
Collaborative Administration in the Context of
Research Computing Systems

Andreas Schäfer, Marc Reichenbach, Dietmar Fey

Abstract—In this paper we present our experiences with
collaboratively administrating research computer systems.
While traditional administration focuses on reliability and
efficiency, collaborative administration poses the challenge
of managing the flow of information between the different
administrators. Research systems add a high degree of
heterogeneity to the mix as each hardware resource may
require its own dedicated software environment.

Our approach makes heavy use of system automation to
reduce the effort required to provide basic services, while
at the same time remaining flexible enough to allow for
unusual system configurations.

Index Terms—DevOps, system administration, dis-
tributed systems

I. INTRODUCTION

Our chair is concerned with research topics ranging
from computer architecture to high performance and
grid computing. As diverse as the range of research
topics is the range of computing systems required. On
the one hand computer architects need fat nodes with
lots of memory to carry out synthesis and system simu-
lation. On the other hand they require servers to house
FPGA boards with direct access to the PCIe bus. The
high performance computing folks need servers with
lots of PCIe slots suitable for GPUs (Graphics Processing
Units), and also medium sized MPI [2] clusters. Those
MPI clusters are then again relevant to grid computing
research, as they are well suited for high throughput
computing jobs. The constellation of our systems is
illustrated in Figure 1.

Previously, our approach to system administration was
to have one or two experts who would take care of all
installed systems. Homogeneity was ensured by running
the same Linux distribution (Debian stable) on all nodes.
This made it easy to automate basic tasks such as backup
and updates via homebrew scripts. But as our chair
grew and research interests became more diverse, this
approach did not scale: the GPU machines required fre-
quent updates to the Nvidia drivers and CUDA libraries
while the systems sporting IBM Cell BE did not work
well with Debian, but did call for a Redhead based
distribution. Additionally, the closed source software for
the hardware engineering tasks put the admins under
unexpected load, since they were not familiar with the
pitfalls of its installation. In other words: users could not
work efficiently because they had to wait for the admins,
who were feeling their powers spread thin between an
increasingly complex range of specialized servers.

A. Schäfer, M. Reichenbach and D. Fey are with Friedrich-Alexander-
Universität Erlangen-Nürnberg, Germany. e-mail: {andreas.schaefer,
marc.reichenbach, dietmar.fey} @informatik.uni-erlangen.de

The alternative was to move administrative powers to
the actual users of the system. Each admin could then
use the best operating system and configuration for his
use case, and would only have to deal with software and
hardware he is used to. The challenge with this mode of
operation is to prevent the individual admins from being
swamped by having to replicate basic functionality such
as login services, home directories and backup. We saw
a need to reform our way of system administration. Our
goals for this were:

1) high degree of automation, to keep the total work-
load low, despite maintaining a steadily increasing
number of servers,

2) flexibility, in order to be able to accommodate the
heterogeneity of the servers in use,

3) scalability, to share the load among all admins,
4) traceability, which allows admins to track down

who made which changes when and why,
5) don’t repeat yourself, an advice from Hunt et

al. [5], teaches the avoidance of redundancy. In
our case this means to prevent systems from en-
tering an inconsistent state when two databases
store different versions of the same data (e.g.
/etc/hosts storing IPs which differ from the
actual host addresses),

6) testability, to quickly diagnose and remedy fail-
ures,

7) repeatability, for automatically applying the con-
figuration to new machines (not just already run-
ning ones), too, thereby greatly reducing the de-
ployment time – and cost.

Being software developers, we turned to DevOps
practices. This allowed us to use tools from software
engineering (e.g. a revision control system) together
with dedicated administration tools (e.g. Puppet, Na-
gios). With respect to network architecture, our basic
approach was to outsource basic functionality to a new,
central head node, while leaving the details of specific
expert hosts to their corresponding admins. The next
section describes the basic infrastructure we build, while
Sections III and IV describe the DevOps inspired parts.
These address the heterogeneity of the systems and the
team oriented aspect of our approach.

II. INFRASTRUCTURE

First, we identified a number of common services
which each system would require and which could be
incorporated by the headnode.

