

Abstract— This paper uses a novel method of implementing

a genetic algorithm (GA) using a hardware simulation to

evaluate the fitness of an individual for a robotic controller,

rather than the normal practise of a software simulation. A

simulation is required within a GA to model the actions of the

robot and its environment in order to evaluate how well each

individual within the population performs. Typically a

simulation is written in software and executed sequentially on a

processor. However, this paper implements the simulation as a

digital circuit within a FPGA using a hardware description

language (HDL). A comparison between identical hardware

and software simulations is performed, resulting in the

hardware simulation evolving a successful solution over seven

hundred times faster than the software simulation. The robot is

in the form of a balancing beam, the GA was implemented in

hardware and the circuit driving the beam was a virtual

FPGA.

Index Terms—Evolvable Hardware, Genetic Algorithm,

Hardware Simulation, Evolvable Robotics, Virtual FPGA

I. INTRODUCTION

This paper uses the novel approach of using a hardware

robotic simulation within a GA. The basis of a GA is to find

a solution to a problem using evolution as a search engine.

The GA uses natural selection to evolve a population of

individuals where each individual represents a possible

solution to a problem. The process is iterative and is

comprised of three main sections: reproduction, fitness

evaluation and selection. The selection process determines

which individuals within the population will survive to the

next generation based on their fitness. The reproduction

process creates new offspring from the surviving parents

using the genetic operators crossover and mutation. The

fitness evaluation determines how well each individual

within the population performs as a potential solution to the

problem with this process being the most time intensive. In

order to evaluate the fitness of an individual it must be

tested either in real life or in simulation. As it is time

consuming and potentially destructive to evolve a real life

robot, a robotic simulation is used. Historically a simulation

is run in software on a computer. If the simulation could be

implemented in hardware on a FPGA, then the mathematical

equations describing the simulation could be executed in

parallel and there should be a decrease in the time taken for

fitness evaluation.

Manuscript received June 03, 2011; revised August 12, 2011.

Mark Beckerleg is with the School of Engineering, AUT University,

New Zealand. phone: +64-9-9219999, fax: +64-9-9219973 (e-mail

mark.beckerleg@aut.ac.nz)

John Collins is with the School of Engineering, AUT University, New

Zealand. (e-mail john.collins@aut.ac.nz)

This paper created two identical simulations for a robotic

controller (Fig 1) with the first coded in software and the

second implemented in hardware. The GA used to evolve

the virtual FPGA which controlled the robot and the virtual

FPGA itself were identical and were implemented in

hardware. This enabled a valid comparison between

hardware and software simulation to be performed.

Fig 1. The two systems used to evaluate the software and hardware

simulation.

The robotic platform used to test both simulations was a

ball-beam system (Fig 2). This used a beam driven by a

stepper motor to balance a ball between two end-stops. The

beam had 19 sensors to determine ball position and a stepper

motor which could move at 27.5 degrees per second to drive

the beam. The beam itself was curved to make the system

inherently unstable.

Fig 2. The physical beam with a GUI representation allowing the ball and

beam to be dynamically observed during the evolution.

The main difficulty with creating a hardware simulation

inside a FPGA is that unlike a computer, there is no

arithmetic logic unit. All arithmetic formulae written in

HDL will generate individual circuits to implement the

arithmetic function. With floating point operations, a large

number of the FPGA logic element resources are required

for each calculation due to the complexity of dealing with

Using a Hardware Simulation within a Genetic

Algorithm to Evolve Robotic Controllers

M. Beckerleg, J. Collins

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

signed, mantissa and exponent parts. As there are typically

many floating point calculations in a simulation, it becomes

impractical to use this technique.

An alternative to floating point calculations is the use of

integer arithmetic, which reduces the logic element

resources required to implement the circuit within the

FPGA. Trigonometric functions will also need to be

implemented as an arithmetic approximation or a look up

table, as they are difficult to implement in hardware.

The disadvantage of using integer calculations is the loss

of precision compared to floating point calculations. In

addition the algorithms must be checked to make sure that

no arithmetic overflow occurs as the numbers are confined

to 32 bits (± 2 x 10
9
). It is also important to ensure that the

timing between the arithmetic calculations and the timing

between the simulation and other systems is correct. Finally

the hardware simulation must be integrated to the GA and

the virtual FPGA.

