
 

 
Abstract— The conflict between achieving good performance 

in terms of time etc. and achieving high quality of security 
protection introduces new challenges in security critical grid 
scheduling. Extensive study indicates that the scheduling 
performance is affected by the heterogeneities of security and 
computational power of resources. Different tasks may have 
varied security requirement and even for the same security 
requirement, security overhead may vary for different node at 
which the task is scheduled. In this paper, a security driven 
scheduling using genetic algorithm (SDSG) is proposed which 
aims at maximizing security while restricting security 
overhead under a certain limit. Extensive simulation results 
over dynamically created heterogeneous grid environment 
reveal that SDSG achieves better security and exhibit less 
security overhead and makespan in comparison to other such 
algorithms viz. MinMin  MaxMin, SPMinMin and SPMaxMin. 
 

Index Terms— Grid computing, Security-aware grid 
scheduling, Cipher suite, Makespan, Response time 

I. INTRODUCTION 

A computational grid is a collection of geographically 
dispersed heterogeneous computing resources, giving the 
image of a single large virtual computing system to users 
[1][2][3]. Scheduling on such platform is an important 
aspect more so, being this a heterogeneous system. The 
main challenge of task scheduling in grids is its highly 
dynamic environment, where the computing resources have 
their own access policies, security, availability etc. At the 
same time, resources are of greater heterogeneity ranging 
from desktop PCs to supercomputers. Grid computing has 
often extensively supported collaborative projects on the 
internet. Most of these projects have stringent security 
requirements.  
The application itself imbibes security up to some extent, 
but more usually it is to be supported and ensured by the 
grid environment. The dynamic and multi-institutional 
nature of the grid introduces challenging security threats 
warranting the development of the new technical 
approaches towards this problem. In a security aware 
environment, responsibility is delegated to the scheduler for 
allocating the task on those resources that gives best 
possible security, while understanding the computational 
and security heterogeneity of the resources.  
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Task scheduling in grid is an NP-hard optimization 
problem, so many heuristic and meta-heuristics algorithms 
are in use towards finding suboptimal solutions, i.e., 
solutions whose optimality cannot be guaranteed. Meta-
heuristics like Simulated Annealing (SA) [4], Genetic 
Algorithm (GA) [5], Ant Colony Optimization (ACO) [6], 
particle Swarm Optimization (PSO) [7], etc. are also used 
for grid scheduling as they generally produce higher quality 
results than simple heuristics, although may take a bit longer 
as they have to generate and evaluate many solutions rather 
than just one. These nature based meta-heuristics follow the 
Darwin’s natural selection law i.e. only the fittest can 
survive. GA a population-based meta-heuristic, was created 
by John Holland [5] and produces the next generation with 
the techniques inspired by evolutionary biology, such as 
inheritance, mutation, crossover, and selection. GA 
considers a solution as an organism, thus better the quality 
of the solution higher is the survival probability, through 
crossover (also called recombination) and mutation. GA can 
escape from the local optimal to search for the global 
optimal. In this paper, we propose a genetic algorithm for 
job scheduling to address the heterogeneity of security 
mechanism in a computational grid. The proposed Security 
Driven Scheduling using Genetic algorithm (SDSG) 
improves the security of the heterogeneous grid while 
restricting the security overhead within a limiting range.     

 Next section discusses some related work in this field. 
Scheduling strategy is described in section 3. Section 4 
briefs the security model used in this work. Proposed SDSG 
is analyzed in Section 5. Experimental results and 
observations for SDSG and the compared heuristics are 
presented in Section 6 while making the conclusion in the 
last Section.  

II.   RELATED WORK 

To achieve the promising potential of underlying 
distributed resources in the grid, effective scheduling 
algorithms are fundamentally important. Scheduling, an NP-
hard problem, is rather complex one as the Grid being a 
geographically dispersed heterogeneous multiprocessing 
environment. Consequent to this is the emergence of many 
heuristic and evolutionary approaches towards this problem 
[8] [9] [10] [11] [12] [13]. Some well known heuristic based 
grid scheduling algorithms, proposed in the literature, are as 
follows. Casanova et al. [14] proposed an adaptive grid 
scheduling algorithm for parameter sweep applications, 
where tasks can share input files and also extended 
Sufferage heuristics as XSufferage. DFPLTF (Dynamic 
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Fastest Processor to Largest Task First) is a scheduling 
heuristic, which gives highest priority to the largest task 
[15]. Fujimoto and Hagihara [16] have proposed Round 
Robin (RR) grid scheduling algorithm for parameter sweep 
applications. MinMin and MaxMin are well known 
algorithms used in real world distributed resource 
management systems such as SmartNet [17]. MinMin gives 
highest priority to the task that can be completed first. In 
MinMin, the grid site offering the earliest completion time is 
tagged and the task that has the minimum earliest 
completion time is allocated to the respective site. MaxMin 
also tags the grid site that offers the earliest completion time 
but highest priority is given to the task that has maximum 
earliest completion time. All the above mentioned 
algorithms are not security aware and hence unsuitable for 
security aware applications. 

