
 

 

Abstract— This paper uses a novel method of implementing 

a genetic algorithm (GA) using a hardware simulation to 

evaluate the fitness of an individual for a robotic controller, 

rather than the normal practise of a software simulation. A 

simulation is required within a GA to model the actions of the 

robot and its environment in order to evaluate how well each 

individual within the population performs. Typically a 

simulation is written in software and executed sequentially on a 

processor. However, this paper implements the simulation as a 

digital circuit within a FPGA using a hardware description 

language (HDL). A comparison between identical hardware 

and software simulations is performed, resulting in the 

hardware simulation evolving a successful solution over seven 

hundred times faster than the software simulation. The robot is 

in the form of a balancing beam, the GA was implemented in 

hardware and the circuit driving the beam was a virtual 

FPGA. 

 
Index Terms—Evolvable Hardware, Genetic Algorithm, 

Hardware Simulation, Evolvable Robotics, Virtual FPGA  

I. INTRODUCTION 

This paper uses the novel approach of using a hardware 

robotic simulation within a GA. The basis of a GA is to find 

a solution to a problem using evolution as a search engine. 

The GA uses natural selection to evolve a population of 

individuals where each individual represents a possible 

solution to a problem. The process is iterative and is 

comprised of three main sections: reproduction, fitness 

evaluation and selection. The selection process determines 

which individuals within the population will survive to the 

next generation based on their fitness. The reproduction 

process creates new offspring from the surviving parents 

using the genetic operators crossover and mutation. The 

fitness evaluation determines how well each individual 

within the population performs as a potential solution to the 

problem with this process being the most time intensive. In 

order to evaluate the fitness of an individual it must be 

tested either in real life or in simulation. As it is time 

consuming and potentially destructive to evolve a real life 

robot, a robotic simulation is used. Historically a simulation 

is run in software on a computer. If the simulation could be 

implemented in hardware on a FPGA, then the mathematical 

equations describing the simulation could be executed in 

parallel and there should be a decrease in the time taken for 

fitness evaluation. 
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This paper created two identical simulations for a robotic 

controller (Fig 1) with the first coded in software and the 

second implemented in hardware. The GA used to evolve 

the virtual FPGA which controlled the robot and the virtual 

FPGA itself were identical and were implemented in 

hardware. This enabled a valid comparison between 

hardware and software simulation to be performed. 

 

 
Fig 1.  The two systems used to evaluate the software and hardware 

simulation. 
 

The robotic platform used to test both simulations was a 

ball-beam system (Fig 2). This used a beam driven by a 

stepper motor to balance a ball between two end-stops. The 

beam had 19 sensors to determine ball position and a stepper 

motor which could move at 27.5 degrees per second to drive 

the beam. The beam itself was curved to make the system 

inherently unstable. 
 

 
Fig 2.  The physical beam with a GUI representation allowing the ball and 

beam to be dynamically observed during the evolution. 

 

The main difficulty with creating a hardware simulation 

inside a FPGA is that unlike a computer, there is no 

arithmetic logic unit. All arithmetic formulae written in 

HDL will generate individual circuits to implement the 

arithmetic function. With floating point operations, a large 

number of the FPGA logic element resources are required 

for each calculation due to the complexity of dealing with 
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signed, mantissa and exponent parts. As there are typically 

many floating point calculations in a simulation, it becomes 

impractical to use this technique. 

An alternative to floating point calculations is the use of 

integer arithmetic, which reduces the logic element 

resources required to implement the circuit within the 

FPGA. Trigonometric functions will also need to be 

implemented as an arithmetic approximation or a look up 

table, as they are difficult to implement in hardware. 

The disadvantage of using integer calculations is the loss 

of precision compared to floating point calculations. In 

addition the algorithms must be checked to make sure that 

no arithmetic overflow occurs as the numbers are confined 

to 32 bits (± 2 x 10
9
). It is also important to ensure that the 

timing between the arithmetic calculations and the timing 

between the simulation and other systems is correct. Finally 

the hardware simulation must be integrated to the GA and 

the virtual FPGA. 