1) shared user database
2) common home directories
3) secure backup of confidential user files

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol II 
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-19251-7-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

mailto:andreas.schaefer@informatik.uni-erlangen.de
mailto:andreas.schaefer@informatik.uni-erlangen.de


Figure 1. Map of the systems in our chair’s HPC laboratory and the network spanning across them. What is most striking is the heterogeneity
of the systems involved: while the LS21 blades in the whistler cluster on the right are with just 8 GB RAM and 4 cores rather lightweight,
the CAE server has what constitutes a fat node: 96 GB of RAM and 48 cores. The accelerator servers special pieces of hardware whose cases,
board layouts and power supplies have been optimized to provide a maximum number of PCIe 2.0 x16 double width slots (8 in each node).
They are used for testing GPU codes and FPGA designs. The backup server is located off-site to increase disaster safety.

4) resource arbitration
5) monitoring of system health and performance
6) documentation of changes to the configuration
Afterwards we tried to identify the most suitable

tools for each task. Perhaps the crucial point was the
network file system for the home directories. Since both,
hardware and high performance computing groups work
with large datasets easily in the Terabyte range, it needs
to be fast. But, because for some of portions of the data
our users had to sign NDAs (for industry projects), it also
needs to be secure. Also, we wanted POSIX semantics to
ensure compatibility with existing software. We chose
NFSv4 over InfiniBand, as this is fast enough for our
uses, and also allows for encryption. The user database
is implemented using Kerberos and LDAP. Thereby we
can implement strict access control for NFS shares, while
simultaneously being open to other user databases, e.g.
in order to import the department’s list of student
accounts. PAM plugins (e.g. pam_listfile) allow us
to limit the access of users to certain systems, thereby
preventing e.g. students from swamping the staff’s CAE
(computer aided engineering) server.

In our case resource arbitration refers to the task of
automatically allocating pieces of hardware to a given
user for a certain period of time. Typically this is done
by a batch queuing system. Originally we planned to use
this only to manage the flow of jobs on our compute
cluster, but soon we realized that we were facing a sim-
ilar problem on our PCIe servers: a varying number of
users were competing for a significantly smaller number
of GPUs and FPGA boards. With a small user base it
was sufficient to use IRC to let the colleagues know who
was using a certain PCIe device, but as more and more
students started using the devices for their projects, we
had to come up with an automated method for resource

arbitration.
We chose the Sun Grid Engine1 (SGE, now renamed

to Oracle Grid Engine) as a batch scheduler as it is one
of the most mature systems freely available and comes
with all the features we need. The SGE consists of three
types of nodes: the execution hosts are those who run
the actual jobs. Submission hosts are used to send jobs
to the system. The planning of when to run which job on
what machines is done by the host running the central
scheduler. For this the scheduler maintains a number of
queues. The queues basically function as FIFOs, but with
a twist: not just waiting time, but also job priorities and
user/project fairness are taken into consideration. This
prevents individual users from clogging the queues with
a high number of jobs. Administrators can configure the
queues to give certain user groups (e.g. staff) prioritized
access, while limiting the resource usage of other (e.g.
students).

However, setting it up for the PCIe servers was a
bit of a challenge: in our installation larger number
(up to eight) PCIe devices may be located in a single
server, so the batch system should be able to schedule
multiple jobs on a single server, as long as their resource
allocations permit this. For measurements however the
system should also allow jobs to use a node exclusively,
e.g. for precise performance measurements. Finally, a job
might require multiple accelerators, possibly on multiple
nodes, in parallel.

Our initial approach was to create a single queue for
the PCIe servers and let them process one job after an-
other. While this would allow the jobs to access all PCIe
devices exclusively, the resulting resource utilization was
poor. Another attempt was to create a queue for each

1http://www.oracle.com/us/products/tools/
oracle-grid-engine-075549.html

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol II 
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-19251-7-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html
http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html


requestable PCIe device. This would allow us run mul-
tiple jobs on each server while still allowing exclusive
scheduling where necessary2. However, jobs couldn’t
reserve multiple accelerators simultaneously. Our final
setup uses a single queue gpu.q and each node has a
number of complex values. In the SGE these complex
values can be used to model hardware resources which
a job can request and (temporarily) block. This is most
commonly used to model the available RAM or CPU
cores, but can equally be used to arbitrate a guaranteed
IO bandwidth or, as in our case, available GPUs and
other PCIe devices.