To implement the simulation in hardware, the integer

arithmetic calculations can be directly coded in Verilog

HDL using the standard multiply and divide syntax.

II. BACKGROUND

There has been a large amount of research in the use of

GAs to evolve robotic controllers using both software and

hardware GA’s. However to the to the authors knowledge

the use of a hardware simulation within these systems has

not previously been used. Using evolution to create robotic

controllers has been widely studied with advances in path

planning [1, 2], obstacle avoidance [3, 4], tracking [5, 6] and

even evolving the robot form itself [7, 8]. This paper

advances the field by the use of a hardware robotic

simulation to improve the completion time for the GA

process.

A virtual FPGA was used to control the motion of the

beam. This is a digital circuit which was evolved by

modifying its configuration bit stream (CBS) which

determined the circuit parameters within the virtual FPGA.

This method, referred to as evolvable hardware, was first

implemented by Thompson [9] when he evolved a tone

discriminator on a evolutionary tolerant Xilinx FPGA.

However this type of FPGA has been discontinued and it

has become difficult to directly evolve a commercial FPGA

by modifying its CBS.

The main requirements of an evolvable FPGA are a)

scalability to enable large systems to be evolved, b) partial

reconfigurability, where parts of the FPGA can be

reconfigured while other parts are still running and c) non

destructive architectures that are resilient to a random CBS.

One solution that meets these requirements is the virtual

FPGA with functional elements employed in a Cartesian

based array that could be downloaded into the FPGA. The

operation of the functional elements and their inputs are

determined by the CBS, thus evolving this bit stream would

change the operation of the virtual FPGA. Virtual FPGAs

have been evolved for several applications including an

adaptive equalizer with lossy data compression, [10] image

processing [11] and character recognition [12].

The hardware GA used in the experiments was a mutation

only GA (MOGA) implemented without the use of the

crossover operator, which requires less FPGA resources

allowing the complete system to be implemented in a

relatively small Altera Cyclone EP1C12F324C8 device.

This technique has been used previously in both hardware

and software GAs with studies that showing that a MOGA

can compare favorably against a normal GA [13]. An

advantage of this technique is a reduction in chromosome

damage caused by the crossover operator [14]. Various

mutation only algorithms have been studied such as frame

shift and translocation, once again finding a good

comparison with a normal GA [15]. Several papers have

used this method to evolve digital circuits.[12, 16, 17].

Other hardware GA systems have used crossover templates

to minimize the number of two bit multiplexers for the

crossover operation [18], while others have used pipelining

and parallelism to develop a high speed hardware GA[19].

III. MATHEMATICAL MODEL

In the model of the beam (Fig 3), the beam position is

measured as an angle φ from horizontal, and the ball

position is measured as an angle θ from the centre of the

beam. The full derivation for the mathematical model has

previously been described by the authors [20]. The final

equations for the ball acceleration are given in equations (1)

and (2).

R

θ

Φ+θ

Fig 3. The ball and beam showing the relationships between the angles and

motion.

�� � ��� � �� (1)

� �
	

���

���
�
 (2)

From physical experimentation on the beam, the value for

acceleration (a) of the ball was determined as a factor of the

ball position (x) and beam position (b) in equation (3).

Placing this into the mechanical modeling we can

determine the new position of the ball, dependant on its

current position, velocity ��� and acceleration in equation

(4), and the new speed of the ball dependant on its current

speed and acceleration in equation (5). The simulation was

set to a time period of 1 ms, in equations (6) and (7) and

these were modified to give a divisor which was a multiple

of two, enabling for efficiencies in the hardware

implementation, in equations (8) and (9).

� � 12� � 2.8� (3)

���� � � � �� �
���

�
 (4)

���� � � � �� (5)

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

���� � � �

�!"
�

��#��.$%

�&�!'
 (6)

���� � � �
��#��.$%

�!"
 (7)

x)*+ � x �
�!,-.

��/
�

�!�&��,0

��1
 (8)

���� � � �
3$4#��$,%

�5'
 (9)

Where

 g - gravitational acceleration

 I – moment of inertia of the ball

 R - radius of curvature of the beam

 m - mass of the ball

 r - radius of the ball

 θ - ball position (angle from the centre)

 Ø - beam position (angle from horizontal)

 x – ball position

 v – ball velocity

 b – beam position

 a - acceleration of the ball

An investigation of the hardware simulation generated by

the HDL compiler showed that no dividers and only four

signed multipliers were used in the simulation circuit.