To implement the simulation in hardware, the integer 

arithmetic calculations can be directly coded in Verilog 

HDL using the standard multiply and divide syntax. 

II. BACKGROUND 

There has been a large amount of research in the use of 

GAs to evolve robotic controllers using both software and 

hardware GA’s. However to the to the authors knowledge 

the use of a hardware simulation within these systems has 

not previously been used. Using evolution to create robotic 

controllers has been widely studied with advances in path 

planning [1, 2], obstacle avoidance [3, 4], tracking [5, 6] and 

even evolving the robot form itself [7, 8]. This paper 

advances the field by the use of a hardware robotic 

simulation to improve the completion time for the GA 

process. 

A virtual FPGA was used to control the motion of the 

beam. This is a digital circuit which was evolved by 

modifying its configuration bit stream (CBS) which 

determined the circuit parameters within the virtual FPGA. 

This method, referred to as evolvable hardware, was first 

implemented by Thompson [9] when he evolved a tone 

discriminator on a evolutionary tolerant Xilinx FPGA. 

However this type of FPGA has been discontinued and it 

has become difficult to directly evolve a commercial FPGA 

by modifying its CBS.  

The main requirements of an evolvable FPGA are a) 

scalability to enable large systems to be evolved, b) partial 

reconfigurability, where parts of the FPGA can be 

reconfigured while other parts are still running and c) non 

destructive architectures that are resilient to a random CBS. 

One solution that meets these requirements is the virtual 

FPGA with functional elements employed in a Cartesian 

based array that could be downloaded into the FPGA. The 

operation of the functional elements and their inputs are 

determined by the CBS, thus evolving this bit stream would 

change the operation of the virtual FPGA. Virtual FPGAs 

have been evolved for several applications including an 

adaptive equalizer with lossy data compression, [10] image 

processing [11] and character recognition [12].  

The hardware GA used in the experiments was a mutation 

only GA (MOGA) implemented without the use of the 

crossover operator, which requires less FPGA resources 

allowing the complete system to be implemented in a 

relatively small Altera Cyclone EP1C12F324C8 device. 

This technique has been used previously in both hardware 

and software GAs with studies that showing that a MOGA 

can compare favorably against a normal GA [13]. An 

advantage of this technique is a reduction in chromosome 

damage caused by the crossover operator [14]. Various 

mutation only algorithms have been studied such as frame 

shift and translocation, once again finding a good 

comparison with a normal GA [15]. Several papers have 

used this method to evolve digital circuits.[12, 16, 17]. 

Other hardware GA systems have used crossover templates 

to minimize the number of two bit multiplexers for the 

crossover operation [18], while others have used pipelining 

and parallelism to develop a high speed hardware GA[19]. 

III. MATHEMATICAL MODEL 

In the model of the beam (Fig 3), the beam position is 

measured as an angle φ from horizontal, and the ball 

position is measured as an angle θ from the centre of the 

beam. The full derivation for the mathematical model has 

previously been described by the authors [20]. The final 

equations for the ball acceleration are given in equations (1) 

and (2). 
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Fig 3.  The ball and beam showing the relationships between the angles and 

motion. 
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From physical experimentation on the beam, the value for 

acceleration (a) of the ball was determined as a factor of the 

ball position (x) and beam position (b) in equation (3). 