When a job is started by the SGE and has reserved a
number of devices, it needs to know e.g. the correspond-
ing CUDA device numbers. For this we wrote a custom
script alloc which maintains a database of all present
and reservable resources. It returns all required IDs for
a given device and allocates the device to the current
job. Using this mapping, the tool can also free resources
if a job has ended but failed to deallocate its devices, so
crashed jobs do not place a problem. Figure 2 shows an
example of how an interactive session can be obtained
and how the required resources are specified. The SGE
makes sure that while the session lasts, no other jobs
use those resources.

Monitoring needs to satisfy two demands: first of all
we need an automated way to check the functionality
of our installation, similar to what unit tests are to
software. Examples include a working SSH daemon on
all nodes or a running SGE execution daemon. For this
we chose Nagios, as its architecture allows for custom
tests and it is well suited for sending alarm messages on
multiple channels.

Second, a metering tool is required to identify possible
performance bottlenecks, which may affect system avail-
ability in the future, e.g. temporary high load situations
or an exhausted network bandwidth on certain servers.
Nagios is good at telling if a certain measured value has
crossed a certain threshold, but it is bad at reporting how
this value has developed across time. Therefore we use
Ganglia, which can provide plots of basic performance
metrics for all nodes. It may be extended with custom
metrics, e.g. to plot the temperature measured by an
external probe.

For disaster security our backup server is located in a
different server room. We need to ensure security in this
context in multiple ways:

• The backups should not be lost if one or two
disks fail. Therefore the backup server features a
RAID6 device which will only fail if three drives fail
simultaneously.

• The WAN connection between both server rooms is
not to be trusted, so all access has to be protected.
We export storage using CHAP protected ISCSI
volumes.

• Multiple systems will store their backups on this
system. Some may carry data for which NDAs have
been signed. So admins of the different systems

2http://wikis.sun.com/display/gridengine62u3/Configuring+
Exclusive+Scheduling

should not be able to access the backups of other
systems. Thus we encrypt all backups using LUKS.
Only the servers mounting the shares can decrypt
them. To be able to restore data, the corresponding
admins keep an offline copy of those keys.

III. CONFIGURATION MANAGEMENT

This section outlines how we use Puppet3 to auto-
mate the installation of packages and changes to the
systems’ configurations. The beauty of this approach
is that new nodes only need a basic operating system
installed, along with the simple Puppet client. All other
configuration and installation work is then taken over
by Puppet. This greatly reduces our deployment time
for new systems. Also, nodes may be migrated from
other forms of administration to this one step by step,
as Puppet’s configuration catalog may include setups
tailored for each node individually (see Figure 4 and
Figure 6).

The infrastructure illustrated above requires an exten-
sive configuration of each node. If the configuration was
static and all nodes would use the same Linux distribu-
tion, we could use a system image to fill the node with a
suitable initial configuration. Our experience however is
that the configuration needs to change frequently (e.g.
because new packages are installed) and also different
Linux distributions are most suitable for the different
machines.

The standardized formulation of system configura-
tions and their deployment has gained a lot of attention
in the recent years [6], [7], [8]. We chose Puppet, as
it is more feature rich than the aging Cfengine, but is
simultaneously more mature than Chef. Puppet consists
of a central configuration server which is being polled
by clients for changes to the configuration. The configu-
ration itself is described via a set of scripts written in a
domain specific language. It offers a unified interface to
tasks like starting system services or handling packages,
which may require different actions on each operating
system.

The different roles each of our systems need to play
are reflected by a custom class hierarchy as shown in
Figure 4. Basic services are defined in modules, which
are then included in the classes. For instance the root
class UnixNode includes the basic package and config
file modules as well as – among others – the module
Auth, which sets up LDAP and Kerberos clients and
configures PAM to use those. A short example for a
custom Puppet module can be seen in Figure 7.

