

Abstract— The conflict between achieving good performance

in terms of time etc. and achieving high quality of security
protection introduces new challenges in security critical grid
scheduling. Extensive study indicates that the scheduling
performance is affected by the heterogeneities of security and
computational power of resources. Different tasks may have
varied security requirement and even for the same security
requirement, security overhead may vary for different node at
which the task is scheduled. In this paper, a security driven
scheduling using genetic algorithm (SDSG) is proposed which
aims at maximizing security while restricting security
overhead under a certain limit. Extensive simulation results
over dynamically created heterogeneous grid environment
reveal that SDSG achieves better security and exhibit less
security overhead and makespan in comparison to other such
algorithms viz. MinMin MaxMin, SPMinMin and SPMaxMin.

Index Terms— Grid computing, Security-aware grid
scheduling, Cipher suite, Makespan, Response time

I. INTRODUCTION

A computational grid is a collection of geographically
dispersed heterogeneous computing resources, giving the
image of a single large virtual computing system to users
[1][2][3]. Scheduling on such platform is an important
aspect more so, being this a heterogeneous system. The
main challenge of task scheduling in grids is its highly
dynamic environment, where the computing resources have
their own access policies, security, availability etc. At the
same time, resources are of greater heterogeneity ranging
from desktop PCs to supercomputers. Grid computing has
often extensively supported collaborative projects on the
internet. Most of these projects have stringent security
requirements.
The application itself imbibes security up to some extent,
but more usually it is to be supported and ensured by the
grid environment. The dynamic and multi-institutional
nature of the grid introduces challenging security threats
warranting the development of the new technical
approaches towards this problem. In a security aware
environment, responsibility is delegated to the scheduler for
allocating the task on those resources that gives best
possible security, while understanding the computational
and security heterogeneity of the resources.

R. Kashyap is with Lal Bahadur Shastri Institute of management, Delhi,

India (phone: 91-11-25307700; fax: 91-11-24522474; e-mail:
rekhakashyap@lbsim.ac.in).

D. P. Vidyarthi is with School of Computer Science, Jawaharlal Nehru
University, Delhi, India (dpv@jnu.ac.in).

Task scheduling in grid is an NP-hard optimization
problem, so many heuristic and meta-heuristics algorithms
are in use towards finding suboptimal solutions, i.e.,
solutions whose optimality cannot be guaranteed. Meta-
heuristics like Simulated Annealing (SA) [4], Genetic
Algorithm (GA) [5], Ant Colony Optimization (ACO) [6],
particle Swarm Optimization (PSO) [7], etc. are also used
for grid scheduling as they generally produce higher quality
results than simple heuristics, although may take a bit longer
as they have to generate and evaluate many solutions rather
than just one. These nature based meta-heuristics follow the
Darwin’s natural selection law i.e. only the fittest can
survive. GA a population-based meta-heuristic, was created
by John Holland [5] and produces the next generation with
the techniques inspired by evolutionary biology, such as
inheritance, mutation, crossover, and selection. GA
considers a solution as an organism, thus better the quality
of the solution higher is the survival probability, through
crossover (also called recombination) and mutation. GA can
escape from the local optimal to search for the global
optimal. In this paper, we propose a genetic algorithm for
job scheduling to address the heterogeneity of security
mechanism in a computational grid. The proposed Security
Driven Scheduling using Genetic algorithm (SDSG)
improves the security of the heterogeneous grid while
restricting the security overhead within a limiting range.

 Next section discusses some related work in this field.
Scheduling strategy is described in section 3. Section 4
briefs the security model used in this work. Proposed SDSG
is analyzed in Section 5. Experimental results and
observations for SDSG and the compared heuristics are
presented in Section 6 while making the conclusion in the
last Section.