 The goal of a security aware scheduler is to meet the 
desired security requirements and at the same time offer a 
high level of performance with respect to one or more 
parameters e.g. makespan, average response time, site 
utilization etc. [18][19][20]. Further, security heterogeneity 
and the grid dynamism makes security aware grid 
scheduling more challenging as the security overhead is 
node dependent. Some of the security-aware schedulers 
discussed in the literature are as follows. Song, Kwok and 
Hwang [21] envision a secured scheduling framework with 
the risk involved while dispatching the jobs to the remote 
nodes. They proposed three scheduling strategies based on 
different risk levels and modified the MinMin and Sufferage 
heuristics in three modes; a) Secure mode (jobs were only 
scheduled to those nodes which can ensure security) b) 
Risky mode (jobs were scheduled to any available nodes 
without considering the risks between jobs and nodes), and 
c) F-risky mode (jobs were scheduled to available nodes to 
take at most F risks). SPMinMin and SPMaxMin [22] [23] 
are improvement over the Secure mode suggested by Song. 
In SPMinMin and SPMaxMin security requirement is the 
guiding parameter for scheduling decision and they 
guarantee the security of the job while minimizing the 
makespan. SATS, suggested by Xie and Qin [24], takes into 
account heterogeneities in security and computation. SATS 
also provides a means of measuring overhead incurred by 
security services and tries to improve security and minimize 
makespan.  Xiaoyong et al. [25] incorporated security into 
inter-task dependency and proposed a security driven 
scheduling algorithm (SDS), to improve security of HDS 
(Heterogeneous distributed systems) while minimizing the 
makespan, risk probability and speedup. Our work is 
different from SATS and SDS as they have proposed 
heuristics that didn’t search the whole range of search space. 
Proposed work which is based on GA can escape from the 
local optimum to search for the global optimum. Chao-Chin 
and Ren-Yi [26] proposed a genetic algorithm, addressing 
the heterogeneities of fault tolerant mechanism in 
computational grid. They improved on job failure rate 
optimizing the makespan, whereas the proposed algorithm 
improves the total security value minimizing the security 
overhead.  

III. SCHEDULING  STRATEGY 

The proposed model considers a grid consisting of 
number of non dedicated processing nodes which, in turn, 
may have a single processor or a group of heterogeneous or 
homogeneous processors. A job is comprised of “n” 
independent tasks with different computational size and 
security level. The tasks have soft deadlines and are 
independent i.e. without any precedence constraint. The list 
of terminologies, used in this paper, is as follows. 

 A task Ti is characterized as Ti= (Szi, SLi,) where, Szi is 
the computational size in millions of instructions and SLi 
and the security level assigned to the ith task.  

 Processing node Nj of the grid is characterized as Nj= 
(SPj, BTj) where, SPj is the speed of node in MIPS and BTj is 
the begin time of the node (time to execute already assigned 
tasks to the node). 

 A schedule of the job is depicted as the set of n tuples    
<Ti, Pj, BTj, SOij ,CTij> in which, Ti is ith task, Pj is jth 
processing node, BTj is Begin Time at jth processing node, 
SOij is the Security Overhead of ith task on jth node and CTij 
is the completion time of the ith task on the jth processing 
node. CTij is calculated using equation 1. 

 
CTij= BTj + ETij + SOij        (1) 

 
 where, ETij is Execution Time of ith task on jth processing 

node and SOij is the Security Overhead of ith task on jth 
node. Begin time of every node at the start of schedule is 
assumed to be zero but once the execution start, it will be 
affected.  