The beam state is defined by ball position, ball speed and

beam position which were derived from the ball position

sensors and the number and direction of the motor pulses.

These parameter values were stored in a 32 bit word with 19

ball positions, 3 ball speeds and 10 beam positions, with

only 1 bit active for each parameter at any one time.

Within the hardware simulation these parameters were

encoded as integer values scaled up by 10000 to maintain

accuracy. The first parameter was the beam position which

was an angular parameter determined by the number of

beam pulses. The beam had a total movement of ±30
0
with

270 pulse required to move the beam over the total range

giving a movement per pulse of 0.22
0
and a pulse range from

±135. As the motor could only be pulsed every 8ms then the

beam movement per 1ms was 0.0275
0
.

The location of the ball was determined by 19 sensors.

When the ball was midway between two sensors both

became active. This enabled the resolution of the sensors to

be doubled giving a range from ±19.

The ball velocity was estimated from the time between

sensor signal changes, however the velocity estimation was

quite poor thus only three ball velocities were used; moving

left, moving right and almost stationary.

The complete system (Fig 4) shows the three blocks of

the genetic algorithm; a) the hardware GA, b) the virtual

FPGA and c) the hardware simulation, each with its

associated control lines. These lines controlled the GA

process, and allowed the transfer of fitness, best

chromosome and ball states to the computer GUI. The

virtual FPGA controlled the motion of the beam dependent

on the ball-beam states, and it was this circuit that was

evolved via a GA process on its CBS. The hardware

simulation modeled the dynamics of the ball-beam so the

fittest of the current virtual FPGA circuit could be

evaluated. The hardware GA used a mutation only algorithm

where the crossover operator was not used. This reduced the

number of logic elements required for the hardware GA,

enabling the complete system to be placed in a Cyclone

device using less than 12000 logic elements.

IV. SYSTEM OVERVIEW

Fig 4. System overview showing connections between the NIOS processor

and hardware subsystems

V. HARDWARE GENETIC ALGORITHM

Fig 5. The hardware genetic algorithm showing the random number

generator, chromosome storage, mutation unit and control lines.

The hardware genetic algorithm unit (Fig 5), had 3

blocks: random number generator, best chromosome storage

and the mutation unit. The mutation random number

generator used a linear feedback shift register to produce a

383 bit random number as well as four 9 bit random

numbers. The best chromosome stored the current parent

which could be sent to the mutation unit and sent to the

computer via a serial link. The mutation unit could mutate 1

to 4 bits of the chromosome dependant on the selected

mutation rate.

The operation was implemented as follows: on reset, a

random CBS was generated, placed into the best

chromosome memory, and then passed to the mutation unit.

The mutation unit could mutate 1 to 4 bits within the CBS

dependant on the fitness. The mutation point was set by a 9

bit random number giving a range of 0 to 511. As the CBS

was only 383 bits, there was a possibility that a mutation

would not occur (Table I). After mutation the CBS was sent

to the virtual FPGA for evaluation. If the CBS had an equal

or better fitness, it would be saved back in the best

chromosome memory.

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

TABLE I

 MUTATION RATE AND MUTATION PROBABILITY

Mutation Bits Mutation Probability Mutation Rate

1 75% 0 - 0.3%

2 94% 0 - 0.5%

3 98% 0 - 0.8%

4 99.6% 0 - 1.0%

VI. VIRTUAL FPGA

The circuit produced in a FPGA is determined by the

CBS. Evolvable hardware uses a genetic algorithm to

modify the CBS to produce a circuit that can be evolved.

However a normal FPGA cannot be used, as a randomly

generated CBS can destroy the FPGA. To overcome this

problem, a virtual FPGA was created which was tolerant to

random CBS. The virtual FPGA (Fig 6) used in this paper

was based on the Cartesian based model consisting of

functional elements (FE) which were grouped into five

layers with the outputs of each layer feeding into the next.

Fig 6. The virtual FPGA showing the hardware in the first two layers and

the reducing layer structure within the device.

The configuration for the first and subsequent FEs is

different (Fig 7). The first layer does not contain a function

LUT. Each FE selects any 3 of the 32 inputs feeding them as

a group of 3 bits to the next layer. The FE within the second

and subsequent layers can select two groups from the

previous layer and pass them to the function LUT which can

perform Boolean and arithmetic functions on the two input

groups. The operation of the multiplexers and the function

LUT are controlled by the CBS which is 383 bits long.