II. RELATED WORK

To achieve the promising potential of underlying
distributed resources in the grid, effective scheduling
algorithms are fundamentally important. Scheduling, an NP-
hard problem, is rather complex one as the Grid being a
geographically dispersed heterogeneous multiprocessing
environment. Consequent to this is the emergence of many
heuristic and evolutionary approaches towards this problem
[8] [9] [10] [11] [12] [13]. Some well known heuristic based
grid scheduling algorithms, proposed in the literature, are as
follows. Casanova et al. [14] proposed an adaptive grid
scheduling algorithm for parameter sweep applications,
where tasks can share input files and also extended
Sufferage heuristics as XSufferage. DFPLTF (Dynamic

Security-Driven Scheduling Model for
Computational Grid using Genetic Algorithm

R. Kashyap, D.P. Vidyarthi

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

Fastest Processor to Largest Task First) is a scheduling
heuristic, which gives highest priority to the largest task
[15]. Fujimoto and Hagihara [16] have proposed Round
Robin (RR) grid scheduling algorithm for parameter sweep
applications. MinMin and MaxMin are well known
algorithms used in real world distributed resource
management systems such as SmartNet [17]. MinMin gives
highest priority to the task that can be completed first. In
MinMin, the grid site offering the earliest completion time is
tagged and the task that has the minimum earliest
completion time is allocated to the respective site. MaxMin
also tags the grid site that offers the earliest completion time
but highest priority is given to the task that has maximum
earliest completion time. All the above mentioned
algorithms are not security aware and hence unsuitable for
security aware applications.

 The goal of a security aware scheduler is to meet the
desired security requirements and at the same time offer a
high level of performance with respect to one or more
parameters e.g. makespan, average response time, site
utilization etc. [18][19][20]. Further, security heterogeneity
and the grid dynamism makes security aware grid
scheduling more challenging as the security overhead is
node dependent. Some of the security-aware schedulers
discussed in the literature are as follows. Song, Kwok and
Hwang [21] envision a secured scheduling framework with
the risk involved while dispatching the jobs to the remote
nodes. They proposed three scheduling strategies based on
different risk levels and modified the MinMin and Sufferage
heuristics in three modes; a) Secure mode (jobs were only
scheduled to those nodes which can ensure security) b)
Risky mode (jobs were scheduled to any available nodes
without considering the risks between jobs and nodes), and
c) F-risky mode (jobs were scheduled to available nodes to
take at most F risks). SPMinMin and SPMaxMin [22] [23]
are improvement over the Secure mode suggested by Song.
In SPMinMin and SPMaxMin security requirement is the
guiding parameter for scheduling decision and they
guarantee the security of the job while minimizing the
makespan. SATS, suggested by Xie and Qin [24], takes into
account heterogeneities in security and computation. SATS
also provides a means of measuring overhead incurred by
security services and tries to improve security and minimize
makespan. Xiaoyong et al. [25] incorporated security into
inter-task dependency and proposed a security driven
scheduling algorithm (SDS), to improve security of HDS
(Heterogeneous distributed systems) while minimizing the
makespan, risk probability and speedup. Our work is
different from SATS and SDS as they have proposed
heuristics that didn’t search the whole range of search space.
Proposed work which is based on GA can escape from the
local optimum to search for the global optimum. Chao-Chin
and Ren-Yi [26] proposed a genetic algorithm, addressing
the heterogeneities of fault tolerant mechanism in
computational grid. They improved on job failure rate
optimizing the makespan, whereas the proposed algorithm
improves the total security value minimizing the security
overhead.

III. SCHEDULING STRATEGY

The proposed model considers a grid consisting of
number of non dedicated processing nodes which, in turn,
may have a single processor or a group of heterogeneous or
homogeneous processors. A job is comprised of “n”
independent tasks with different computational size and
security level. The tasks have soft deadlines and are
independent i.e. without any precedence constraint. The list
of terminologies, used in this paper, is as follows.

 A task Ti is characterized as Ti= (Szi, SLi,) where, Szi is
the computational size in millions of instructions and SLi
and the security level assigned to the ith task.

 Processing node Nj of the grid is characterized as Nj=
(SPj, BTj) where, SPj is the speed of node in MIPS and BTj is
the begin time of the node (time to execute already assigned
tasks to the node).

 A schedule of the job is depicted as the set of n tuples
<Ti, Pj, BTj, SOij ,CTij> in which, Ti is ith task, Pj is jth
processing node, BTj is Begin Time at jth processing node,
SOij is the Security Overhead of ith task on jth node and CTij
is the completion time of the ith task on the jth processing
node. CTij is calculated using equation 1.