IV. SECURITY STRATEGY 

A. Security Model 

 One of the key factors behind the growing interest in grid 
computing is the evolution of standards such as TCP/IP and 
Ethernet in networking. For the TCP networking model 
IPsec, TLS/SSL and SSH are the popularly used security 
protocols operating on its network, transport and application 
layer respectively [27] [28] [29][30]. These protocols offer 
security to any grid application by the common security 
services of key exchange, authentication, confidentiality and 
integrity. Each protocol is further configured to match 
differing security requirements through cipher suites 
negotiations where cipher suite, is a named combination of 
key exchange, authentication, encryption, and integrity 
algorithms used to negotiate the security settings for a 
network connection. In the present work, SSL V3 protocol 
is considered and security levels are assigned for the cipher 
suites supported by it. SL for each cipher-suite is based on 
the weighted sum of security services involved in the 
cipher-suite. Cipher-suite offering more security (algorithms 
with longer keys) has more computational cost and therefore 
is assigned a higher security level. The security level also 
provides a mechanism for calculating the security overhead 
expenses. Subset of cipher suites supported by SSL V3 
protocol is shown in Table 1. The third row SSLCipherSpec 
SSL_RSA_WITH_DES_CBC_SHA indicates use of DES 
with 56-bit encryption. The fourth row SSL CipherSpec 
SSL_RSA_WITH_3DES_ EDE_ CBC_SHA indicates use 
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of 3DES with 168-bit encryption. Among the six cipher 
suites, mentioned in the Table 1, the first one provides the 
weakest security and the last one provides the strongest 
security.  

 
 

TABLE 1  
 THE SUBSET OF CIPHER SUITES SUPPORTED BY SSL V3 PROTOCOL 

SSLCipherSpec  SSL_RSA_WITH_ 
RC4_128_MD5 

Security Level  1 

SSLCipherSpec  SSL_RSA_WITH_ 
RC4_128_SHA 

Security Level  2 

SSLCipherSpec  SSL_RSA_WITH_ 
DES_CBC_SHA 

Security Level  3 

SSLCipherSpec  SSL_RSA_WITH_3
DES_EDE_CBC_SH
A 

Security Level  4 

SSLCipherSpec  SSL_RSA_EXPORT
_WITH_RC4_40_M
D5 

Security Level  5 

SSLCipherSpec  SSL_RSA_EXPORT
_WITH_RC2_CBC_
40_MD5 

Security Level  6 

 

B. Security Overhead Computation 

  Security overhead is calculated as suggested by Tao Xie 
and Xiao Qin [31] (equation 2), where, SLi is in the range 
[1, 2, 3…..R] and 1 and R are the lowest and highest 
security level. For the experiments, shown in this paper, R is 
set to be 15. The rationale behind this security overhead 
model is based on the observation that security overhead of 
a particular application tends to be proportional to the 
execution time of the application. In other words, security 
overhead depends upon the amount of data to be secured 
and thus is the product of the execution time (which 
depends upon data size) and relative security required as 
shown in equation 2. Xie Tao [24] and Xiaoyong Tang [25] 
have proposed more precise model for calculating security 
overhead in which they calculate security overhead for each 
security service namely authentication integrity and 
confidentiality. Simpler security overhead calculation has 
been effectuated in all the algorithms since for the 
comparison purposes; the result will not be affected. Total 
computation time considering security overhead is shown in 
equation 3. 

 

 ij ij iSO ET SL R                  (2) 

 

CTij= BTj +  ETij  ( 1+ SLi /R)              (3) 
 

V. THE PROPOSED WORK 

The paper proposes a security driven scheduling strategy 
using Genetic algorithm. 

A. Security Driven Scheduling using Genetic Algorithm 
(SDSG) 

The aim of the proposed algorithm is to get maximum 
security benefit while minimizing the security overhead. An 
important decision in such multiobjective optimization is 
how to evaluate the quality of solutions since the conflicting 
and incommensurable nature of some of the criteria makes 

this process more complicated. The possible alternatives are 
as follows. 

Combine the objectives: This is one of the classical 
methods to evaluate the solution fitness in multiobjective 
optimization. It refers to converting the multiobjective 
problem into a single-objective one by combining the 
various criteria into a single scalar value. The most common 
way of doing this is by setting weights to each criterion and 
add them all together using an aggregating function. 

Pareto-based evaluation: In this approach, a vector 
containing all the objective values represents the solution 
fitness and the concept of dominance is used to establish 
preference between solutions. A solution x is said to be non 
inferior or non-dominated if there is no other solution that is 
better that x in all the criteria. 