Placing this into the mechanical modeling we can 

determine the new position of the ball, dependant on its 

current position, velocity ��� and acceleration in equation 

(4), and the new speed of the ball dependant on its current 

speed and acceleration in equation (5). The simulation was 

set to a time period of 1 ms, in equations (6) and (7) and 

these were modified to give a divisor which was a multiple 

of two, enabling for efficiencies in the hardware 

implementation, in equations (8) and (9). 
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Where 

 g - gravitational acceleration 

 I – moment of inertia of the ball 

 R - radius of curvature of the beam 

 m - mass of the ball 

 r - radius of the ball 

 θ - ball position (angle from the centre) 

 Ø - beam position (angle from horizontal)  

 x – ball position 

 v – ball velocity 

 b – beam position 

 a - acceleration of the ball  

 

An investigation of the hardware simulation generated by 

the HDL compiler showed that no dividers and only four 

signed multipliers were used in the simulation circuit. 

The beam state is defined by ball position, ball speed and 

beam position which were derived from the ball position 

sensors and the number and direction of the motor pulses. 

These parameter values were stored in a 32 bit word with 19 

ball positions, 3 ball speeds and 10 beam positions, with 

only 1 bit active for each parameter at any one time. 

Within the hardware simulation these parameters were 

encoded as integer values scaled up by 10000 to maintain 

accuracy. The first parameter was the beam position which 

was an angular parameter determined by the number of 

beam pulses. The beam had a total movement of ±30
0 
with 

270 pulse required to move the beam over the total range 

giving a movement per pulse of 0.22
0 
and a pulse range from 

±135. As the motor could only be pulsed every 8ms then the 

beam movement per 1ms was 0.0275
0
.  

The location of the ball was determined by 19 sensors. 

When the ball was midway between two sensors both 

became active. This enabled the resolution of the sensors to 

be doubled giving a range from ±19. 

The ball velocity was estimated from the time between 

sensor signal changes, however the velocity estimation was 

quite poor thus only three ball velocities were used; moving 

left, moving right and almost stationary. 

The complete system (Fig 4) shows the three blocks of 

the genetic algorithm; a) the hardware GA, b) the virtual 

FPGA and c) the hardware simulation, each with its 

associated control lines. These lines controlled the GA 

process, and allowed the transfer of fitness, best 

chromosome and ball states to the computer GUI. The 

virtual FPGA controlled the motion of the beam dependent 

on the ball-beam states, and it was this circuit that was 

evolved via a GA process on its CBS. The hardware 

simulation modeled the dynamics of the ball-beam so the 

fittest of the current virtual FPGA circuit could be 

evaluated. The hardware GA used a mutation only algorithm 

where the crossover operator was not used. This reduced the 

number of logic elements required for the hardware GA, 

enabling the complete system to be placed in a Cyclone 

device using less than 12000 logic elements. 

IV. SYSTEM OVERVIEW 

 
Fig 4.  System overview showing connections between the NIOS processor 

and hardware subsystems 

V. HARDWARE GENETIC ALGORITHM 

 
Fig 5.  The hardware genetic algorithm showing the random number 

generator, chromosome storage, mutation unit and control lines. 

 

The hardware genetic algorithm unit (Fig 5), had 3 

blocks: random number generator, best chromosome storage 

and the mutation unit. The mutation random number 

generator used a linear feedback shift register to produce a 

383 bit random number as well as four 9 bit random 

numbers. The best chromosome stored the current parent 

which could be sent to the mutation unit and sent to the 

computer via a serial link. The mutation unit could mutate 1 

to 4 bits of the chromosome dependant on the selected 

mutation rate. 

The operation was implemented as follows: on reset, a 

random CBS was generated, placed into the best 

chromosome memory, and then passed to the mutation unit. 

The mutation unit could mutate 1 to 4 bits within the CBS 

dependant on the fitness. The mutation point was set by a 9 

bit random number giving a range of 0 to 511. As the CBS 

was only 383 bits, there was a possibility that a mutation 

would not occur (Table I). After mutation the CBS was sent 

to the virtual FPGA for evaluation. If the CBS had an equal 

or better fitness, it would be saved back in the best 

chromosome memory. 
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TABLE I  

 MUTATION RATE AND MUTATION PROBABILITY 

Mutation Bits Mutation Probability Mutation Rate

1 75% 0 - 0.3%

2 94% 0 - 0.5%

3 98% 0 - 0.8%

4 99.6% 0 - 1.0%  

VI. VIRTUAL FPGA 

The circuit produced in a FPGA is determined by the 

CBS. Evolvable hardware uses a genetic algorithm to 

modify the CBS to produce a circuit that can be evolved. 