The class CellBlade is specific to our IBM QS22
blades (each with two PowerXCell 8i processors), which
run Fedora. OpteronBlade refers to those blades fea-
turing two AMD Opteron six-cores, which are a lot
beefier than the smaller WhistlerBlades, and are thus
suited for a larger range of applications. For instance
running VisIt [3] – our tool of choice for visualizing the
3D results of our simulation codes [1], [9]. The classifi-
cation TeslaSystem is used by the PCIe servers, which
were originally only used to house Nvidia Tesla GPUs,

3http://www.puppetlabs.com/

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol II 
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-19251-7-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

http://wikis.sun.com/display/gridengine62u3/Configuring+Exclusive+Scheduling
http://wikis.sun.com/display/gridengine62u3/Configuring+Exclusive+Scheduling
http://www.puppetlabs.com/


gentryx@faui36a ~ $ qlog in −q gpu . q − l gpu_host=true , tes la_c2050=1
Your job 52820 ( "QLOGIN" ) has been submitted
wai t ing for i n t e r a c t i v e job to be scheduled . . .
Your i n t e r a c t i v e job 52820 has been s u c c e s s f u l l y scheduled .
E s t a b l i s h i n g b u i l t i n s e s s i o n to host f a u i 3 6 i . in fo rmat ik . uni−er langen . de . . .

gentryx@faui36i ~ $ CUDAID=‘JOB_ID=52820 a l l o c tes la_c2050 1 ‘
gentryx@faui36i ~ $ echo $CUDAID
3
gentryx@faui36i ~ $ . / p r o j e c t /my_exe −−cudaid $CUDAID

[ . . . ]

Figure 2. Resource allocation example. In this case an interactive session on a GPU/PCIe server with one free Nvidia Tesla C2050 is requested.
The alloc script returns the corresponding CUDA device ID, which then has to be fed into the executable.

(a) Wiki (b) Timeline (c) Changeset

Figure 3. Example of how Trac can be used to view system documentation in the wiki, activity in the timeline view and configuration patches
in the changeset view.

but changed over the time to accommodate all sorts
of accelerators, including AMD GPUs and FPGA boards.
The HeadNode has a dedicated class, which shares some
modules with the client classes, but generally needs
tweaks to its configuration as it mostly runs the server
parts of the services. We found it useful to keep the
headnode’s configuration in the Puppet repository, too,
even though no other node needs to duplicate it, because
this makes it much easier to trace changes.

For some packages, especially those that communicate
via the network, we have to have the same version in-
stalled on each node. That feature may not be achievable
with the stock packages available in the different Linux
distributions, as their versions may differ. Therefore cus-
tom puppet modules handle the installation of the OFED
InfiniBand drivers, our MPI environment Open MPI[4]
and the SGE. The class hierarchy allows us to examine
new packages and modules selectively on single nodes
and only enable them on all nodes after they have been
thoroughly tested.

Puppet itself handles the distribution of configuration
changes to the nodes, but it does not facilitate the
communication and documentation of these changes
among a group of administrators. We therefore decided
to place our puppet configuration in a Mercurial4 (HG)
repository and let a Trac5 installation interface with
it. Trac’s integrated Wiki allows the users to maintain
system documentation in a single place. We use the
ticket system to assign tasks to the different admins. One

4http://mercurial.selenic.com/
5http://trac.edgewall.org/

UnixNode
-BasicFiles
-BasicPackages
-Auth
-OpenMPI
-Parmetis
-Boost::Common
-Ganglia::Client

WhistlerBlade
-Visit

BasicClient
-Backup::Client
-NFSClient
-Exim::Satellite
-InfiniBand::Client
-SunGridEngine::Client
-NTP::Client

CellBlade
-CellSDK

OpteronBlade
-AtiStreamSDK
-CellSystemSim
-Visit
-VM

TeslaSystem
-AtiStreamSDK
-CellSystemSim
-Visit
-CudaToolkit

HeadNode
-AtiStreamSDK
-CellSystemSim
-Exim::Smarthost
-Backup::Headnode
-InfiniBand::Headnode
-Visit

Figure 4. Class diagram of our Puppet setup. Each individual class
stores the setup of one category of nodes. For this it may inherit
settings from another class and include a number of modules.

benefit of a single, integrated system is that the wiki,
tickets, commit messages and files in the repository may
reference and interact with each other (e.g. tickets may
be automatically closed via certain commit messages and
the wiki may link to parts of the source code).