Layer one

32

A+B+C
3

1

1

Function

LUT

3

3

3

Layer two

out

sel 3

A

B

Sel function

 0 A

 1 ~A

 2 A + B

 3 A and B

 4 A or B

 5 A nand B

 6 A nor B

 7 A xor B
3

3

5

Multiplexer

A

5

Multiplexer

B

5

Multiplexer

C

1 4

Multiplexer

A

4

Multiplexer

B16

(3)

Fig 7. The FE in layer 1 multiplexes the inputs into groups of 3, while the

FE in the second and subsequent layers select groups from the previous

layer and performs Boolean and arithmetic operations on them.

VII. HARDWARE SIMULATION

Fig 8. The hardware simulation showing the simulation and fitness
calculation blocks with their associated control lines.

The hardware simulation (Fig 8) was comprised of four

units: simulation, fitness, simulation complete and clock

speed. The simulation unit contained the simulation’s

mathematical equations implemented in hardware, and the

input-output to the virtual FPGA. The fitness unit had a 32

bit register which was incremented on every clock pulse,

with each pulse equivalent to 1ms of simulation time. The

clock speed unit switched the clock source between a

50MHz clock and a clock driven by the NIOS. Controlling

the clock with the NIOS allowed the ball-beam states to be

sent to the GUI, allowing the motion of the ball and beam to

be displayed as well as enabling the simulation to be paused.

The simulation complete unit was used to end the simulation

when the fitness counter had reached 300 seconds.

When reset, the fitness counter was cleared and the

simulation ball-beam parameters set to a starting position

with the ball on the left side of the beam, with the beam set

to an angle of 20
0
. When not reset, the simulation

mathematical equations were calculated on each clock cycle.

The mathematical equations for the simulation were

designed for a period of 1 ms, i.e. every clock pulse was

equivalent to a one millisecond time period within the

simulation.

After each clock pulse, the beam would be shifted left or

right one motor step, dependant on the motor direction input

from the virtual FPGA. The new integer ball speed, ball

position and beam position would then be calculated, with

these values then being converted into a thirty two bit binary

format representing the new beam and ball state to be feed

to the virtual FPGA. The simulation had an output control

line to show when the simulation had finished. This was set

whenever the ball position reached either of the two beam

end-stops.

The fitness counter could be read by the NIOS processor

at any time, with the value of the fitness counter being the

time in milliseconds that the ball had remained balanced.

The simulation finished line was also connected to the NIOS

processor so that the fitness counter could be read at the end

of a simulation

VIII. RESULTS

The first requirement was to ensure the software and

hardware simulations operated in the same manner. To test

this, a recording was taken of the ball position as it moved

down the beam which was fixed at a 20
0
 angle.

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

TABLE II THE MOTION OF THE BALL FALLING ON BOTH TH

AND SOFTWARE SIMULATION.

Ball ball beam Time Ball ball beam

positn speed positn (ms) positn speed positn

0 1 9 0 0 1 9

0 2 9 184 0 2 9

1 2 9 229 1 2 9

2 2 9 445 2 2 9

3 2 9 581 3 2 9

4 2 9 656 4 2 9

5 2 9 715 5 2 9

6 2 9 775 6 2 9

7 2 9 815 7 2 9

8 2 9 850 8 2 9

9 2 9 881 9 2 9

10 2 9 923 10 2 9

11 2 9 947 11 2 9

12 2 9 970 12 2 9

13 2 9 991 13 2 9

14 2 9 1015 14 2 9

15 2 9 1033 15 2 9

16 2 9 1050 16 2 9

17 2 9 1070 17 2 9

18 2 9 1085 18 2 9

18 2 9 1096 18 2 9

Software Simulation Hardware Simulation 5MHz

The table (Table II) shows the ball position

left, with the ball speed initially stopped, then moving down

the beam to the right with the beam in a fix

can be seen from the table that both simulations are

identical. On analysis, the ball slowly moved to the right

increasing in speed as the ball progressed along the beam

This is indicated by the decreasing time as the ball passed

the sensors, starting off slowly and then increasing in speed

due to the increased slope of the beam and the pull of

gravity. Note the ball position sensors used for the GA were

not evenly spaced and thus the time taken for the ball to pass

between the sensors was not uniform either.

