication occurs when a user organization has also

implemented their own customizations to the EIS, a common
occurrence which can often require major rework of the
customizations to ensure operation of or compatibility with
the updated EIS.

As discussed in the previous section, the source update to
the meta-data EIS application is an ordered sequence of
meta-data changes classified by the logic definer’s build
release. The meta-data EIS application can drastically
reduce the overall deployment delays down to at most days
or even a virtually instantaneous distribution and update.

It also becomes possible to execute updates on a live
system, at the risk of some performance degradation and
periodic functional locking, although prudence would
always suggest first deploying the updates to a test meta-data
EIS application environment first.

An authorized meta-data update may also over-ride other
identical meta-data functionality defined by other lower-
level logic definers. The meta-data update process can
identify these occurrences during the update and prepare a
report of potential changes to lower-level meta-data so that
their meta-data definers can review and modify their meta-
data to ensure continued semantic integrity.

Similarly, as the updated meta-data is clearly identified,
auto generated descriptions of the affected areas of the meta-
data application, as represented by the changed meta-data,

can be readily provided. Additionally, auto-generated online
and offline help files and user documentation can be created
to assist users with the exact nature of the transition.

In order to perform the meta-data update, the update
engine processes the meta-data update stream with the
following process:

• The end build reference for this update process is
specified if the meta-data update is a multi-version
update, also whether live user sessions are to be
permitted during the update process. Any update can
initially be run in simulation mode to identify all
proposed changes to aid update planning preview
potential conflicts with any Logic Variants.

• Prior to each individual build reference update, a
simulation of all affected meta-data objects is pre-
scanned to facilitate object locking from existing user
sessions if live access is permitted during the update.

• Out of sequence build references are not permitted, as
the update cannot provide continuity, otherwise

• Progress through the meta-data update stream in
sequence until the first meta-data change of the correct
build reference,

• Process each sequential meta-data change of each
updated build reference.

• Errors can be aborted and invoke rollback to either the
initial state or the last completed build reference.

• The following update process occurs for each meta-
data change:
o If the update is of a visual or logical object type,

the change is applied directly to the meta-data
object definitions.

o Otherwise if the update is of a data definition
object type then the change is applied and any
associated flow through effects on the underlying
data structures.

o Each update checks if the scope of the change
conflicts with any existing Logic Variant that has
been defined by any other logic definers for
communication to the logic definer.

• Upon completion of all updates the meta-data EIS
application can be made available for immediate use, or
typically for a series of end user testing and allowing
logic definers to provide any required meta-data
changes to Logic Variants that may have been affected
by the update.

The meta-data EIS application provides a drastic
simplification of the update process for both the vendors and
end user organizations.

IV. CONCLUSIONS
While our separate analyses have shown that meta-data

EIS applications can have proportionally significantly lower
lifecycle costs compared to traditionally developed EIS
applications (circa 15%), we believe that the automated
update capability alone can provide substantial additional
tangible efficiency savings, particularly in a highly
customized environment, due to:

• The internal mapping between meta-data objects in a

Fig. 5. Optional scope restricted build for a meta-data update.

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol II
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-19251-7-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

meta-data EIS application identifies all relationships
and uses of the meta-data objects which aids in
identifying impact analysis and tracking syntactic
compatibility during logic definition, reducing the
instance of basic logical errors being deployed.

• Vendors no longer need to produce dedicated version
specific update programs and procedures as the meta-
data changes are automatically applied, reducing their
cost of meta-data application development, and
minimizing the scope of induced migration errors – a
common update engine is always used.

• End user organizations have more direct knowledge of
the changed functionality due to the update simulation
which identifies every change. This allows more
informed planning of end user resources for clearly
focused testing and training.

• End user organizations can choose how many builds to
update and merge updates to reduce overall update
overhead.

• Logic definers can be provided with the precise
definition of any conflicts between their Logic Variants
and the updated meta-data EIS application, reducing
the effort in updating the customizations and given
advance notice to ensure the timely availability of
updated Logic Variants to complete the overall EIS
update.

• End user organizations can optionally choose to allow
live access to the meta-data EIS application during the
updates, reducing overall unavailability and functional
group downtime losses.

• Substantial reductions in the overall upgrade project
efforts.

REFERENCES
[1] J. Davis, E. Chang, “Temporal meta-data management for model

driven applications”, in Proceedings of 13th International
Conference on Enterprise Information Systems, Beijing, 2011, pp.
376-379.

[2] J. Davis, E. Chang, “Variant logic meta-data management for model
driven applications”, in Proceedings of 13th International
Conference on Enterprise Information Systems, Beijing, 2011, pp.
395-400.

[3] B. De Alwis, J. Sillito, “Why are software projects moving from
centralized to decentralized version control systems ?”, in CHASE ’09
Proceedings of the 2009 ICSE Workshop on Cooperative and
Human Aspects on Software Engineering, Vancouver, 2009, pp. 36-
39.

[4] Y. Ren, T. Xing, Q. Quan, Y. Zhao, “Software configuration
management of version control study based on baseline”, in
Proceedings of 3rd International Conference on Information
Management, Innovation Management and Industrial Engineering,
Kunming, 2010, vol. 4, pp. 118-121.

[5] P. Kaur, H. Singh, “Version management and composition of
software components in different phases of the software development
life cycle”, in ACM Sigsoft Software Engineering Notes, 2009, vol
34, iss. 4, pp. 493-501.

[6] B. Steinholtz, K. Walden, “Automatic identification of software
system differences”, in IEEE Transactions on Software Engineering,
1987, vol. SE-13, iss. 4, pp. 493-497.

[7] Object management Group. (2010). OMG Model Driven
Architecture. Available: http://www.omg.org/mda

[8] S. Jansen, S. Brinkkemper, R. Helms, “Benchmarking the customer
configuration updating practices of product software vendors”, in
ICCBSS '08 Proceedings of the 7th International Conference on
Composition Based Software Systems, Madrid, 2008, pp. 82-91.

[9] A. Brown, “Oops! Coping with human error in IT”, in ACM Queue –
System Failures, 2004, vol. 2, iss. 8.

[10] Y. Dittrich, S. Vaucouleur, S. Giff, “ERP customisation as software
engineering: knowledge sharing and cooperation”, in IEEE Software,
2009, vol. 26, iss. 6, pp. 41-47.

[11] D. Schmidt, “Introduction model-driven Engineering”, in IEEE
Computer, 2006, vol. 39, iss. 2, pp. 25-31.

[12] J. Fabra, J. Pena, A. Ruiz-Cortez, J. Ezpeleta, “Enabling the evolution
of service-oriented solutions using an UML2 profile and a reference
Petri Nets execution platform”, in Proceedings of the 3rd
International Conference on Internet and Web Applications and
Services, Athens, 2008, pp. 198-204.

[13] J. Davis, A. Tierney, E. Chang, “Meta-data framework for EIS
specification”, in Proceedings of 6th International Conference on
Enterprise Information Systems, Porto, 2004, pp. 451-456.

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol II
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-19251-7-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

http://www.omg.org/mda�

	I. INTRODUCTION
	II. Related Works
	A. Software Version Management
	B. OMG, MDA, MOF and CWM
	C. Software Update and Deployment
	D. Application Customization and Rework
	E. Model Driven Engineering

	III. AUTOMATIC APPLICATION UPDATE WITH USER CUSTOMISATIONS
	A. Meta-Data Version Control Framework
	B. Defining the Meta-Data Update
	C. Automated Meta-Data Update and User Customization Detection

	IV. CONCLUSIONS
	References