Alternating the objective: This is also an approach that 
has been used for many years. It refers to optimizing one 
criterion at a time while imposing constraints on the others. 
We obtain the fitness function by optimizing security value 
while keeping a limit on the security overhead. The 
constrained value of security overhead is obtained by 
averaging the security overhead, from randomly created 500 
schedules. 

B.  Coding of Solutions 

 The encoding of individuals (also known as 
chromosome) of the population is a key issue in genetic 
algorithm. In SDSG, we are using  fixed length integer 
number encoding where feasible solution are encoded in a 
vector called schedule, of size equal to number of jobs to be 
scheduled. Each element of the vector is an ordered pair 
(Node ID, Security Level) as shown in Fig. 1. For example 
schedule[i] = (4, 6) means ith task is scheduled on Node ID 4 
and will be executed with security level 6. 

 
Task  ID    1           2            3          4           5           6 

2,
3 

3,
5 

4,
6 

3,
1 

4,
3 

2,
8 

 
Fig. 1.  The fixed length integer number encoding pattern of 

chromosomes 
 

C.  Initial Population 

For initial population, we keep on generating random 
schedules till we fetch 100 schedules having total security 
overhead within constrained value denoted as SOctr . It is 
obtained by averaging the security overhead  from randomly 
generated 500 schedules and is calculated as shown in 
equation 4 and 5.   

             
1

m

K

ctr kSO SO m


                              (4) 

1

,
n

i

k ijSO SO j


                                (5) 

 
 where, SOk is the total security overhead of the kth 

schedule, m is number of schedules in the population which 
is set to 500 and n is the number of  tasks comprising the 
schedule. 
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D.  Fitness function and Selection 

  Fitness function is one of the important components of 
GA to measure the quality of solution and is problem 
dependent. The aim of SDSG is to maximize the security of 
the solution with security overhead as constraint, so fitness 
of the schedule is  the total security being offered to all the 
tasks and is measured  by equation 6. 

                                                                              

maximize Fit(f(x)) = 
1

n

i

i

SL

                  (6) 

subject to ,( ) 1,2,...,ctrSO x SO i n   

where 
1

( ) ,
n

ij j

i

SO x SO


   

 
 where SLi is Security level of ith task, SO(x) is security 

overhead of the schedule x and SOij is security overhead of 
ith task on the corresponding jth node. After we compute the 
fitness Fit(f(x)) of each chromosome in the current 
population, parents for the  next generation are selected. The 
selection operator allows the algorithm to take biased 
decision favoring good individuals while changing 
generations. For this, good individuals are replicated while 
bad individuals are removed. As a consequence, after the 
selection the population is likely to be dominated by good 
schedules. We are using roulette wheel selection, which is 
similar to the roulette in the gambling games. Each 
individual is assigned an interval proportional to its fitness 
and is selected if the randomly drawn number belongs to its 
interval. Better the fitness, better the odd of its being 
selected. We assume that P(i) is the selection probability of 
individual i, and is given by 

 

1

( ( ))
( )

( )
N

i

Fit f i
P i

f x





  ,i=1,2,..,n                   (7) 

 
partSum(i) = partSum(i-1) + P(i), i = 1,2,…,n   (8) 

 
 where, partSum accumualtes partial sum of fitness 

values. Then we produce a random number R, which is 
distributed between 0 and 1, if partSum(i-1) < R < 
partSum(i), we get i as a probable parent. The operation is 
repeated till we obtain N probable parents for the next 
generation. 

 

E.  Crossover and Mutation 

 Genetic algorithms are based on principles that crossing 
two individual can result in offspring’s normally better than 
both the parents. Crossover is a recombination operator that 
combines subparts of two parent chromosomes to produce 
offspring that contain some parts of genetic material from 
both the parents. We have adopted single-point crossover 
method with probability pc=0.7. Firstly, parents are selected 
based on the above mentioned selection scheme, then a 
crossover point is randomly selected, and we exchange 
chromosome beyond this point. Since the genes of our 

chromosome are ordered pair of Node ID and Security 
Level, crossover not only changes the task node relationship 
but also the security value associated with it and may result 
in a new schedule whose security overhead exceeds the 
SOctr. Only schedules not exceeding SOctr are permitted to 
crossover. 

 After selection and crossover, mutation is performed to 
lead the search to get out of local optimum. The mutation 
operation randomly selects a gene in a chromosome, and 
then mutates its value. In our case the mutation operator 
changes the node and security value of a randomly selected 
task in an arbitrary chromosome with probability pm=0.06. 
Only schedules not exceeding SOctr  are permitted to mutate. 