The second test was to compare the evoluti

of the two systems. The graphs of the fitness level relative to

the current generation (Fig 9 and Fig 10

evolution occurs in stages. A close investigation of the

fitness and the movement of the ball showed that there were

five stages to the evolutionary process. In all these stage

should be remembered that the beam has

left and right. These stages are: Stage I balancing less than

one second, the ball simply moved down the beam with no

response to the motor. Stage II balancing less than two

seconds, there was a jittering of the beam arou

position not dependent on the ball position. Stage III

balancing less then ten seconds, there are several jitter

points that are linked to the ball position. Stage IV balancing

less than 300 seconds, the beam moved in

to slow the ball down and kept it relative stationary for long

periods of time. When the ball did move the

track it and bring it back to a relatively stationary period

again. Stage V was a successful solution. The behaviour of

the ball-beam was such that the ball would be semi

stationary and move around a jitter point on the beam.

Eventually the ball would break from this spot and move t

the opposite side of the beam. The beam would

to correct, and bring the ball back to the original location

where the pattern would repeat indefinitely.

L FALLING ON BOTH THE HARDWARE

.

Time

beam Time Between

positn (ms) Sensors

0

184

229 229

445 216

581 136

656 75

715 59

775 60

815 40

850 35

881 31

923 42

947 24

970 23

991 21

1015 24

1033 18

1050 17

1070 20

1085 15

1096 11

Hardware Simulation 5MHz

shows the ball position starting on the

then moving down

in a fixed position. It

can be seen from the table that both simulations are

ball slowly moved to the right,

increasing in speed as the ball progressed along the beam.

indicated by the decreasing time as the ball passed

starting off slowly and then increasing in speed

due to the increased slope of the beam and the pull of

Note the ball position sensors used for the GA were

not evenly spaced and thus the time taken for the ball to pass

not uniform either.

The second test was to compare the evolutionary progress

of the two systems. The graphs of the fitness level relative to

10) show that the

evolution occurs in stages. A close investigation of the

fitness and the movement of the ball showed that there were

five stages to the evolutionary process. In all these stages it

should be remembered that the beam has only two speeds,

Stage I balancing less than

one second, the ball simply moved down the beam with no

response to the motor. Stage II balancing less than two

jittering of the beam around a static

nt on the ball position. Stage III

balancing less then ten seconds, there are several jitter

points that are linked to the ball position. Stage IV balancing

less than 300 seconds, the beam moved in such a fashion as

relative stationary for long

periods of time. When the ball did move the beam would

track it and bring it back to a relatively stationary period

Stage V was a successful solution. The behaviour of

beam was such that the ball would be semi

stationary and move around a jitter point on the beam.

Eventually the ball would break from this spot and move to

he beam would then move

to the original location

where the pattern would repeat indefinitely.

Fig 9. The fitness relative to the number of generations for the software
simulation.

Fig 10. The fitness relative to the number of

simulation.

The final test was to compare the time taken for a

successful evolution. These were plotted (

12), and the times compared. The average time for a

successful evolution using a software simulation was 80,000

seconds, whereas the hardware simulation

reduced to 110 seconds. Thus the hardware simulation could

evolve a successful circuit on average 700 times faster than

an identical software simulation.

Fig 11. The software simulation with fitness and v time showing an
average time of 50 thousand seconds to a

. The fitness relative to the number of generations for the software

. The fitness relative to the number of generations for the hardware

The final test was to compare the time taken for a

successful evolution. These were plotted (Fig 11 and Fig

), and the times compared. The average time for a

successful evolution using a software simulation was 80,000

seconds, whereas the hardware simulation for this time was

0 seconds. Thus the hardware simulation could

evolve a successful circuit on average 700 times faster than

an identical software simulation.

The software simulation with fitness and v time showing an

usand seconds to a successful evolution.

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

Fig 12. The hardware simulation with fitness v time showing an average

time of eighty seconds to a successful evolution.

IX. CONCLUSION

A hardware simulation replicating a balancing beam has

been successfully implemented. This simulation has been

used in a hardware GA to evolve a virtual FPGA that was

capable of balancing the ball on the beam for more than five

minutes. A comparison between identical software and

hardware simulations was performed with

behaving in an identical manner. It was found that the

hardware simulation could evolve successful circuits over

700 times faster than the software simulation.