CTij= BTj + ETij + SOij (1)

 where, ETij is Execution Time of ith task on jth processing

node and SOij is the Security Overhead of ith task on jth
node. Begin time of every node at the start of schedule is
assumed to be zero but once the execution start, it will be
affected.

IV. SECURITY STRATEGY

A. Security Model

 One of the key factors behind the growing interest in grid
computing is the evolution of standards such as TCP/IP and
Ethernet in networking. For the TCP networking model
IPsec, TLS/SSL and SSH are the popularly used security
protocols operating on its network, transport and application
layer respectively [27] [28] [29][30]. These protocols offer
security to any grid application by the common security
services of key exchange, authentication, confidentiality and
integrity. Each protocol is further configured to match
differing security requirements through cipher suites
negotiations where cipher suite, is a named combination of
key exchange, authentication, encryption, and integrity
algorithms used to negotiate the security settings for a
network connection. In the present work, SSL V3 protocol
is considered and security levels are assigned for the cipher
suites supported by it. SL for each cipher-suite is based on
the weighted sum of security services involved in the
cipher-suite. Cipher-suite offering more security (algorithms
with longer keys) has more computational cost and therefore
is assigned a higher security level. The security level also
provides a mechanism for calculating the security overhead
expenses. Subset of cipher suites supported by SSL V3
protocol is shown in Table 1. The third row SSLCipherSpec
SSL_RSA_WITH_DES_CBC_SHA indicates use of DES
with 56-bit encryption. The fourth row SSL CipherSpec
SSL_RSA_WITH_3DES_ EDE_ CBC_SHA indicates use

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

of 3DES with 168-bit encryption. Among the six cipher
suites, mentioned in the Table 1, the first one provides the
weakest security and the last one provides the strongest
security.

TABLE 1
 THE SUBSET OF CIPHER SUITES SUPPORTED BY SSL V3 PROTOCOL

SSLCipherSpec SSL_RSA_WITH_
RC4_128_MD5

Security Level 1

SSLCipherSpec SSL_RSA_WITH_
RC4_128_SHA

Security Level 2

SSLCipherSpec SSL_RSA_WITH_
DES_CBC_SHA

Security Level 3

SSLCipherSpec SSL_RSA_WITH_3
DES_EDE_CBC_SH
A

Security Level 4

SSLCipherSpec SSL_RSA_EXPORT
_WITH_RC4_40_M
D5

Security Level 5

SSLCipherSpec SSL_RSA_EXPORT
_WITH_RC2_CBC_
40_MD5

Security Level 6

B. Security Overhead Computation

 Security overhead is calculated as suggested by Tao Xie
and Xiao Qin [31] (equation 2), where, SLi is in the range
[1, 2, 3…..R] and 1 and R are the lowest and highest
security level. For the experiments, shown in this paper, R is
set to be 15. The rationale behind this security overhead
model is based on the observation that security overhead of
a particular application tends to be proportional to the
execution time of the application. In other words, security
overhead depends upon the amount of data to be secured
and thus is the product of the execution time (which
depends upon data size) and relative security required as
shown in equation 2. Xie Tao [24] and Xiaoyong Tang [25]
have proposed more precise model for calculating security
overhead in which they calculate security overhead for each
security service namely authentication integrity and
confidentiality. Simpler security overhead calculation has
been effectuated in all the algorithms since for the
comparison purposes; the result will not be affected. Total
computation time considering security overhead is shown in
equation 3.

 ij ij iSO ET SL R (2)

CTij= BTj + ETij (1+ SLi /R) (3)

V. THE PROPOSED WORK

The paper proposes a security driven scheduling strategy
using Genetic algorithm.

A. Security Driven Scheduling using Genetic Algorithm
(SDSG)

The aim of the proposed algorithm is to get maximum
security benefit while minimizing the security overhead. An
important decision in such multiobjective optimization is
how to evaluate the quality of solutions since the conflicting
and incommensurable nature of some of the criteria makes

this process more complicated. The possible alternatives are
as follows.

Combine the objectives: This is one of the classical
methods to evaluate the solution fitness in multiobjective
optimization. It refers to converting the multiobjective
problem into a single-objective one by combining the
various criteria into a single scalar value. The most common
way of doing this is by setting weights to each criterion and
add them all together using an aggregating function.

