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Abstract—This paper is concerned with the study of the 

exponential penalty method for linear programming problems 
with the essential property that each exponential penalty 
method is convex when viewed as a function of the multiplier.. 
It presents some background of the method and its variants for 
the problem. Under certain assumption on the parameters of 
the exponential penalty function, we give a rule for choosing 
the parameters of the penalty function. Theorems and 
algorithms for the methods are also given in this paper. At the 
end of the paper we give some conclusions and comments on 
the methods.  

 
Index Terms—linear programming problems, exponential 

penalty method, and penalty parameter.  
  

I. INTRODUCTION    
 

The basic idea in exponential penalty method is to 
eliminate some or all of the constraints and add to the 
objective function a penalty term which prescribes a high 
cost to infeasible points (Wright, 2001; Zboo, etc., 1999). 
Associated with this method is a parameter , which 
determines the severity of the penalty and as a consequence 
the extent to which the resulting unconstrained problem 
approximates the original problem (Kas, etc., 1999; 
Parwadi, etc., 2002). Parwadi (2010) proposed a polinomial 
penalty method for solving linear programming problems. In 
this paper, we restrict attention to the exponential penalty 
function. Other exponential barrier functions will appear 
elsewhere. It presents some background of the methods for 
the problem. The paper also describes the theorems and 
algorithms for the methods. At the end of the paper we give 
some conclusions and comments to the methods.  

 
 

II. STATEMENT OF THE PROBLEM 
 

Throughout this paper we consider the problem 
               maximize     
               subject to Ax = b                                                                                                                                                            
                                 x  0,                                             (1)                                                                                                                               

where A  nmR  , c, x  nR , and  b  mR .   Without loss 
of generality we assume that A has full rank m. We assume 
that problem (1) has at least one feasible solution. In order 
to solve this problem, we can use Karmarkar’s algorithm 
and simpelx method (Durazzi, 2000).  
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Parwadi (2010 and 2011) also has introduced a polynomial 
penalty and barrier methods for solving primal-dual linear 
programming problems. But in this paper we propose a 
exponential penalty method as another alternative method to 
solve linear programming problem (1).  In this paper we 
propose only a procedure for solving a constrained problem. 
Other procedure associated with exponential penalty method 
to solve the unconstrained problems will arise in other 
papers. 

 

 
II. THE EXPONENTIAL PENALTY FUNCTION 

 
We consider the linear programming stated in (1). The 

exponential penalty function is given by  

),( xE  = xc T  +  



m

i
ii bxA

1

)(exp    (2)                   

where   0 is a penalty parameter of the function. The 
penalty is formed from a sum of exponential of constraint 
violations and the parameter  determines the amount of the 
penalty. The basic idea in this method is to eliminate all 
constraints and add to the objective function a penalty term 
which prescribes a high cost to infeasible points. Associated 
with this function is a penalty parameter , which 
determines the severity of the penalty and as a consequence 
the extent to which the resulting unconstrained problem 
approximates the original constrained problem. 

In order to understand the behavior of this function we 
give the trivial problem 

minimize    f (x) = x  
 subject to  x – 1 = 0, 

for which the exponential penalty function is given by 
),( xE  = x + )}(exp{ 1 x . 

Some graphs of ),( xE  are given in Figure 1. This figure 

depicts the one-dimensional variation of the exponential 
penalty function for three values of , that is  = 2,  = 4 
and  = 8. If the solution x * = 1 is compared with the points 
which minimize ),( xE , it is clear that x * is a limit point 

of the unconstrained minimizers of ),( xE  as   . The 

y-ordinate of this figure represents ),( xE . 

The intuitive motivation for an exponential penalty 
method is that we seek unconstrained minimizers of 

),( xE  for value of  increasing to infinity. Thus the 

method of solving the sequence of minimization problem 
can be suggested.  
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Figure 1: The exponential penalty function 

 
The exponential penalty method for problem (1) consists 

of solving a sequence of problems of the form 

minimize  ),( kxE   

subject to    0x ,                         3)                                                                               

where }{ k  is a penalty parameter sequence satisfying 
10  kk  for all k, and k . 

The method depends on the success for sequentially 
increasing the penalty parameter to infinity. This chapter 
concentrates on the effect of the penalty parameter. It is easy 
to show that ),( xE  is a convex function for each . The 

convexity behavior of the exponential penalty function 
defined by (2) is stated in the following theorem. 

 
Theorem 1 (Convexity)  
The exponential penalty function ),( xE  defined in (2) is 

convex in its domain for every   0. 
 

Proof. It is straightforward to prove convexity of ),( xE  

by using the convexity of xc T  and 

 



m

i
ii bxA

1

)(exp . Then this theorem is proven. 