REFERENCES

[1] D. A. Ashlock, T. W. Manikas, and K. Ashenayi, "Evolving A

Diverse Collection of Robot Path Planning Problems," in
Evolutionary Computation, 2006. CEC 2006. IEEE Congress

on, 2006, pp. 1837-1844.

[2] K. Daehee, H. Hashimoto, and F. Harashima, "Path generat
for mobile robot navigation using genetic algorithm," in

Industrial Electronics, Control, and Instrumentation, 1995.,

Proceedings of the 1995 IEEE IECON 21st International
Conference on, 1995, pp. 167-172 vol.1.

[3] Y. Z. Renato A. Krohling, and Andy M

FPGA-based robot controllers using an evolutionary algorithm,"
2002.

[4] A. M. Tyrrell, R. A. Krohling, and Y. Zhou, "Evolutionary

algorithm for the promotion of evolvable hardware,"
and Digital Techniques, IEE Proceedings

275, 2004.

[5] K. C. Tan, C. M. Chew, K. K. Tan, L. F. Wang, and Y. J. Chen,
"Autonomous robot navigation via intrinsic evolution," in

Evolutionary Computation, 2002. CEC '02. Proceedings of the

2002 Congress on, 2002, pp. 1272-1277.
[6] R. R. Cazangi, C. Feied, M. Gillam, J. Handler, M. Smith, and

F. J. Von Zuben, "An evolutionary approach for autonomous

robotic tracking of dynamic targets in healthcare environments,"
in Evolutionary Computation, 2007. CEC 2007. IEEE Congress

on, 2007, pp. 3654-3661.

[7] T. Koyasu and K. Ito, "Acquisition of the body image in
evolution -Role of actuators in realizing intelligent behavior," in

Modelling, Identification and Control (ICMIC), The 2010

International Conference on, pp. 859-864.
[8] M. Mazzapioda, A. Cangelosi, and S. Nolfi, "Evolving

morphology and control: A distributed approach," in

Evolutionary Computation, 2009. CEC '09. IEEE Congress on
2009, pp. 2217-2224.

[9] A. Thompson, "An evolved circuit, intrinsic in silicon, entwined

with physics.," Proc. 1st Int. Conf. on Evolvable Systems
(ICES'96), pp. 390-405, 1997.

[10] M. Iwata, I. Kajitani, H. Yamada, H. Iba, and T. Higuchi, "A
Pattern Recognition System Using Evolvable Hardware,"

Lecture Notes In Computer Science, vol. 1141, pp. 761

1996.
[11] L. Sekanina, Virtual Reconfigurable Circuits for Real

Applications of Evolvable Hardware, 2606 ed., 2003.

. The hardware simulation with fitness v time showing an average

a balancing beam has

been successfully implemented. This simulation has been

used in a hardware GA to evolve a virtual FPGA that was

capable of balancing the ball on the beam for more than five

minutes. A comparison between identical software and

simulations was performed with both systems

behaving in an identical manner. It was found that the

volve successful circuits over

00 times faster than the software simulation.

D. A. Ashlock, T. W. Manikas, and K. Ashenayi, "Evolving A

Diverse Collection of Robot Path Planning Problems," in
Evolutionary Computation, 2006. CEC 2006. IEEE Congress

K. Daehee, H. Hashimoto, and F. Harashima, "Path generation
for mobile robot navigation using genetic algorithm," in

Industrial Electronics, Control, and Instrumentation, 1995.,

Proceedings of the 1995 IEEE IECON 21st International

Y. Z. Renato A. Krohling, and Andy M. Tyrrell, "Evolving

based robot controllers using an evolutionary algorithm,"

A. M. Tyrrell, R. A. Krohling, and Y. Zhou, "Evolutionary

algorithm for the promotion of evolvable hardware," Computers
and Digital Techniques, IEE Proceedings-, vol. 151, pp. 267-

K. C. Tan, C. M. Chew, K. K. Tan, L. F. Wang, and Y. J. Chen,
"Autonomous robot navigation via intrinsic evolution," in

Evolutionary Computation, 2002. CEC '02. Proceedings of the

R. R. Cazangi, C. Feied, M. Gillam, J. Handler, M. Smith, and

F. J. Von Zuben, "An evolutionary approach for autonomous

robotic tracking of dynamic targets in healthcare environments,"
Evolutionary Computation, 2007. CEC 2007. IEEE Congress