Pareto-based evaluation: In this approach, a vector
containing all the objective values represents the solution
fitness and the concept of dominance is used to establish
preference between solutions. A solution x is said to be non
inferior or non-dominated if there is no other solution that is
better that x in all the criteria.

Alternating the objective: This is also an approach that
has been used for many years. It refers to optimizing one
criterion at a time while imposing constraints on the others.
We obtain the fitness function by optimizing security value
while keeping a limit on the security overhead. The
constrained value of security overhead is obtained by
averaging the security overhead, from randomly created 500
schedules.

B. Coding of Solutions

 The encoding of individuals (also known as
chromosome) of the population is a key issue in genetic
algorithm. In SDSG, we are using fixed length integer
number encoding where feasible solution are encoded in a
vector called schedule, of size equal to number of jobs to be
scheduled. Each element of the vector is an ordered pair
(Node ID, Security Level) as shown in Fig. 1. For example
schedule[i] = (4, 6) means ith task is scheduled on Node ID 4
and will be executed with security level 6.

Task ID 1 2 3 4 5 6

2,
3

3,
5

4,
6

3,
1

4,
3

2,
8

Fig. 1. The fixed length integer number encoding pattern of

chromosomes

C. Initial Population

For initial population, we keep on generating random
schedules till we fetch 100 schedules having total security
overhead within constrained value denoted as SOctr . It is
obtained by averaging the security overhead from randomly
generated 500 schedules and is calculated as shown in
equation 4 and 5.

1

m

K

ctr kSO SO m

 (4)

1

,
n

i

k ijSO SO j

 (5)

 where, SOk is the total security overhead of the kth

schedule, m is number of schedules in the population which
is set to 500 and n is the number of tasks comprising the
schedule.

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

D. Fitness function and Selection

 Fitness function is one of the important components of
GA to measure the quality of solution and is problem
dependent. The aim of SDSG is to maximize the security of
the solution with security overhead as constraint, so fitness
of the schedule is the total security being offered to all the
tasks and is measured by equation 6.

maximize Fit(f(x)) =
1

n

i

i

SL

 (6)

subject to ,() 1,2,...,ctrSO x SO i n

where
1

() ,
n

ij j

i

SO x SO

 where SLi is Security level of ith task, SO(x) is security

overhead of the schedule x and SOij is security overhead of
ith task on the corresponding jth node. After we compute the
fitness Fit(f(x)) of each chromosome in the current
population, parents for the next generation are selected. The
selection operator allows the algorithm to take biased
decision favoring good individuals while changing
generations. For this, good individuals are replicated while
bad individuals are removed. As a consequence, after the
selection the population is likely to be dominated by good
schedules. We are using roulette wheel selection, which is
similar to the roulette in the gambling games. Each
individual is assigned an interval proportional to its fitness
and is selected if the randomly drawn number belongs to its
interval. Better the fitness, better the odd of its being
selected. We assume that P(i) is the selection probability of
individual i, and is given by

1

(())
()

()
N

i

Fit f i
P i

f x

 ,i=1,2,..,n (7)

partSum(i) = partSum(i-1) + P(i), i = 1,2,…,n (8)

 where, partSum accumualtes partial sum of fitness

values. Then we produce a random number R, which is
distributed between 0 and 1, if partSum(i-1) < R <
partSum(i), we get i as a probable parent. The operation is
repeated till we obtain N probable parents for the next
generation.

E. Crossover and Mutation

 Genetic algorithms are based on principles that crossing
two individual can result in offspring’s normally better than
both the parents. Crossover is a recombination operator that
combines subparts of two parent chromosomes to produce
offspring that contain some parts of genetic material from
both the parents. We have adopted single-point crossover
method with probability pc=0.7. Firstly, parents are selected
based on the above mentioned selection scheme, then a
crossover point is randomly selected, and we exchange
chromosome beyond this point. Since the genes of our

chromosome are ordered pair of Node ID and Security
Level, crossover not only changes the task node relationship
but also the security value associated with it and may result
in a new schedule whose security overhead exceeds the
SOctr. Only schedules not exceeding SOctr are permitted to
crossover.