However a normal FPGA cannot be used, as a randomly 

generated CBS can destroy the FPGA. To overcome this 

problem, a virtual FPGA was created which was tolerant to 

random CBS. The virtual FPGA (Fig 6) used in this paper 

was based on the Cartesian based model consisting of 

functional elements (FE) which were grouped into five 

layers with the outputs of each layer feeding into the next. 

 

 
Fig 6.  The virtual FPGA showing the hardware in the first two layers and 

the reducing layer structure within the device. 
 

The configuration for the first and subsequent FEs is 

different (Fig 7). The first layer does not contain a function 

LUT. Each FE selects any 3 of the 32 inputs feeding them as 

a group of 3 bits to the next layer. The FE within the second 

and subsequent layers can select two groups from the 

previous layer and pass them to the function LUT which can 

perform Boolean and arithmetic functions on the two input 

groups. The operation of the multiplexers and the function 

LUT are controlled by the CBS which is 383 bits long. 

 

Layer one

32

A+B+C
3

1

1

Function

LUT

3

3

3

Layer two

out

sel 3

A

B

Sel function

  0   A

  1   ~A

  2   A + B

  3   A and B

  4   A or B

  5   A nand B

  6   A nor B

  7   A xor B
3

3

5

Multiplexer 

A

5

Multiplexer 

B

5

Multiplexer 

C

1 4

Multiplexer 

A

4

Multiplexer 

B16

(3)

 
Fig 7.  The FE in layer 1 multiplexes the inputs into groups of 3, while the 

FE in the second and subsequent layers select groups from the previous 

layer and performs Boolean and arithmetic operations on them. 

VII. HARDWARE SIMULATION  

 
Fig 8.  The hardware simulation showing the simulation and fitness 
calculation blocks with their associated control lines. 

 

The hardware simulation (Fig 8) was comprised of four 

units: simulation, fitness, simulation complete and clock 

speed. The simulation unit contained the simulation’s 

mathematical equations implemented in hardware, and the 

input-output to the virtual FPGA. The fitness unit had a 32 

bit register which was incremented on every clock pulse, 

with each pulse equivalent to 1ms of simulation time. The 

clock speed unit switched the clock source between a 

50MHz clock and a clock driven by the NIOS. Controlling 

the clock with the NIOS allowed the ball-beam states to be 

sent to the GUI, allowing the motion of the ball and beam to 

be displayed as well as enabling the simulation to be paused. 

The simulation complete unit was used to end the simulation 

when the fitness counter had reached 300 seconds. 

When reset, the fitness counter was cleared and the 

simulation ball-beam parameters set to a starting position 

with the ball on the left side of the beam, with the beam set 

to an angle of 20
0
. When not reset, the simulation 

mathematical equations were calculated on each clock cycle. 

The mathematical equations for the simulation were 

designed for a period of 1 ms, i.e. every clock pulse was 

equivalent to a one millisecond time period within the 

simulation.  

After each clock pulse, the beam would be shifted left or 

right one motor step, dependant on the motor direction input 

from the virtual FPGA. The new integer ball speed, ball 

position and beam position would then be calculated, with 

these values then being converted into a thirty two bit binary 

format representing the new beam and ball state to be feed 

to the virtual FPGA. The simulation had an output control 

line to show when the simulation had finished. This was set 

whenever the ball position reached either of the two beam 

end-stops. 

The fitness counter could be read by the NIOS processor 

at any time, with the value of the fitness counter being the 

time in milliseconds that the ball had remained balanced. 