T. Koyasu and K. Ito, "Acquisition of the body image in
Role of actuators in realizing intelligent behavior," in

Modelling, Identification and Control (ICMIC), The 2010

864.
, A. Cangelosi, and S. Nolfi, "Evolving

morphology and control: A distributed approach," in

Evolutionary Computation, 2009. CEC '09. IEEE Congress on,

A. Thompson, "An evolved circuit, intrinsic in silicon, entwined

Proc. 1st Int. Conf. on Evolvable Systems

M. Iwata, I. Kajitani, H. Yamada, H. Iba, and T. Higuchi, "A
Pattern Recognition System Using Evolvable Hardware,"

vol. 1141, pp. 761-770,

Virtual Reconfigurable Circuits for Real-World

, 2606 ed., 2003.

[12] J. P. Wang, C.H. Lee, C. H., "FPGA Implementation of

Evolvable Characters Recognizer with Self
Rates," in International Conference on Adaptive and Natural

Computing Algorithms ICANNGA'07

pp. 286-295.
[13] Z. Zhu, D. J. Mulvaney, and V. A. Chouliaras, "Hardware

implementation of a novel genetic algorithm,"

vol. 71, pp. 95-106, 2007.
[14] T. L. Lau and E. P. K. Tsang, "Applying a mutation

genetic algorithm to processor configuration problems," in

with Artificial Intelligence, 1996., Proceedings Eighth IEEE
International Conference on

[15] I. De Falco, A. Della Cioppa, and E. Tarantino, "Mutation

genetic algorithm: performance evaluation,"
Computing, vol. 1, pp. 285-299, 2002.

[16] L. Sekanina and S. Friedl, "An Evolvable Combinational Unit

for FPGAS," Computing and Informatic,
2004.

[17] L. Sekanina, T. Martinek, and Z. Gajda, "Extrinsic and Intrinsic

Evolution of Multifunctional Combinational Modules," in
Evolutionary Computation, 2006. CEC 2006. IEEE Congress

on, 2006, pp. 2771-2778.

[18] S. G. Shackleford B., Carter, R.J., Okushi E., Yasuda M., Seo K.
Yasuura H. , "A High-Performance, Pipelined, FPGA

Genetic Algorithm Machine "

Evolvable Machines, vol. 2, pp. 33
[19] T. Maruyama, T. Funatsu, and T. Hoshino,

Programmable Gate-Array System for Evolutionary
Computation, 1482 ed., 1998.

[20] M. Beckerleg and J. Collins, "Evolving Electronic Circuits for

Robotic Control.," in 15th International Conference on
Mechatronics and Machine Vision in Practice

Zealand, 2008.

J. P. Wang, C.H. Lee, C. H., "FPGA Implementation of

Evolvable Characters Recognizer with Self-adaptive Mutation
ational Conference on Adaptive and Natural

Computing Algorithms ICANNGA'07, Warsaw, Poland, 2007,

Z. Zhu, D. J. Mulvaney, and V. A. Chouliaras, "Hardware

implementation of a novel genetic algorithm," Neurocomput.,

T. L. Lau and E. P. K. Tsang, "Applying a mutation-based

genetic algorithm to processor configuration problems," in Tools

with Artificial Intelligence, 1996., Proceedings Eighth IEEE
International Conference on, 1996, pp. 17-24.

. Della Cioppa, and E. Tarantino, "Mutation-based

genetic algorithm: performance evaluation," Applied Soft
299, 2002.

L. Sekanina and S. Friedl, "An Evolvable Combinational Unit

Computing and Informatic, vol. 23, pp. 461-486,

L. Sekanina, T. Martinek, and Z. Gajda, "Extrinsic and Intrinsic

Evolution of Multifunctional Combinational Modules," in
Evolutionary Computation, 2006. CEC 2006. IEEE Congress

rter, R.J., Okushi E., Yasuda M., Seo K.
Performance, Pipelined, FPGA-Based

Genetic Algorithm Machine " Genetic Programming and

vol. 2, pp. 33-60, 2004.
T. Maruyama, T. Funatsu, and T. Hoshino, A Field-

Array System for Evolutionary
, 1482 ed., 1998.

M. Beckerleg and J. Collins, "Evolving Electronic Circuits for

15th International Conference on
Mechatronics and Machine Vision in Practice Auckland, New

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