 After selection and crossover, mutation is performed to
lead the search to get out of local optimum. The mutation
operation randomly selects a gene in a chromosome, and
then mutates its value. In our case the mutation operator
changes the node and security value of a randomly selected
task in an arbitrary chromosome with probability pm=0.06.
Only schedules not exceeding SOctr are permitted to mutate.

F. Termination

 The entire process of selection, crossover and mutation is
repeated for 1000 generations and candidates having best
fitness in the final generation is considered as near optimal
solution.

VI. EXPERIMENTAL RESULTS AND OBSERVATIONS

 To validate and evaluate the performance of the
proposed SDSG over existing algorithms i.e. MinMin,
MaxMin, SPMinMin and SPMaxMin, a simulator in Java is
designed and the experiments are carried out. The simulator
is composed of Grid-Generator and Task-Generator which
randomly generates heterogeneous grid nodes and task sets
over the range specified in Table 2. For random value
generation, the random function of java API is used which
uses current time as the seed value. The experimental study
considers the complete heterogeneous environment e.g.
security offered by the nodes, speed of the nodes and size of
the task. Since MinMin and MaxMin are not security-
offering scheduling algorithms; we imposed security
overhead cost in their implementations for a fair comparison
with SDSG, SPMinMin and SPMaxMin.

 The aim of SDSG is to optimize the total security of the
schedule, while constraining the security overhead and is
made to terminate after 1000 generations. The schedule
offering the best security in the final generation is selected
as the optimal schedule. For the comparisons to be fair, the
other algorithms are compared for the same security value
as achieved by SDSG over the following performance
metrics:

 Security Overhead (equation 2)
 Makespan (completion time of the entire job) =

Max [CTij,] i=1, 2,…n.
 Average response time (time period between the

task arrival and its completion time)

=)

1

(/
n

ij

i

iCT TA n

 .

 where, CTij is the completion time of the ith task on the

assigned jth processor, ATi is the arrival time of the ith task
and n is number of tasks in a schedule. Makespan reflects
the entire job efficiency whereas average response time
indicates the performance of majority of the tasks within the

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

schedule. A better makespan is an indication that the
schedule does not suffer and a better average response time
suggests that majority of tasks does not suffer.

TABLE 2
 INPUT PARAMETERS FOR THE SIMULATION EXPERIMENTS

Parameter Value Range
No of nodes 30
Speed of the processing node
(SP)

1, 2, 5, 10 (MIPS)

Security level of the processing
node (SL)

1 to 15

No. of tasks 100 to 300 (fixed 150)
Size of tasks 10 to 1000 (MB)
Population size 100
Max generations 1000
Crossover probability(pc) 0.7
Mutation probability(pm) 0.06

A. Performance Impact by varying Number of Tasks

 We compared the security overhead, makespan and
average response time of SDSG with other heuristics
varying number of tasks to be scheduled from 100 to 800,
on a grid with 30 heterogeneous nodes. In Fig. 2(b), the
experimental results show that when the number of tasks
increased, the time for finishing tasks increase too. It is also
observed that SDSG performs better than other algorithms,
achieving less security overhead and makespan for similar
security values. Since MinMin and MaxMin are non
security aware schedulers, making them run with higher
security value resulted in higher security overhead and
makespan. SPMinMin and SPMaxMin are security aware
schedulers and give priorities to higher security demanding
tasks but does not optimize security overhead. The
improvement of SDGA over other algorithms was better
with increase in number of tasks as shown in Fig. 2(a). and
2(b). Average response time measures the overall wait time
for the entire task set. Since MinMin gives priority to
smaller task it shows the best response time and SDGA is
the second best among all the algorithms compared for
average response time metric.