The simulation finished line was also connected to the NIOS 

processor so that the fitness counter could be read at the end 

of a simulation 

VIII. RESULTS 

The first requirement was to ensure the software and 

hardware simulations operated in the same manner. To test 

this, a recording was taken of the ball position as it moved 

down the beam which was fixed at a 20
0
 angle.  
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TABLE II  THE MOTION OF THE BALL FALLING ON BOTH TH

AND SOFTWARE SIMULATION.

Ball ball beam Time Ball ball beam

positn speed positn (ms) positn speed positn

0 1 9 0 0 1 9

0 2 9 184 0 2 9

1 2 9 229 1 2 9

2 2 9 445 2 2 9

3 2 9 581 3 2 9

4 2 9 656 4 2 9

5 2 9 715 5 2 9

6 2 9 775 6 2 9

7 2 9 815 7 2 9

8 2 9 850 8 2 9

9 2 9 881 9 2 9

10 2 9 923 10 2 9

11 2 9 947 11 2 9

12 2 9 970 12 2 9

13 2 9 991 13 2 9

14 2 9 1015 14 2 9

15 2 9 1033 15 2 9

16 2 9 1050 16 2 9

17 2 9 1070 17 2 9

18 2 9 1085 18 2 9

18 2 9 1096 18 2 9

Software Simulation Hardware Simulation 5MHz

 

The table (Table II) shows the ball position

left, with the ball speed initially stopped, then moving down 

the beam to the right with the beam in a fix

can be seen from the table that both simulations are 

identical. On analysis, the ball slowly moved to the right

increasing in speed as the ball progressed along the beam

This is indicated by the decreasing time as the ball passed 

the sensors, starting off slowly and then increasing in speed 

due to the increased slope of the beam and the pull of 

gravity. Note the ball position sensors used for the GA were 

not evenly spaced and thus the time taken for the ball to pass 

between the sensors was not uniform either.

The second test was to compare the evoluti

of the two systems. The graphs of the fitness level relative to 

the current generation (Fig 9 and Fig 10

evolution occurs in stages. A close investigation of the 

fitness and the movement of the ball showed that there were 

five stages to the evolutionary process. In all these stage

should be remembered that the beam has 

left and right. These stages are: Stage I balancing less than 

one second, the ball simply moved down the beam with no 

response to the motor. Stage II balancing less than two 

seconds, there was a jittering of the beam arou

position not dependent on the ball position. Stage III 

balancing less then ten seconds, there are several jitter 

points that are linked to the ball position. Stage IV balancing 

less than 300 seconds, the beam moved in 

to slow the ball down and kept it relative stationary for long 

periods of time. When the ball did move the 

track it and bring it back to a relatively stationary period 

again. Stage V was a successful solution. The behaviour of 

the ball-beam was such that the ball would be semi 

stationary and move around a jitter point on the beam. 

Eventually the ball would break from this spot and move t

the opposite side of the beam. The beam would 

to correct, and bring the ball back to the original location 

where the pattern would repeat indefinitely.

 

L FALLING ON BOTH THE HARDWARE 

. 

Time

beam Time Between

positn (ms) Sensors

0

184

229 229

445 216

581 136

656 75

715 59

775 60

815 40

850 35

881 31

923 42

947 24

970 23

991 21

1015 24

1033 18

1050 17

1070 20

1085 15

1096 11

Hardware Simulation 5MHz

 

shows the ball position starting on the 

then moving down 

in a fixed position. It 

can be seen from the table that both simulations are 

ball slowly moved to the right, 

increasing in speed as the ball progressed along the beam. 

indicated by the decreasing time as the ball passed 

starting off slowly and then increasing in speed 

due to the increased slope of the beam and the pull of 

Note the ball position sensors used for the GA were 

not evenly spaced and thus the time taken for the ball to pass 

not uniform either. 