 
 
As a consequence of Theorem 1 we derive the local and 

global behavior of the exponential penalty function defined 
by (2) which is stated in the following theorem. 
 
Theorem 2 (Local and global behavior)  
(a) ),( xE  has a finite unconstrained minimizer in its 

domain for every   0 and the set M of unconstrained 
minimizers of ),( xE  in its domain is convex and 

compact for every   0. 

(b) Any unconstrained local minimizer of ),( xE  in its 

domain is also a global unconstrained  minimizer of 
),( xE . 

 
Proof. It follows from Theorem 1 that the smooth function 

),( xE  achieves its minimum in its domain. We then 

conclude that ),( xE  has at least one finite unconstrained 

minimizer.  
By Theorem 1 ),( xE  is convex, so any local minimizer 

is also a global minimizer. Thus the set M of unconstrained 
minimizers of ),( xE  is bounded and closed, because the 

minimum value of ),( xE  is unique, and it follows that 

M is compact. Clearly, the convexity of M follows from 
the fact that set of optimal points ),( xE  is convex. 

Theorem 2 is verified.  
 
Using the results of Theorem 2 we derive the 

monotonicity behavior of the minimum value of the 
exponential penalty function ),( xE . To do this, for any 
k   0 we denote kx  and ),( kkxE   as a minimizer 

and minimum value of the problem (3), respectively. 
 
Theorem 3 (Monotonicity)  

Let }{ k  be an increasing sequence of positive penalty 

parameters such that k  as k . For 

sufficiently large k,  then  ),( kkxE   is non-increasing. 

 

Proof. Let kx  and 1kx  denote global minimizers of the 

problem (3) for the penalty parameters k and 1k , 

respectively. By definition of kx  and 1kx  as minimizers 

and k   1k , for sufficiently large k, we have 

1kT xc  + 1k  
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Using inequalities (4a) and (4b), we obtain 
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This means that 

),( 11  kkxE    ),( kkxE  , 

as required in the theorem. Hence, the theorem is 
established.  

 

Using definition of ),( kkxE   and Theorem 3, we have 
1kT xc   ),( 11  kkxE   ),( kkxE  .            (5)                    

It follows that 

f * … ),( 11  kkxE   ),( kkxE  .                (6)                        

Let x  be a limit point of }{ kx . Since 0kx  and 

}0{  xRx n  is a closed set we obtain that 0x . 

In another way, by using continuity of function ii bxA   

for all i =1,…,m,  we see that 

k  



m

i
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k
i

k bxA
1

)(exp 0  as k   (7)                 

and it is true only if  

i
k

i bxA  0  for i =1,…,m, 

thus, bxA  . Hence, x  is feasible, and 

f *  xc T . 

Using (6), the sequence of  ),( kkxE   of exponential 

penalty function values is non-increasing and bounded from 
below, and must converge monotonically from above to a 

limit, say g *  xc T . Suppose that g *  f *. In this case, 
we define a positive number  

    ** fg 2
1 . 

It follows from kT xc xc T  that there exists a positive 

real number 0k  such that for all 0kk  , 

kT xc    g *  .                                 (8) 

From (7), there exists 1k  such that for all 1kk  , 

k  
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If we apply (8)(9) and take },{max 10 kkk  , the 

result is 

),( kkxE   = kT xc   

                                       + k  



m
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)(exp   

                         g *   + 2
1   

                       = g *  2
1 .                                            (10)                                                 

Taking k  and using (10), we have 

g *   g *  2
1 , 

that is, 
    0, 

which contradicts with the assumption that   0. We 

conclude that g * = f * and ),( kkxE   f * as k  , 

which gives result to the following theorem.  
 
Theorem 4 (Convergence of exponential penalty function)  

Let }{ k  be an increasing sequence of positive penalty 

parameters such that k  as k . Let }{ kx  is 

a sequence of the minimizer of the problem (3) associated 

with k . Then  

(a) *fxc kT  as k  .  

(b) ),( kkxE   f * as k  .  

 
III.  ALGORITHM 

  
The implication of this theorem is remarkably strong. For 

any linear programming, the exponential penalty function 
has a finite unconstrained minimizer for every value of the 
penalty parameter, and every limit point of a minimizing 
sequence for the barrier function is a constrained minimizer 
of a problem (1). Based on the Theorem 4 we construct an 
algorithm for solving problem (1). 

 
Algorithm 1  

Given Ax = b, 1   0, the number of iteration  N  and    
0. 

1. Choose 1x   nR  such that A 1x  = b and 1x   0.  
2. If the optimality conditions are satisfied for problem 

(1) at 1x , then stop, else go to Step 3. 