0

50

100

150

200

250

100 200 300 400 500 600 700 800

Nos. of Tasks

S
ec

u
ri

ty
 O

ve
rh

ea
d

 in
 S

ec
s MinMin(SA)

SPMinMin

MaxMin(SA)

SPMaxMin

SDGA

(a) Security Overhead

0

100
200

300

400
500

600

700
800

900

100 200 300 400 500 600 700 800
Nos of Tasks

M
ak

es
p

an
 in

 S
ec

s

MinMin(SA)

SPMinMin

MaxMin(SA)

SPMaxMin

SDGA

(b) Makespan

0

50

100

150

200

250

300

350

400

10
0

30
0

50
0

70
0

Nos of Tasks
A

ve
ra

g
e

R
es

p
o

n
se

 T
im

e

in
 S

ec
s

MinMin(SA)

SPMinMin

MaxMin(SA)

SPMaxMin

SDGA

(c) Average response Time

Fig. 2. Performance comparisons varying the number of tasks

VII. CONCLUSION

In this paper, we proposed a GA based scheduling
algorithm for large computational grid, which makes efforts
to incorporate security into task scheduling. Non security
aware algorithm do not consider security overhead and
security constraints of a task and therefore possibly assign
the task to a node that only result in small computation time
but with a large total execution time. GA, due to its very
nature, is capable of searching within the whole range of
search space making them global near optimal scheduling
solution. The proposed SDSG being security aware genetic
algorithm makes effort to optimize quality of security and at
the same time satisfy high level of performance metric i.e.
security overhead. Experimental results confirm that SDSG
performs better than other compared heuristics giving better
makespan and security overhead for same level of security.

REFERENCES
[1] Foster I. Kesselman C. Tsudik G. Tuecke S. Security Architecture for

Computational Grids. ACM Conference on Computers and
Security 1998; 83-91.

[2] Foster I. Kesselman C. Tuecke S. The Anatomy of the Grid: Enabling
Scalable Virtual Organizations. International Journal of High
Performance Computing Applications 2001; pp. 200-222.

[3] Foster I. “What is Grid? A three point checklist,”http://www-
fp.mcs.anl. gov/~foster /Articles /WhatIs The Grid. pdf [2004].

[4] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, ”Optimization by
Simulated Annealing,” Science, vol. 220, no. 4598, pp. 671-680,May
1983.

[5] J. H. Holland, Adaptation in Natural and Artificial Systems. AnnArbor,
MI: Univ. of Michigan Press, 1975.

[6] E. Bonabeau, M. Dorigo and G. Theraulaz, ”Inspiration for
Optimizationfrom Social Insect Behavior,” Nature, vol. 406, pp. 39-
42,Jul. 2000.

[7] J. Kennedy and R. C. Eberhart, ”Particle Swarm Optimization,”Proc.
IEEE Int’l Conf. Neural Networks (ICNN 95), Perth, Australia,pp.
1942-1948, Nov. 1995.

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

[8] Doulamis, N. Doulamis A. Varvarigos E. Varvarigou T.(2007) ‘Fair
scheduling algorithms in grids’, IEEE Transactions on Parallel and
Distributed Systems 18 (11), pp 1630-1648.

[9] Hai, Z., Yuping, W.(2008) ‘Security-Driven Task Scheduling Based
on Evolutionary Algorithm. International Conference on
Computational Intelligence and Security’.

[10] Braun, T., Hensgen, D,. Freund, R., Siegel, H., Beck, N., Boloni, L.,
Maheswaran, M., Reuther, A., Robertson, J., Theys, M., Yao,
B.(2001). ‘A comparison of eleven static heuristics for mapping a
class of independent tasks onto heterogeneous distributed computing
systems’, Journal of Parallel and Distributed Computing, pp 810-837.

[11] Abawajy, J. An efficient adaptive scheduling policy for high
performance Computing, Future Generation Computer Systems 25
(3), 364-370., (2009).

[12] Kalantari, M., Akbari, M. K.(2009) A parallel solution for scheduling
of real time applications on grid environments, Future Generation
Computer Systems 25 (7), pp704-716.

[13] Kun-Ming, Y., Cheng-Kwan, C.(2008) ‘An Adaptive Scheduling
Algorithm for Scheduling Tasks in Computational Grid’, Seventh
International Conference on Grid and Cooperative Computing .

[14] Casanova, H. and Dongara, J.(1996) ‘ NetSolve: A Network Server
for Solving Computational Science Problems’. In Proceedings of the
1996 ACM/IEEE Supercomputing Conference’.

[15] Paranhos, D., Cirne, W., & Brasileiro, F.(2003) ‘Trading cycles for
information: Using replication to schedule bag-of-tasks applications
on computational grids’. In International Conference on Parallel and
Distributed Computing (Euro-Par), Lecture Notes in Computer
Science, volume 2790, pp169–180.