The second test was to compare the evolutionary progress 

of the two systems. The graphs of the fitness level relative to 

10) show that the 

evolution occurs in stages. A close investigation of the 

fitness and the movement of the ball showed that there were 

five stages to the evolutionary process. In all these stages it 

should be remembered that the beam has only two speeds, 

Stage I balancing less than 

one second, the ball simply moved down the beam with no 

response to the motor. Stage II balancing less than two 

jittering of the beam around a static 

nt on the ball position. Stage III 

balancing less then ten seconds, there are several jitter 

points that are linked to the ball position. Stage IV balancing 

less than 300 seconds, the beam moved in such a fashion as 

relative stationary for long 

periods of time. When the ball did move the beam would 

track it and bring it back to a relatively stationary period 

Stage V was a successful solution. The behaviour of 

beam was such that the ball would be semi 

stationary and move around a jitter point on the beam. 

Eventually the ball would break from this spot and move to 

he beam would then move 

to the original location 

where the pattern would repeat indefinitely. 

Fig 9.  The fitness relative to the number of generations for the software 
simulation. 

 

Fig 10.  The fitness relative to the number of 

simulation. 

 

The final test was to compare the time taken for a 

successful evolution. These were plotted (

12), and the times compared. The average time for a 

successful evolution using a software simulation was 80,000 

seconds, whereas the hardware simulation 

reduced to 110 seconds. Thus the hardware simulation could 

evolve a successful circuit on average 700 times faster than 

an identical software simulation.

 

Fig 11.  The software simulation with fitness and v time showing an 
average time of 50 thousand seconds to a 

 

 
.  The fitness relative to the number of generations for the software 

 
.  The fitness relative to the number of generations for the hardware 

The final test was to compare the time taken for a 

successful evolution. These were plotted (Fig 11 and Fig 

), and the times compared. The average time for a 

successful evolution using a software simulation was 80,000 

seconds, whereas the hardware simulation for this time was 

0 seconds. Thus the hardware simulation could 

evolve a successful circuit on average 700 times faster than 

an identical software simulation. 

 
The software simulation with fitness and v time showing an 

usand seconds to a successful evolution. 
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Fig 12.  The hardware simulation with fitness v time showing an average 

time of eighty seconds to a successful evolution. 

 

IX. CONCLUSION 

A hardware simulation replicating a balancing beam has 

been successfully implemented. This simulation has been 

used in a hardware GA to evolve a virtual FPGA that was 

capable of balancing the ball on the beam for more than five 

minutes. A comparison between identical software and 

hardware simulations was performed with 

behaving in an identical manner. It was found that the 

hardware simulation could evolve successful circuits over 

700 times faster than the software simulation.

REFERENCES 

[1] D. A. Ashlock, T. W. Manikas, and K. Ashenayi, "Evolving A 

Diverse Collection of Robot Path Planning Problems," in 
Evolutionary Computation, 2006. CEC 2006. IEEE Congress 

on, 2006, pp. 1837-1844. 

[2] K. Daehee, H. Hashimoto, and F. Harashima, "Path generat
for mobile robot navigation using genetic algorithm," in 

Industrial Electronics, Control, and Instrumentation, 1995., 

Proceedings of the 1995 IEEE IECON 21st International 
Conference on, 1995, pp. 167-172 vol.1. 

[3] Y. Z. Renato A. Krohling, and Andy M

FPGA-based robot controllers using an evolutionary algorithm," 
2002. 

[4] A. M. Tyrrell, R. A. Krohling, and Y. Zhou, "Evolutionary 

algorithm for the promotion of evolvable hardware," 
and Digital Techniques, IEE Proceedings

275, 2004. 