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol II 
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-19251-7-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

http://mercurial.selenic.com/
http://trac.edgewall.org/


IV. MAKING CHANGES

This section is meant to give an overview of how we
use our setup to manage the systems’ configurations.
Figure 5 shows the main interactions, which focus on
the Mercurial repository for storing the configuration
data, and the Trac installation for communicating and
documenting changes: an admin would first update his
local copy of the HG repository by pulling changes
from the server. After locally making modifications and
committing these changes, he would push them back
to the server. The client machines regularly poll the
Puppet server and apply the retrieved configuration
catalog. Admins can view changes to the repository
in Trac’s timeline. Also, after making changes to the
configuration, it is often sensible to update the user
documentation, which is then accessible to users, too.

Figure 6 shows an excerpt of our
manifests/site.pp file which defines the setup for
all client nodes. faui36i is one of the PCIe servers,
which we mainly use to house GPUs. Its type is set to
teslasystem, a historical name which stems from
the node’s first use. It will – among a variety of other
packages – install Nvidia’s GPU drivers (and update
them after each kernel update) and additionally the
CUDA toolkit and SDK. whistler01 is one of the
smaller blade servers. The debian_net_config
passage defines whistler01’s network setup. While
this first appears to be inferior to running an DHCP
server, we actually found this approach to better fit
our needs: by placing the address information within
Puppet, we avoid repeating the same data across
different databases (e.g. /etc/hosts and the DHCP
server) and can furthermore automatically extract
the data and reformat it for other uses (e.g. the
aforementioned host file). Together with a custom
module for Puppet’s facter, we could even feed the
automatically generated public IPv6 addresses of the
nodes into our hosts file.

Because of the high number of nodes with identical
configurations, we wrote a short Ruby script which can
generate the manifest from a short template. This means
that we have to maintain significantly less code (the
manifest is slightly larger than 13 kB while the generator
script weights only less than 3 kB) and also adding a new
node (with an configuration identical to some previous
node) now boils down to adding a single line of code to
the generator script.

V. SUMMARY

We presented a tool centric approach to collaborative
system administration. It draws ideas from the DevOps
movement to transform administration for the most
part into writing source code, which can be shared,
reviewed and developed in a team. Its heart is a set
of scripts written for the Puppet configuration manage-
ment system. The Puppet server and clients facilitate
the communication of the configuration catalog among
the nodes, while Mercurial as a revision control system
and Trac are used to share and document changes
among the developers/operators and users. The beauty

node " f a u i 3 6 i . in fo rmat ik . uni−er langen . de " {
$remergepackages = " nvidia−d r i v e r s "
$openg l in t e r f a ce = " nv id ia "

inc lude te s l a sy s t em
}

node " whi s t l e r01 . in fo rmat ik . uni−er langen . de " {
inc lude wh i s t l e rb l ade

deb ian_net_conf ig { p r i v a t e :
ip_eth0 => " 192.168.1.20 " ,
ip_ ib0 => " 192.168.0.30 " ,
ip_ ib1 => " 192.168.0.31 "

}
}

Figure 6. Excerpt from our Puppet installation’s manifest file. Two
nodes are configured: faui36i is an accelerator server which mainly
houses GPUs, while whistler01 is an LS21 blade and part of our
medium sized cluster computer.

c l a s s gang l ia {
c l a s s c l i e n t {

package { $operat ingsystem ? {
Gentoo => " gang l ia " ,
Fedora => " gangl ia−gmond" ,
default => " gangl ia−monitor "
} :

}

f i l e { " / e t c / gang l ia /gmond . conf " :
owner => root ,
group => root ,
mode => 644 ,
source => " puppet :/// gang l ia /gmond . conf "

}

s e r v i c e { $operat ingsystem ? {
Debian => " gangl ia−monitor " ,
default => "gmond"
} :
subs c r i be =>

F i l e [ " / e t c / gang l ia /gmond . conf " ] ,
ensure => running ,
enable => true

}
}

}

Figure 7. Example for a Puppet module. In this case we see the client
part of our Ganglia installation. It first installs the monitor package,
which unfortunately has different names on each Linux distribution,
and then ensures that the service is up and running. It gets restarted
each time the configuration file (also managed by Puppet) is updated.

of this approach is that it allows us to achieve a high
degree of automation, thereby removing the need for
dedicated admins. Simultaneously it makes the process
of administration scalable and repeatable.