3. Compute ),( 11 xE   ),(min 1

0



xE

x
 and the 

minimizer 1x . 

4. Compute ),( kkxE    ),(min kxE
x


0

, the 

minimizer kx   and 110  kk :  for k = 2. 

5. If  1 kk xx    or  ),( kkxE   – 

),( 11  kkxE    or k = N  then stop, else k  k + 

1 and go to Step 4.  
 

The detailed description of Algorithm 1 will be 
explained as follows. Step 1 can be done by using a trial and 
error way to get a feasible point of any linear programming 
problem. There are many feasible points that would be 
candidate as an optimum solution, but chances are very 
small to be the optimum solution. For this reason, Generally 
Step 1 and Step 2 can be ignored in this algorithm, so it can 

go to Step 3. In Step 4, the multiplier k  for k > 2 is 

calculated by 110:  kk  . Step 5 describes three ways to 
end the process in this algorithm.   
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IV.  INTERIORPOINT ALGORITHM 

This section reviews the interiorpoint algorithm called 
Karmarkar’s algorithm for finding a solution of linear 
programming problem. The step of this algorithm can be 
summarized as follows for any iteration (Parwadi, 2011).  

 
Step 1. Given the current initial trial solution 

           ),...,,( nxxx 21 , set  
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1
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Step 2. Calculate ADA ~
 and Dcc ~ . 

Step 3. Calculate AAAAIP TT ~)~~(~ 1  and 

            cPc p
~ . 

Step 4.  Identify the negative component of pc  having the  

largest absolute value, and set  equal to this 
absolute value. Then calculate  

  p
T cx




 1...11~ , 

where  is a selected constant between 0 and 1. 
 

Step 5.  Calculate xDx ~  as the trial solution for the next 
iteration (step 1). (If this trial solution is virtually 
unchanged from the preceding one, then the 
algorithm has virtually converged to an optimal 
solution, so stop.)  

  
 

V. NUMERICAL EXAMPLES 
 

This section we give five examples to test the Algoirthm 
1 and we compare the results with Karmarkar’s algorithm. 
Consider the following problems (Parwadi, 2010). 

 
Example 1. 

Minimize 321 752 xxxf   

subject to  632 321  xxx , 

0jx ,  for j = 1, 2, 3. 

 
Example 2. 

Minimize 21 5.04.0 xxf            

subject to 7.21.03.0 21  xx , 

       65.05.0 21  xx ,  

            0jx ,  for j = 1, 2. 

 
Example 3. 

Minimize 21 43 xxf    

subject to  021  xx , 

                  22 21  xx , 

                  0jx ,  for j = 1, 2. 

 
Example 4. 

Minimize 21 34 xxf   

subject to 632 21  xx , 

                44 21  xx , 

                0jx ,  for j = 1, 2. 

Example 5.  

Minimize 21 83 xxf    

subject to 2043 21  xx , 

                        123 21  xx , 

  0jx ,  for j = 1, 2.  

 
Table 1 Algorithm 1and Karmarkar’s Algorithm test 

statistics 
 
 

Problem 
No. 

Algorithm 1 Karmarkar’s 
Algorithm 

Total 
Iterations 

Time 
(Secs.) 

Total 
Iterations 

Time 
(Secs.) 

1. 
2. 
3. 
4. 
5. 

11 
8 

10 
12 
15 

7.6 
5.9 
8.9 

10.9 
11.2 

16 
19 
19 
12 
18 

3.6 
3.7 
3.7 
2.8 
3.8 

 
Table 1 reports the results of computational for 

Algorithm 1 and Karmarkar’s Algorithm. The first column 
of Table 1 contains the example number and the next two 
columns of each algorithm in this table contain the total 
iterations and the times (in seconds) of each algorithm. 
Table 1 also shows that in terms of the number of iterations 
required to complete  the fifth numerical examples, the 
Algorithm 1 is better than Karmarkar’s Algorithm, but in 
terms of completion time required to complete the five 
numerical examples shows that Karmarkar’s algorithm 
looks better than Algorithm 1. This can be explained that in 
the proposed approach using an exponential function that 
generally require a longer time than use a polynomial 
function as in Karmarkar's algorithm. 
 
 

VI.  CONCLUSION 
 
From the discussion in previous section we see that this 

paper describes the exponential penalty function to solve 
problem (1). We also see that the minimum value of the 
exponential penalty function converges from above to the 
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solution of problem (1) as the penalty parameter converges 
to infinity. Moreover, the minimizers of exponential penalty 
functions converge from the right to the minimizer of 
problem (1). The algorithm for this method ia also given in 
this paper. We also note the important thing of these 
methods which do not need an interior point assumption.  
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