[5] K. C. Tan, C. M. Chew, K. K. Tan, L. F. Wang, and Y. J. Chen, 
"Autonomous robot navigation via intrinsic evolution," in 

Evolutionary Computation, 2002. CEC '02. Proceedings of the 

2002 Congress on, 2002, pp. 1272-1277. 
[6] R. R. Cazangi, C. Feied, M. Gillam, J. Handler, M. Smith, and 

F. J. Von Zuben, "An evolutionary approach for autonomous 

robotic tracking of dynamic targets in healthcare environments," 
in Evolutionary Computation, 2007. CEC 2007. IEEE Congress 

on, 2007, pp. 3654-3661. 

[7] T. Koyasu and K. Ito, "Acquisition of the body image in 
evolution -Role of actuators in realizing intelligent behavior," in 

Modelling, Identification and Control (ICMIC), The 2010 

International Conference on, pp. 859-864.
[8] M. Mazzapioda, A. Cangelosi, and S. Nolfi, "Evolving 

morphology and control: A distributed approach," in 

Evolutionary Computation, 2009. CEC '09. IEEE Congress on
2009, pp. 2217-2224. 

[9] A. Thompson, "An evolved circuit, intrinsic in silicon, entwined 

with physics.," Proc. 1st Int. Conf. on Evolvable Systems 
(ICES'96), pp. 390-405, 1997. 

[10] M. Iwata, I. Kajitani, H. Yamada, H. Iba, and T. Higuchi, "A 
Pattern Recognition System Using Evolvable Hardware," 

Lecture Notes In Computer Science, vol. 1141, pp. 761

1996. 
[11] L. Sekanina, Virtual Reconfigurable Circuits for Real

Applications of Evolvable Hardware, 2606 ed., 2003.

 
.  The hardware simulation with fitness v time showing an average 

a balancing beam has 

been successfully implemented. This simulation has been 

used in a hardware GA to evolve a virtual FPGA that was 

capable of balancing the ball on the beam for more than five 

minutes. A comparison between identical software and 

simulations was performed with both systems 

behaving in an identical manner. It was found that the 

volve successful circuits over 

00 times faster than the software simulation. 

D. A. Ashlock, T. W. Manikas, and K. Ashenayi, "Evolving A 

Diverse Collection of Robot Path Planning Problems," in 
Evolutionary Computation, 2006. CEC 2006. IEEE Congress 

K. Daehee, H. Hashimoto, and F. Harashima, "Path generation 
for mobile robot navigation using genetic algorithm," in 

Industrial Electronics, Control, and Instrumentation, 1995., 

Proceedings of the 1995 IEEE IECON 21st International 
 

Y. Z. Renato A. Krohling, and Andy M. Tyrrell, "Evolving 

based robot controllers using an evolutionary algorithm," 

A. M. Tyrrell, R. A. Krohling, and Y. Zhou, "Evolutionary 

algorithm for the promotion of evolvable hardware," Computers 
and Digital Techniques, IEE Proceedings-, vol. 151, pp. 267-

K. C. Tan, C. M. Chew, K. K. Tan, L. F. Wang, and Y. J. Chen, 
"Autonomous robot navigation via intrinsic evolution," in 

Evolutionary Computation, 2002. CEC '02. Proceedings of the 

 
R. R. Cazangi, C. Feied, M. Gillam, J. Handler, M. Smith, and 

F. J. Von Zuben, "An evolutionary approach for autonomous 

robotic tracking of dynamic targets in healthcare environments," 
Evolutionary Computation, 2007. CEC 2007. IEEE Congress 

T. Koyasu and K. Ito, "Acquisition of the body image in 
Role of actuators in realizing intelligent behavior," in 

Modelling, Identification and Control (ICMIC), The 2010 

864. 
, A. Cangelosi, and S. Nolfi, "Evolving 

morphology and control: A distributed approach," in 

Evolutionary Computation, 2009. CEC '09. IEEE Congress on, 

A. Thompson, "An evolved circuit, intrinsic in silicon, entwined 

Proc. 1st Int. Conf. on Evolvable Systems 

M. Iwata, I. Kajitani, H. Yamada, H. Iba, and T. Higuchi, "A 
Pattern Recognition System Using Evolvable Hardware," 

vol. 1141, pp. 761-770, 

Virtual Reconfigurable Circuits for Real-World 

, 2606 ed., 2003. 