What is currently missing are automated intrusion
tests with tools like Metasploit or Nessus, possibly even
integrated into Nagios. Also, the amount and complexity
of tools involved makes for a steep learning curve, which
can alienate admins who are not familiar with the pain
points addressed by the tools.

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol II 
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-19251-7-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011



User Mercurial Trac Puppet Server

Headnode

Puppet ClientAdmin Admin

read

modify config

view changes,
update doc

push

modify

pull

HTTP reply

HTTP get

poll
read

update
catalog

send catalog

HTTP reply

HTTP post

HTTP reply

HTTP get

view doc

update
config

Nagios ClientNagios Server

Client Node

run test

collect data

test results

e-mail status

e-mail status

Figure 5. Sequence diagram of the interactions which may occur in our administration case. The Mercurial repository forms the hub around
which all activities revolve. Human interaction mainly uses Trac as an interface to the repository, while the client nodes will access it via the
Puppet server. To ensure the nodes remain in a functional state, Nagios will run automated tests and its server will send status reports to the
admins in cases of failures or recoveries.

REFERENCES

[1] A. Schäfer and D. Fey, “Libgeodecomp: A grid-enabled library
for geometric decomposition codes,” in Proceedings of the 15th
European PVM/MPI Users’ Group Meeting on Recent Advances in
Parallel Virtual Machine and Message Passing Interface. Berlin,
Heidelberg: Springer, 2008, pp. 285–294.

[2] ——, MPI: A Message-Passing Interface Standard - Version
2.2. Stuttgart, Germany: High-Performance Computing Center
Stuttgart, 2009.

[3] H. Childs, E. S. Brugger, K. S. Bonnell, J. S. Meredith, M. Miller,
B. J. Whitlock, and N. Max, “A contract-based system for large data
visualization,” in Proceedings of IEEE Visualization 2005, October
2005, pp. 190–198.

[4] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra,
J. M. Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine,
R. H. Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall,
“Open MPI: Goals, concept, and design of a next generation MPI
implementation,” in Proceedings, 11th European PVM/MPI Users’
Group Meeting, Budapest, Hungary, September 2004, pp. 97–104.

[5] A. Hunt and D. Thomas, The Pragmatic Programmer: From Jour-
neyman to Master. Addison-Wesley, 1999.

[6] T. Delaet and W. Joosen, “Podim: a language for high-
level configuration management,” in Proceedings of the 21st
conference on Large Installation System Administration Conference.
Berkeley, CA, USA: USENIX Association, 2007, pp. 21:1–
21:13. [Online]. Available: http://portal.acm.org/citation.cfm?
id=1349426.1349447

[7] B. Vanbrabant, T. Delaet, and W. Joosen, “Federated access
control and workflow enforcement in systems configuration,”
in Proceedings of the 23rd conference on Large installation
system administration, ser. LISA’09. Berkeley, CA, USA: USENIX
Association, 2009, pp. 10–10. [Online]. Available: http://portal.
acm.org/citation.cfm?id=1855698.1855708

[8] B. Vanbrabant and T. Delaet, “Authorizing and directing
configuration updates in contemporary it infrastructures,” in
Proceedings of the 3rd ACM workshop on Assurable and
usable security configuration, ser. SafeConfig ’10. New York,
NY, USA: ACM, 2010, pp. 79–82. [Online]. Available: http:
//doi.acm.org/10.1145/1866898.1866912

[9] A. Schäfer and D. Fey, “High performance stencil code algorithms
for gpgpus,” Procedia CS, vol. 4, pp. 2027–2036, 2011.

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol II 
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-19251-7-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

http://portal.acm.org/citation.cfm?id=1349426.1349447
http://portal.acm.org/citation.cfm?id=1349426.1349447
http://portal.acm.org/citation.cfm?id=1855698.1855708
http://portal.acm.org/citation.cfm?id=1855698.1855708
http://doi.acm.org/10.1145/1866898.1866912
http://doi.acm.org/10.1145/1866898.1866912

	Introduction
	Infrastructure
	Configuration Management
	Making Changes
	Summary
	References