[16] Fujimoto, N., & Hagihara, K.(2003) ‘Near-optimal dynamic task
scheduling of independent coarse-grained tasks onto a computational
grid’. In 32nd Annual International Conference on Parallel Processing
(ICPP-03), pp. 391–398.

[17] Freund, R. F., Gherrity, R. M., Ambrosius, S., Campbell, M.
Halderman, D. Hensgen, E. Keith, T. Kidd, M. Kussow, , Lima, J. D.,
Mirabile, F. L., Moore, L., Rust, B., & Siegel, H. J.(1998)
‘Scheduling resources in multi-user, heterogeneous, computing
environments with smartnet’, In the 7th IEEE Heterogeneous
Computing Workshop (HCW’98),pp. 184–199.

[18] Welch, V., Siebenlist, F., Foster, I., Bresnahan, J., Czajkowski, K.,
Gawor, J., Kesselman, C., Meder, S., Pearlman, L., Tuecke, S.(2003)
‘Security for Grid Services, Proc. Int’l Symp. High Performance
Distributed Computing (HPDC-12).

[19] Xie, T., Qin, X. (2005) “Enahancing Security of Real-Time
Applications on Grids through Dynamic Scheduling”, Proc. 11th
Workshop Job Scheduling Strategies for Parallel Processing JSSPP;
pp146-158.

[20] Xie, T., Qin, X.(2008) ‘Security-Aware Resource Allocation for
RealTime Parallel jobs on Homogeneous and Heterogeneous
Clusters’. In IEEE Transactions on Parallel and Distributed systems,
Vol. 19, No. 5.

[21] Song, S., Kwok, Y., K. & Hwang, K.(2005) “Trusted Job Scheduling
in Open Computational Grids: Security-Driven Heuristics and A Fast
Genetic Algorithms,” Proc. Int’l Symp. Parallel and Distributed
Processing.

[22] Kashyap, R., Vidyarthi, D. P. (2009) ‘Security Prioritized
Computational Grid Scheduling Model: An Analysis. International
Journal of Grid and High Performance Computing’, 1(3), pp. 73-84
(2009).

[23] Kashyap, R., Vidyarthi, D. P.(2009) ‘A Security Prioritized Scheduling
Model for Computational Grid’. In International conference at HPC
Asia. pp 416-424.

[24] Xie, T., Qin, X.(2007) ‘Performance Evaluation of a New Scheduling
Algorithm for Distributed Systems with Security Heterogeneity’. J.
Parallel Distributed. Computing ; pp1067– 1081.

[25] Xiaoyong, T., Kenli, L., Zeng, Z., Bharadwaj, V.(2010) ‘A Novel
Security-Driven Scheduling Algorithm for Precedence Constrained
Tasks in Heterogeneous Distributed Systems’, IEEE Transaction on
computers Vol. 6, No. 1.

[26] Chao-Chin W. Ren-Yi S.(2010) ‘An integrated security-aware
scheduling strategy for large-scale computational grids’. Future
Generation Computer Systems, pp198-206.

[27] Luo Q. Lin Y. Analysis and Comparison of Several Algorithms in
SSL/TLS Handshake Protocol . Proceedings of the International
Conference on Information Technology and Computer Science 2009.

[28] Stallings W. Cryptography and Network Security: Principles and
Practice, 4/E. Prentice Hall: 2008.

[29] Salter M. Rescorla E. Housley R. RFC 5430 Suit B Profile for
Transport layer Security and TLS version 1.2.
http://tools.ietf.org/html/rfc5430 [March 2009].

[30] Dierks T. Rescorla E RFC 4346 The Transport layer Security (TLS)
Protocol Version 1.1. http://tools.ietf.org/pdf/rfc4346.pdf [April
2006].

[31] Xie, T., Sung, A., Qin, X.(2005) ‘Dynamic Task Scheduling with
Security Awareness in Real-Time Systems’, Proceedings of the 19th
International Parallel and Distributed Processing Symposium
(IPDPS'05), the 4th Int’l Workshop on Performance Modeling,
Evaluation, and Optimization of Parallel and Distributed Systems,
IEEE/ACM, Denver, CO.

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