[12] J. P. Wang, C.H.   Lee, C. H., "FPGA Implementation of 

Evolvable Characters Recognizer with Self
Rates," in International Conference on Adaptive and Natural 

Computing Algorithms ICANNGA'07

pp. 286-295. 
[13] Z. Zhu, D. J. Mulvaney, and V. A. Chouliaras, "Hardware 

implementation of a novel genetic algorithm," 

vol. 71, pp. 95-106, 2007. 
[14] T. L. Lau and E. P. K. Tsang, "Applying a mutation

genetic algorithm to processor configuration problems," in 

with Artificial Intelligence, 1996., Proceedings Eighth IEEE 
International Conference on

[15] I. De Falco, A. Della Cioppa, and E. Tarantino, "Mutation

genetic algorithm: performance evaluation," 
Computing, vol. 1, pp. 285-299, 2002.

[16] L. Sekanina and S. Friedl, "An Evolvable Combinational Unit 

for FPGAS," Computing and Informatic, 
2004. 

[17] L. Sekanina, T. Martinek, and Z. Gajda, "Extrinsic and Intrinsic 

Evolution of Multifunctional Combinational Modules," in 
Evolutionary Computation, 2006. CEC 2006. IEEE Congress 

on, 2006, pp. 2771-2778. 

[18] S. G. Shackleford B., Carter, R.J., Okushi E., Yasuda M., Seo K. 
Yasuura H. , "A High-Performance, Pipelined, FPGA

Genetic Algorithm Machine " 

Evolvable Machines, vol. 2, pp. 33
[19] T. Maruyama, T. Funatsu, and T. Hoshino, 

Programmable Gate-Array System for Evolutionary 
Computation, 1482 ed., 1998.

[20] M. Beckerleg and J. Collins, "Evolving Electronic Circuits for  

Robotic Control.," in 15th International Conference on 
Mechatronics and Machine  Vision in Practice

Zealand, 2008. 

 

 

J. P. Wang, C.H.   Lee, C. H., "FPGA Implementation of 

Evolvable Characters Recognizer with Self-adaptive Mutation 
ational Conference on Adaptive and Natural 

Computing Algorithms ICANNGA'07, Warsaw, Poland, 2007, 

Z. Zhu, D. J. Mulvaney, and V. A. Chouliaras, "Hardware 

implementation of a novel genetic algorithm," Neurocomput., 

T. L. Lau and E. P. K. Tsang, "Applying a mutation-based 

genetic algorithm to processor configuration problems," in Tools 

with Artificial Intelligence, 1996., Proceedings Eighth IEEE 
International Conference on, 1996, pp. 17-24. 

. Della Cioppa, and E. Tarantino, "Mutation-based 

genetic algorithm: performance evaluation," Applied Soft 
299, 2002. 

L. Sekanina and S. Friedl, "An Evolvable Combinational Unit 

Computing and Informatic, vol. 23, pp. 461-486, 

L. Sekanina, T. Martinek, and Z. Gajda, "Extrinsic and Intrinsic 

Evolution of Multifunctional Combinational Modules," in 
Evolutionary Computation, 2006. CEC 2006. IEEE Congress 

rter, R.J., Okushi E., Yasuda M., Seo K. 
Performance, Pipelined, FPGA-Based 

Genetic Algorithm Machine " Genetic Programming and 

vol. 2, pp. 33-60, 2004. 
T. Maruyama, T. Funatsu, and T. Hoshino, A Field-

Array System for Evolutionary 
, 1482 ed., 1998. 

M. Beckerleg and J. Collins, "Evolving Electronic Circuits for  

15th International Conference on 
Mechatronics and Machine  Vision in Practice Auckland, New 

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I 
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011