 

F.  Termination 

 The entire process of selection, crossover and mutation is 
repeated for 1000 generations and candidates having best 
fitness in the final generation is considered as near optimal 
solution. 

VI.   EXPERIMENTAL RESULTS AND OBSERVATIONS 

 To validate and evaluate the performance of the 
proposed SDSG over existing algorithms i.e.  MinMin, 
MaxMin, SPMinMin and SPMaxMin, a simulator in Java is 
designed and the experiments are carried out. The simulator 
is composed of Grid-Generator and Task-Generator which 
randomly generates heterogeneous grid nodes and task sets 
over the range specified in Table 2. For random value 
generation, the random function of java API is used which 
uses current time as the seed value. The experimental study 
considers the complete heterogeneous environment e.g.  
security offered by the nodes, speed of the nodes and size of 
the task. Since MinMin and MaxMin are not security-
offering scheduling algorithms; we imposed security 
overhead cost in their implementations for a fair comparison 
with SDSG, SPMinMin and SPMaxMin. 

 The aim of SDSG is to optimize the total security of the 
schedule, while constraining the security overhead and is 
made to terminate after 1000 generations. The schedule 
offering the best security in the final generation is selected 
as the optimal schedule. For the comparisons to be fair, the 
other algorithms are compared for the same security value 
as achieved by SDSG over  the following performance 
metrics: 

 
  Security Overhead (equation 2) 
 Makespan (completion time of the entire job) = 

Max [CTij,] i=1, 2,…n.  
 Average response time (time period between the 

task arrival and its completion time) 

= )

1

( /
n

ij

i

iCT TA n


 .  

 
 where, CTij is the completion time of the ith task on the 

assigned jth processor, ATi is the arrival time of the ith task 
and n is number of tasks in a schedule. Makespan reflects 
the entire job efficiency whereas average response time 
indicates the performance of majority of the tasks within the 
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schedule. A better makespan is an indication that the 
schedule does not suffer and a better average response time 
suggests that majority of tasks does not suffer.  

 
 
 

TABLE  2 
   INPUT PARAMETERS FOR THE SIMULATION EXPERIMENTS 

Parameter Value Range 
No of nodes                                    30 
Speed of the processing node 
(SP)                                            

1, 2, 5, 10 (MIPS) 
 

Security level of the processing 
node (SL)                                 

1 to 15 
 

No. of tasks                                    100 to 300   (fixed 150) 
Size of tasks                                   10 to 1000 (MB) 
Population size 100 
Max generations 1000 
Crossover probability(pc) 0.7 
Mutation probability(pm) 0.06 

  

A. Performance Impact by varying Number of Tasks  

 We compared the security overhead, makespan and 
average response time of SDSG with other heuristics 
varying number of tasks to be scheduled from 100 to 800, 
on a grid with 30 heterogeneous nodes. In Fig. 2(b), the 
experimental results show that when the number of tasks 
increased, the time for finishing tasks increase too. It is also 
observed that SDSG performs better than other algorithms, 
achieving less security overhead and makespan for similar 
security values. Since MinMin and MaxMin are non 
security aware schedulers, making them run with higher 
security value resulted in higher security overhead and 
makespan. SPMinMin and SPMaxMin are security aware 
schedulers and give priorities to higher security demanding 
tasks but does not optimize security overhead. The 
improvement of SDGA over other algorithms was better 
with increase in number of tasks as shown in Fig. 2(a). and 
2(b). Average response time measures the overall wait time 
for the entire task set. Since MinMin gives priority to 
smaller task it shows the best response time and SDGA is 
the second best among all the algorithms compared for 
average response time metric. 
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(b) Makespan 
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(c) Average response Time 

Fig.  2.   Performance comparisons varying the number of tasks 

VII.    CONCLUSION 

In this paper, we proposed a GA based scheduling 
algorithm for large computational grid, which makes efforts 
to incorporate security into task scheduling. Non security 
aware algorithm do not consider security overhead and 
security constraints of a task and therefore possibly assign 
the task to a node that only result in small computation time 
but with a large total execution time. GA, due to its very 
nature, is capable of searching within the whole range of 
search space making them global near optimal scheduling 
solution. The proposed SDSG being security aware genetic 
algorithm makes effort to optimize quality of security and at 
the same time satisfy high level of performance metric i.e. 
security overhead. Experimental results confirm that SDSG 
performs better than other compared heuristics giving better 
makespan and security overhead for same level of security.  
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